-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathpints_samplers.py
838 lines (729 loc) · 25.6 KB
/
pints_samplers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
from pints import MALAMCMC as PintsMALAMCMC
from pints import AdaptiveCovarianceMCMC as PintsAdaptiveCovarianceMCMC
from pints import DifferentialEvolutionMCMC as PintsDifferentialEvolutionMCMC
from pints import DramACMC as PintsDramACMC
from pints import DreamMCMC as PintsDREAM
from pints import EmceeHammerMCMC as PintsEmceeHammerMCMC
from pints import HaarioACMC as PintsHaarioACMC
from pints import HaarioBardenetACMC as PintsHaarioBardenetACMC
from pints import HamiltonianMCMC as PintsHamiltonianMCMC
from pints import MetropolisRandomWalkMCMC as PintsMetropolisRandomWalkMCMC
from pints import MonomialGammaHamiltonianMCMC as PintsMonomialGammaHamiltonianMCMC
from pints import NoUTurnMCMC
from pints import PopulationMCMC as PintsPopulationMCMC
from pints import RaoBlackwellACMC as PintsRaoBlackwellACMC
from pints import RelativisticMCMC as PintsRelativisticMCMC
from pints import SliceDoublingMCMC as PintsSliceDoublingMCMC
from pints import SliceRankShrinkingMCMC as PintsSliceRankShrinkingMCMC
from pints import SliceStepoutMCMC as PintsSliceStepoutMCMC
from pybop import BasePintsSampler
class NUTS(BasePintsSampler):
"""
Implements the No-U-Turn Sampler (NUTS) algorithm.
This class extends the NUTS sampler from the PINTS library.
NUTS is a Markov chain Monte Carlo (MCMC) method for sampling
from a probability distribution. It is an extension of the
Hamiltonian Monte Carlo (HMC) method, which uses a dynamic
integration time to explore the parameter space more efficiently.
Parameters
----------
log_pdf : function
A function that calculates the log-probability density.
chains : int
The number of chains to run.
x0 : ndarray, optional
Initial positions for the chains.
sigma0 : ndarray, optional
Initial covariance matrix.
**kwargs
Additional arguments to pass to the NUTS sampler.
Attributes
----------
log_pdf : function
The log-probability density function.
chains : int
The number of chains being run.
sampler_class : class
The NUTS sampler class from PINTS.
x0 : ndarray
The initial positions of the chains.
sigma0 : ndarray
The initial covariance matrix.
"""
def __init__(self, log_pdf, chains, x0=None, sigma0=None, **kwargs):
super().__init__(log_pdf, chains, NoUTurnMCMC, x0=x0, sigma0=sigma0, **kwargs)
class DREAM(BasePintsSampler):
"""
Implements the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm.
This class extends the DREAM sampler from the PINTS library.
DREAM is a Markov chain Monte Carlo (MCMC) method for sampling
from a probability distribution. It combines the Differential
Evolution (DE) algorithm with the Adaptive Metropolis (AM) algorithm
to explore the parameter space more efficiently.
Parameters
----------
log_pdf : function
A function that calculates the log-probability density.
chains : int
The number of chains to run.
x0 : ndarray, optional
Initial positions for the chains.
sigma0 : ndarray, optional
Initial covariance matrix.
**kwargs
Additional arguments to pass to the DREAM sampler.
Attributes
----------
log_pdf : function
The log-probability density function.
chains : int
The number of chains being run.
sampler_class : class
The DREAM sampler class from PINTS.
x0 : ndarray
The initial positions of the chains.
sigma0 : ndarray
The initial covariance matrix.
"""
def __init__(self, log_pdf, chains, x0=None, sigma0=None, **kwargs):
super().__init__(log_pdf, chains, PintsDREAM, x0=x0, sigma0=sigma0, **kwargs)
class AdaptiveCovarianceMCMC(BasePintsSampler):
"""
Implements the Adaptive Covariance Markov Chain Monte Carlo (MCMC) algorithm.
This class extends the Adaptive Covariance MCMC sampler from the PINTS library.
This MCMC method adapts the proposal distribution covariance matrix
during the sampling process to improve efficiency and convergence.
Parameters
----------
log_pdf : function
A function that calculates the log-probability density.
chains : int
The number of chains to run.
x0 : ndarray, optional
Initial positions for the chains.
sigma0 : ndarray, optional
Initial covariance matrix.
**kwargs
Additional arguments to pass to the Adaptive Covariance MCMC sampler.
Attributes
----------
log_pdf : function
The log-probability density function.
chains : int
The number of chains being run.
sampler_class : class
The Adaptive Covariance MCMC sampler class from PINTS.
x0 : ndarray
The initial positions of the chains.
sigma0 : ndarray
The initial covariance matrix.
"""
def __init__(self, log_pdf, chains, x0=None, sigma0=None, **kwargs):
super().__init__(
log_pdf,
chains,
PintsAdaptiveCovarianceMCMC,
x0=x0,
sigma0=sigma0,
**kwargs,
)
class DifferentialEvolutionMCMC(BasePintsSampler):
"""
Implements the Differential Evolution Markov Chain Monte Carlo (MCMC) algorithm.
This class extends the Differential Evolution MCMC sampler from the PINTS library.
This MCMC method uses the Differential Evolution algorithm to explore the
parameter space more efficiently by evolving a population of chains.
Parameters
----------
log_pdf : function
A function that calculates the log-probability density.
chains : int
The number of chains to run.
x0 : ndarray, optional
Initial positions for the chains.
sigma0 : ndarray, optional
Initial covariance matrix.
**kwargs
Additional arguments to pass to the Differential Evolution MCMC sampler.
Attributes
----------
log_pdf : function
The log-probability density function.
chains : int
The number of chains being run.
sampler_class : class
The Differential Evolution MCMC sampler class from PINTS.
x0 : ndarray
The initial positions of the chains.
sigma0 : ndarray
The initial covariance matrix.
"""
def __init__(self, log_pdf, chains, x0=None, sigma0=None, **kwargs):
super().__init__(
log_pdf,
chains,
PintsDifferentialEvolutionMCMC,
x0=x0,
sigma0=sigma0,
**kwargs,
)
class DramACMC(BasePintsSampler):
"""
Implements the Delayed Rejection Adaptive Metropolis (DRAM) Adaptive Covariance Markov Chain Monte Carlo (MCMC) algorithm.
This class extends the DRAM Adaptive Covariance MCMC sampler from the PINTS library.
This MCMC method combines Delayed Rejection with Adaptive Metropolis to enhance
the efficiency and robustness of the sampling process.
Parameters
----------
log_pdf : function
A function that calculates the log-probability density.
chains : int
The number of chains to run.
x0 : ndarray, optional
Initial positions for the chains.
sigma0 : ndarray, optional
Initial covariance matrix.
**kwargs
Additional arguments to pass to the DRAM Adaptive Covariance MCMC sampler.
Attributes
----------
log_pdf : function
The log-probability density function.
chains : int
The number of chains being run.
sampler_class : class
The DRAM Adaptive Covariance MCMC sampler class from PINTS.
x0 : ndarray
The initial positions of the chains.
sigma0 : ndarray
The initial covariance matrix.
"""
def __init__(self, log_pdf, chains, x0=None, sigma0=None, **kwargs):
super().__init__(
log_pdf,
chains,
PintsDramACMC,
x0=x0,
sigma0=sigma0,
**kwargs,
)
class EmceeHammerMCMC(BasePintsSampler):
"""
Implements the Emcee Hammer Markov Chain Monte Carlo (MCMC) algorithm.
This class extends the Emcee Hammer MCMC sampler from the PINTS library.
The Emcee Hammer is an affine-invariant ensemble sampler for MCMC, which is
particularly effective for high-dimensional parameter spaces.
Parameters
----------
log_pdf : function
A function that calculates the log-probability density.
chains : int
The number of chains to run.
x0 : ndarray, optional
Initial positions for the chains.
sigma0 : ndarray, optional
Initial covariance matrix.
**kwargs
Additional arguments to pass to the Emcee Hammer MCMC sampler.
Attributes
----------
log_pdf : function
The log-probability density function.
chains : int
The number of chains being run.
sampler_class : class
The Emcee Hammer MCMC sampler class from PINTS.
x0 : ndarray
The initial positions of the chains.
sigma0 : ndarray
The initial covariance matrix.
"""
def __init__(self, log_pdf, chains, x0=None, sigma0=None, **kwargs):
super().__init__(
log_pdf,
chains,
PintsEmceeHammerMCMC,
x0=x0,
sigma0=sigma0,
**kwargs,
)
class HaarioACMC(BasePintsSampler):
"""
Implements the Haario Adaptive Covariance Markov Chain Monte Carlo (MCMC) algorithm.
This class extends the Haario Adaptive Covariance MCMC sampler from the PINTS library.
This MCMC method adapts the proposal distribution's covariance matrix based on the
history of the chain, improving sampling efficiency and convergence.
Parameters
----------
log_pdf : function
A function that calculates the log-probability density.
chains : int
The number of chains to run.
x0 : ndarray, optional
Initial positions for the chains.
sigma0 : ndarray, optional
Initial covariance matrix.
**kwargs
Additional arguments to pass to the Haario Adaptive Covariance MCMC sampler.
Attributes
----------
log_pdf : function
The log-probability density function.
chains : int
The number of chains being run.
sampler_class : class
The Haario Adaptive Covariance MCMC sampler class from PINTS.
x0 : ndarray
The initial positions of the chains.
sigma0 : ndarray
The initial covariance matrix.
"""
def __init__(self, log_pdf, chains, x0=None, sigma0=None, **kwargs):
super().__init__(
log_pdf,
chains,
PintsHaarioACMC,
x0=x0,
sigma0=sigma0,
**kwargs,
)
class HaarioBardenetACMC(BasePintsSampler):
"""
Implements the Haario-Bardenet Adaptive Covariance Markov Chain Monte Carlo (MCMC) algorithm.
This class extends the Haario-Bardenet Adaptive Covariance MCMC sampler from the PINTS library.
This MCMC method combines the adaptive covariance approach with an additional
mechanism to improve performance in high-dimensional parameter spaces.
Parameters
----------
log_pdf : function
A function that calculates the log-probability density.
chains : int
The number of chains to run.
x0 : ndarray, optional
Initial positions for the chains.
sigma0 : ndarray, optional
Initial covariance matrix.
**kwargs
Additional arguments to pass to the Haario-Bardenet Adaptive Covariance MCMC sampler.
Attributes
----------
log_pdf : function
The log-probability density function.
chains : int
The number of chains being run.
sampler_class : class
The Haario-Bardenet Adaptive Covariance MCMC sampler class from PINTS.
x0 : ndarray
The initial positions of the chains.
sigma0 : ndarray
The initial covariance matrix.
"""
def __init__(self, log_pdf, chains, x0=None, sigma0=None, **kwargs):
super().__init__(
log_pdf,
chains,
PintsHaarioBardenetACMC,
x0=x0,
sigma0=sigma0,
**kwargs,
)
class HamiltonianMCMC(BasePintsSampler):
"""
Implements the Hamiltonian Markov Chain Monte Carlo (MCMC) algorithm.
This class extends the Hamiltonian MCMC sampler from the PINTS library.
This MCMC method uses Hamiltonian dynamics to propose new states,
allowing for efficient exploration of high-dimensional parameter spaces.
Parameters
----------
log_pdf : function
A function that calculates the log-probability density.
chains : int
The number of chains to run.
x0 : ndarray, optional
Initial positions for the chains.
sigma0 : ndarray, optional
Initial covariance matrix.
**kwargs
Additional arguments to pass to the Hamiltonian MCMC sampler.
Attributes
----------
log_pdf : function
The log-probability density function.
chains : int
The number of chains being run.
sampler_class : class
The Hamiltonian MCMC sampler class from PINTS.
x0 : ndarray
The initial positions of the chains.
sigma0 : ndarray
The initial covariance matrix.
"""
def __init__(self, log_pdf, chains, x0=None, sigma0=None, **kwargs):
super().__init__(
log_pdf,
chains,
PintsHamiltonianMCMC,
x0=x0,
sigma0=sigma0,
**kwargs,
)
class MALAMCMC(BasePintsSampler):
"""
Implements the Metropolis Adjusted Langevin Algorithm (MALA) Markov Chain Monte Carlo (MCMC) algorithm.
This class extends the MALA MCMC sampler from the PINTS library.
This MCMC method combines the Metropolis-Hastings algorithm with
Langevin dynamics to improve sampling efficiency and convergence.
Parameters
----------
log_pdf : function
A function that calculates the log-probability density.
chains : int
The number of chains to run.
x0 : ndarray, optional
Initial positions for the chains.
sigma0 : ndarray, optional
Initial covariance matrix.
**kwargs
Additional arguments to pass to the MALA MCMC sampler.
Attributes
----------
log_pdf : function
The log-probability density function.
chains : int
The number of chains being run.
sampler_class : class
The MALA MCMC sampler class from PINTS.
x0 : ndarray
The initial positions of the chains.
sigma0 : ndarray
The initial covariance matrix.
"""
def __init__(self, log_pdf, chains, x0=None, sigma0=None, **kwargs):
super().__init__(
log_pdf,
chains,
PintsMALAMCMC,
x0=x0,
sigma0=sigma0,
**kwargs,
)
class MetropolisRandomWalkMCMC(BasePintsSampler):
"""
Implements the Metropolis Random Walk Markov Chain Monte Carlo (MCMC) algorithm.
This class extends the Metropolis Random Walk MCMC sampler from the PINTS library.
This classic MCMC method uses a simple random walk proposal distribution
and the Metropolis-Hastings acceptance criterion.
Parameters
----------
log_pdf : function
A function that calculates the log-probability density.
chains : int
The number of chains to run.
x0 : ndarray, optional
Initial positions for the chains.
sigma0 : ndarray, optional
Initial covariance matrix.
**kwargs
Additional arguments to pass to the Metropolis Random Walk MCMC sampler.
Attributes
----------
log_pdf : function
The log-probability density function.
chains : int
The number of chains being run.
sampler_class : class
The Metropolis Random Walk MCMC sampler class from PINTS.
x0 : ndarray
The initial positions of the chains.
sigma0 : ndarray
The initial covariance matrix.
"""
def __init__(self, log_pdf, chains, x0=None, sigma0=None, **kwargs):
super().__init__(
log_pdf,
chains,
PintsMetropolisRandomWalkMCMC,
x0=x0,
sigma0=sigma0,
**kwargs,
)
class MonomialGammaHamiltonianMCMC(BasePintsSampler):
"""
Implements the Monomial Gamma Hamiltonian Markov Chain Monte Carlo (MCMC) algorithm.
This class extends the Monomial Gamma Hamiltonian MCMC sampler from the PINTS library.
This MCMC method uses Hamiltonian dynamics with a monomial gamma distribution
for efficient exploration of the parameter space.
Parameters
----------
log_pdf : function
A function that calculates the log-probability density.
chains : int
The number of chains to run.
x0 : ndarray, optional
Initial positions for the chains.
sigma0 : ndarray, optional
Initial covariance matrix.
**kwargs
Additional arguments to pass to the Monomial Gamma Hamiltonian MCMC sampler.
Attributes
----------
log_pdf : function
The log-probability density function.
chains : int
The number of chains being run.
sampler_class : class
The Monomial Gamma Hamiltonian MCMC sampler class from PINTS.
x0 : ndarray
The initial positions of the chains.
sigma0 : ndarray
The initial covariance matrix.
"""
def __init__(self, log_pdf, chains, x0=None, sigma0=None, **kwargs):
super().__init__(
log_pdf,
chains,
PintsMonomialGammaHamiltonianMCMC,
x0=x0,
sigma0=sigma0,
**kwargs,
)
class PopulationMCMC(BasePintsSampler):
"""
Implements the Population Markov Chain Monte Carlo (MCMC) algorithm.
This class extends the Population MCMC sampler from the PINTS library.
This MCMC method uses a population of chains at different temperatures
to explore the parameter space more efficiently and avoid local minima.
Parameters
----------
log_pdf : function
A function that calculates the log-probability density.
chains : int
The number of chains to run.
x0 : ndarray, optional
Initial positions for the chains.
sigma0 : ndarray, optional
Initial covariance matrix.
**kwargs
Additional arguments to pass to the Population MCMC sampler.
Attributes
----------
log_pdf : function
The log-probability density function.
chains : int
The number of chains being run.
sampler_class : class
The Population MCMC sampler class from PINTS.
x0 : ndarray
The initial positions of the chains.
sigma0 : ndarray
The initial covariance matrix.
"""
def __init__(self, log_pdf, chains, x0=None, sigma0=None, **kwargs):
super().__init__(
log_pdf,
chains,
PintsPopulationMCMC,
x0=x0,
sigma0=sigma0,
**kwargs,
)
class RaoBlackwellACMC(BasePintsSampler):
"""
Implements the Rao-Blackwell Adaptive Covariance Markov Chain Monte Carlo (MCMC) algorithm.
This class extends the Rao-Blackwell Adaptive Covariance MCMC sampler from the PINTS library.
This MCMC method improves sampling efficiency by combining Rao-Blackwellisation
with adaptive covariance strategies.
Parameters
----------
log_pdf : function
A function that calculates the log-probability density.
chains : int
The number of chains to run.
x0 : ndarray, optional
Initial positions for the chains.
sigma0 : ndarray, optional
Initial covariance matrix.
**kwargs
Additional arguments to pass to the Rao-Blackwell Adaptive Covariance MCMC sampler.
Attributes
----------
log_pdf : function
The log-probability density function.
chains : int
The number of chains being run.
sampler_class : class
The Rao-Blackwell Adaptive Covariance MCMC sampler class from PINTS.
x0 : ndarray
The initial positions of the chains.
sigma0 : ndarray
The initial covariance matrix.
"""
def __init__(self, log_pdf, chains, x0=None, sigma0=None, **kwargs):
super().__init__(
log_pdf,
chains,
PintsRaoBlackwellACMC,
x0=x0,
sigma0=sigma0,
**kwargs,
)
class RelativisticMCMC(BasePintsSampler):
"""
Implements the Relativistic Markov Chain Monte Carlo (MCMC) algorithm.
This class extends the Relativistic MCMC sampler from the PINTS library.
This MCMC method uses concepts from relativistic mechanics to propose new states,
allowing for efficient exploration of the parameter space.
Parameters
----------
log_pdf : function
A function that calculates the log-probability density.
chains : int
The number of chains to run.
x0 : ndarray, optional
Initial positions for the chains.
sigma0 : ndarray, optional
Initial covariance matrix.
**kwargs
Additional arguments to pass to the Relativistic MCMC sampler.
Attributes
----------
log_pdf : function
The log-probability density function.
chains : int
The number of chains being run.
sampler_class : class
The Relativistic MCMC sampler class from PINTS.
x0 : ndarray
The initial positions of the chains.
sigma0 : ndarray
The initial covariance matrix.
"""
def __init__(self, log_pdf, chains, x0=None, sigma0=None, **kwargs):
super().__init__(
log_pdf,
chains,
PintsRelativisticMCMC,
x0=x0,
sigma0=sigma0,
**kwargs,
)
class SliceDoublingMCMC(BasePintsSampler):
"""
Implements the Slice Doubling Markov Chain Monte Carlo (MCMC) algorithm.
This class extends the Slice Doubling MCMC sampler from the PINTS library.
This MCMC method uses slice sampling with a doubling procedure to propose new states,
allowing for efficient exploration of the parameter space.
Parameters
----------
log_pdf : function
A function that calculates the log-probability density.
chains : int
The number of chains to run.
x0 : ndarray, optional
Initial positions for the chains.
sigma0 : ndarray, optional
Initial covariance matrix.
**kwargs
Additional arguments to pass to the Slice Doubling MCMC sampler.
Attributes
----------
log_pdf : function
The log-probability density function.
chains : int
The number of chains being run.
sampler_class : class
The Slice Doubling MCMC sampler class from PINTS.
x0 : ndarray
The initial positions of the chains.
sigma0 : ndarray
The initial covariance matrix.
"""
def __init__(self, log_pdf, chains, x0=None, sigma0=None, **kwargs):
super().__init__(
log_pdf,
chains,
PintsSliceDoublingMCMC,
x0=x0,
sigma0=sigma0,
**kwargs,
)
class SliceRankShrinkingMCMC(BasePintsSampler):
"""
Implements the Slice Rank Shrinking Markov Chain Monte Carlo (MCMC) algorithm.
This class extends the Slice Rank Shrinking MCMC sampler from the PINTS library.
This MCMC method uses slice sampling with a rank shrinking procedure to propose new states,
allowing for efficient exploration of the parameter space.
Parameters
----------
log_pdf : function
A function that calculates the log-probability density.
chains : int
The number of chains to run.
x0 : ndarray, optional
Initial positions for the chains.
sigma0 : ndarray, optional
Initial covariance matrix.
**kwargs
Additional arguments to pass to the Slice Rank Shrinking MCMC sampler.
Attributes
----------
log_pdf : function
The log-probability density function.
chains : int
The number of chains being run.
sampler_class : class
The Slice Rank Shrinking MCMC sampler class from PINTS.
x0 : ndarray
The initial positions of the chains.
sigma0 : ndarray
The initial covariance matrix.
"""
def __init__(self, log_pdf, chains, x0=None, sigma0=None, **kwargs):
super().__init__(
log_pdf,
chains,
PintsSliceRankShrinkingMCMC,
x0=x0,
sigma0=sigma0,
**kwargs,
)
class SliceStepoutMCMC(BasePintsSampler):
"""
Implements the Slice Stepout Markov Chain Monte Carlo (MCMC) algorithm.
This class extends the Slice Stepout MCMC sampler from the PINTS library.
This MCMC method uses slice sampling with a stepout procedure to propose new states,
allowing for efficient exploration of the parameter space.
Parameters
----------
log_pdf : function
A function that calculates the log-probability density.
chains : int
The number of chains to run.
x0 : ndarray, optional
Initial positions for the chains.
sigma0 : ndarray, optional
Initial covariance matrix.
**kwargs
Additional arguments to pass to the Slice Stepout MCMC sampler.
Attributes
----------
log_pdf : function
The log-probability density function.
chains : int
The number of chains being run.
sampler_class : class
The Slice Stepout MCMC sampler class from PINTS.
x0 : ndarray
The initial positions of the chains.
sigma0 : ndarray
The initial covariance matrix.
"""
def __init__(self, log_pdf, chains, x0=None, sigma0=None, **kwargs):
super().__init__(
log_pdf,
chains,
PintsSliceStepoutMCMC,
x0=x0,
sigma0=sigma0,
**kwargs,
)