From 1b9d3753d15ef43c7db14b7bc2fa6d17fbde7e8e Mon Sep 17 00:00:00 2001 From: Valentin Sulzer Date: Fri, 2 Sep 2022 16:47:48 -0400 Subject: [PATCH 1/2] #2275 remove ProcessedSymbolicVariable --- pybamm/__init__.py | 1 - pybamm/solvers/base_solver.py | 13 +- pybamm/solvers/casadi_algebraic_solver.py | 20 +- pybamm/solvers/casadi_solver.py | 21 +- pybamm/solvers/processed_symbolic_variable.py | 232 ------------- pybamm/solvers/processed_variable.py | 16 +- pybamm/solvers/solution.py | 79 ++--- tests/unit/test_solvers/test_base_solver.py | 6 +- .../test_casadi_algebraic_solver.py | 93 +++-- .../test_processed_symbolic_variable.py | 327 ------------------ .../test_solvers/test_processed_variable.py | 10 +- 11 files changed, 111 insertions(+), 707 deletions(-) delete mode 100644 pybamm/solvers/processed_symbolic_variable.py delete mode 100644 tests/unit/test_solvers/test_processed_symbolic_variable.py diff --git a/pybamm/__init__.py b/pybamm/__init__.py index c9d05cc53f..1d60418db4 100644 --- a/pybamm/__init__.py +++ b/pybamm/__init__.py @@ -200,7 +200,6 @@ # from .solvers.solution import Solution, make_cycle_solution from .solvers.processed_variable import ProcessedVariable -from .solvers.processed_symbolic_variable import ProcessedSymbolicVariable from .solvers.base_solver import BaseSolver from .solvers.dummy_solver import DummySolver from .solvers.algebraic_solver import AlgebraicSolver diff --git a/pybamm/solvers/base_solver.py b/pybamm/solvers/base_solver.py index 15374a5ad5..981e22666c 100644 --- a/pybamm/solvers/base_solver.py +++ b/pybamm/solvers/base_solver.py @@ -1481,20 +1481,11 @@ def _set_up_ext_and_inputs( inputs = inputs or {} # Go through all input parameters that can be found in the model - # If any of them are *not* provided by "inputs", a symbolic input parameter is - # created, with appropriate size + # If any of them are *not* provided by "inputs", raise an error for input_param in model.input_parameters: name = input_param.name if name not in inputs: - # Only allow symbolic inputs for CasadiSolver and CasadiAlgebraicSolver - if not isinstance( - self, (pybamm.CasadiSolver, pybamm.CasadiAlgebraicSolver) - ): - raise pybamm.SolverError( - "Only CasadiSolver and CasadiAlgebraicSolver " - "can have symbolic inputs" - ) - inputs[name] = casadi.MX.sym(name, input_param._expected_size) + raise pybamm.SolverError(f"No value provided for input '{name}'") external_variables = external_variables or {} diff --git a/pybamm/solvers/casadi_algebraic_solver.py b/pybamm/solvers/casadi_algebraic_solver.py index 144d369d21..b13c08c27f 100644 --- a/pybamm/solvers/casadi_algebraic_solver.py +++ b/pybamm/solvers/casadi_algebraic_solver.py @@ -51,19 +51,10 @@ def _integrate(self, model, t_eval, inputs_dict=None): t_eval : :class:`numpy.array`, size (k,) The times at which to compute the solution inputs_dict : dict, optional - Any input parameters to pass to the model when solving. If any input - parameters that are present in the model are missing from "inputs", then - the solution will consist of `ProcessedSymbolicVariable` objects, which must - be provided with inputs to obtain their value. + Any input parameters to pass to the model when solving. """ # Record whether there are any symbolic inputs inputs_dict = inputs_dict or {} - has_symbolic_inputs = any( - isinstance(v, casadi.MX) for v in inputs_dict.values() - ) - symbolic_inputs = casadi.vertcat( - *[v for v in inputs_dict.values() if isinstance(v, casadi.MX)] - ) # Create casadi objects for the root-finder inputs = casadi.vertcat(*[v for v in inputs_dict.values()]) @@ -94,7 +85,6 @@ def _integrate(self, model, t_eval, inputs_dict=None): y_alg_sym = casadi.MX.sym("y_alg", y0_alg.shape[0]) y_sym = casadi.vertcat(y0_diff, y_alg_sym) - t_and_inputs_sym = casadi.vertcat(t_sym, symbolic_inputs) alg = model.casadi_algebraic(t_sym, y_sym, inputs) # Check interpolant extrapolation @@ -139,7 +129,7 @@ def _integrate(self, model, t_eval, inputs_dict=None): roots = casadi.rootfinder( "roots", "newton", - dict(x=y_alg_sym, p=t_and_inputs_sym, g=alg), + dict(x=y_alg_sym, p=t_sym, g=alg), { **self.extra_options, "abstol": self.tol, @@ -150,11 +140,10 @@ def _integrate(self, model, t_eval, inputs_dict=None): timer = pybamm.Timer() integration_time = 0 for idx, t in enumerate(t_eval): - t_eval_inputs_sym = casadi.vertcat(t, symbolic_inputs) # Solve try: timer.reset() - y_alg_sol = roots(y0_alg, t_eval_inputs_sym) + y_alg_sol = roots(y0_alg, t) integration_time += timer.time() success = True message = None @@ -169,8 +158,7 @@ def _integrate(self, model, t_eval, inputs_dict=None): # If there are no symbolic inputs, check the function is below the tol # Skip this check if there are symbolic inputs if success and ( - has_symbolic_inputs is True - or (not any(np.isnan(fun)) and np.all(casadi.fabs(fun) < self.tol)) + (not any(np.isnan(fun)) and np.all(casadi.fabs(fun) < self.tol)) ): # update initial guess for the next iteration y0_alg = y_alg_sol diff --git a/pybamm/solvers/casadi_solver.py b/pybamm/solvers/casadi_solver.py index 7baaa8691c..099af6630c 100644 --- a/pybamm/solvers/casadi_solver.py +++ b/pybamm/solvers/casadi_solver.py @@ -125,19 +125,12 @@ def _integrate(self, model, t_eval, inputs_dict=None): # Record whether there are any symbolic inputs inputs_dict = inputs_dict or {} - has_symbolic_inputs = any( - isinstance(v, casadi.MX) for v in inputs_dict.values() - ) # convert inputs to casadi format inputs = casadi.vertcat(*[x for x in inputs_dict.values()]) # Calculate initial event signs needed for some of the modes - if ( - has_symbolic_inputs is False - and self.mode != "fast" - and model.terminate_events_eval - ): + if self.mode != "fast" and model.terminate_events_eval: init_event_signs = np.sign( np.concatenate( [ @@ -149,18 +142,6 @@ def _integrate(self, model, t_eval, inputs_dict=None): else: init_event_signs = np.sign([]) - if has_symbolic_inputs: - # Create integrator without grid to avoid having to create several times - self.create_integrator(model, inputs) - solution = self._run_integrator( - model, - model.y0, - inputs_dict, - inputs, - t_eval, - use_grid=False, - ) - if self.mode in ["fast", "fast with events"] or not model.events: if not model.events: pybamm.logger.info("No events found, running fast mode") diff --git a/pybamm/solvers/processed_symbolic_variable.py b/pybamm/solvers/processed_symbolic_variable.py deleted file mode 100644 index 76811157c6..0000000000 --- a/pybamm/solvers/processed_symbolic_variable.py +++ /dev/null @@ -1,232 +0,0 @@ -# -# Processed Variable class -# -import casadi -import numbers -import numpy as np - - -class ProcessedSymbolicVariable(object): - """ - An object that can be evaluated at arbitrary (scalars or vectors) t and x, and - returns the (interpolated) value of the base variable at that t and x. - - Parameters - ---------- - base_variable : :class:`pybamm.Symbol` - A base variable with a method `evaluate(t,y)` that returns the value of that - variable. Note that this can be any kind of node in the expression tree, not - just a :class:`pybamm.Variable`. - When evaluated, returns an array of size (m,n) - solution : :class:`pybamm.Solution` - The solution object to be used to create the processed variables - """ - - def __init__(self, base_variable, solution): - # Convert variable to casadi - t_MX = casadi.MX.sym("t") - y_MX = casadi.MX.sym("y", solution.all_ys[0].shape[0]) - # Make all inputs symbolic first for converting to casadi - all_inputs_as_MX_dict = {} - symbolic_inputs_dict = {} - for key, value in solution.all_inputs[0].items(): - if not isinstance(value, casadi.MX): - all_inputs_as_MX_dict[key] = casadi.MX.sym("input") - else: - all_inputs_as_MX_dict[key] = value - # Only add symbolic inputs to the "symbolic_inputs" dict - symbolic_inputs_dict[key] = value - - all_inputs_as_MX = casadi.vertcat(*[p for p in all_inputs_as_MX_dict.values()]) - # The symbolic_inputs dictionary will be used for sensitivity - symbolic_inputs = casadi.vertcat(*[p for p in symbolic_inputs_dict.values()]) - var = base_variable.to_casadi(t_MX, y_MX, inputs=all_inputs_as_MX_dict) - - self.base_variable = casadi.Function( - "variable", [t_MX, y_MX, all_inputs_as_MX], [var] - ) - # Store some attributes - self.t_pts = solution.t - self.all_ts = solution.all_ts - self.all_ys = solution.all_ys - self.mesh = base_variable.mesh - self.all_inputs_casadi = solution.all_inputs_casadi - - self.symbolic_inputs_dict = symbolic_inputs_dict - self.symbolic_inputs_total_shape = symbolic_inputs.shape[0] - self.domain = base_variable.domain - - self.base_eval = self.base_variable( - self.all_ts[0][0], self.all_ys[0][:, 0], self.all_inputs_casadi[0] - ) - - if ( - isinstance(self.base_eval, numbers.Number) - or len(self.base_eval.shape) == 0 - or self.base_eval.shape[0] == 1 - ): - self.initialise_0D() - else: - n = self.mesh.npts - base_shape = self.base_eval.shape[0] - # Try shape that could make the variable a 1D variable - if base_shape == n: - self.initialise_1D() - else: - # Raise error for 2D variable - raise NotImplementedError( - "Shape not recognized for {} ".format(base_variable) - + "(note processing of 2D and 3D variables is not yet " - + "implemented)" - ) - - # Make entries a function and compute jacobian - entries_MX = self.entries - self.casadi_entries_fn = casadi.Function( - "variable", [symbolic_inputs], [entries_MX] - ) - - # Don't compute jacobian if the entries are a DM (not symbolic) - if isinstance(entries_MX, casadi.DM): - self.casadi_sens_fn = None - # Do compute jacobian if the entries are symbolic (functions of input) - else: - sens_MX = casadi.jacobian(entries_MX, symbolic_inputs) - self.casadi_sens_fn = casadi.Function( - "variable", [symbolic_inputs], [sens_MX] - ) - - def initialise_0D(self): - """Create a 0D variable""" - # Evaluate the base_variable index-by-index - idx = 0 - for ts, ys, inputs in zip(self.all_ts, self.all_ys, self.all_inputs_casadi): - for inner_idx, t in enumerate(ts): - t = ts[inner_idx] - y = ys[:, inner_idx] - next_entries = self.base_variable(t, y, inputs) - if idx == 0: - entries = next_entries - else: - entries = casadi.horzcat(entries, next_entries) - idx += 1 - - self.entries = entries - self.dimensions = 0 - - def initialise_1D(self): - """Create a 1D variable""" - len_space = self.base_eval.shape[0] - entries = np.empty((len_space, len(self.t_pts))) - - # Evaluate the base_variable index-by-index - idx = 0 - for ts, ys, inputs in zip(self.all_ts, self.all_ys, self.all_inputs_casadi): - for inner_idx, t in enumerate(ts): - t = ts[inner_idx] - y = ys[:, inner_idx] - next_entries = self.base_variable(t, y, inputs) - if idx == 0: - entries = next_entries - else: - entries = casadi.vertcat(entries, next_entries) - idx += 1 - - self.entries = entries - - def value(self, inputs=None, check_inputs=True): - """ - Returns the value of the variable at the specified input values - - Parameters - ---------- - inputs : dict - The inputs at which to evaluate the variable. - - Returns - ------- - casadi.DM - A casadi matrix of size (n_x * n_t, 1), where n_x is the number of spatial - discretisation points for the variable, and n_t is the length of the time - vector - """ - if inputs is None: - return self.casadi_entries_fn(casadi.DM()) - else: - if check_inputs: - inputs = self._check_and_transform(inputs) - return self.casadi_entries_fn(inputs) - - def sensitivity(self, inputs=None, check_inputs=True): - """ - Returns the sensitivity of the variable to the symbolic inputs at the specified - input values - - Parameters - ---------- - inputs : dict - The inputs at which to evaluate the variable. - - Returns - ------- - casadi.DM - A casadi matrix of size (n_x * n_t, n_p), where n_x is the number of spatial - discretisation points for the variable, n_t is the length of the time - vector, and n_p is the number of input parameters - """ - if self.casadi_sens_fn is None: - raise ValueError( - "Variable is not symbolic, so sensitivities are not defined" - ) - if check_inputs: - inputs = self._check_and_transform(inputs) - return self.casadi_sens_fn(inputs) - - def value_and_sensitivity(self, inputs=None): - """ - Returns the value of the variable and its sensitivity to the symbolic inputs at - the specified input values - - Parameters - ---------- - inputs : dict - The inputs at which to evaluate the variable. - """ - inputs = self._check_and_transform(inputs) - # Pass check_inputs=False to avoid re-checking inputs - return ( - self.value(inputs, check_inputs=False), - self.sensitivity(inputs, check_inputs=False), - ) - - def _check_and_transform(self, inputs_dict): - """Check dictionary has the right inputs, and convert to a vector""" - # Convert dict to casadi vector - if not isinstance(inputs_dict, dict): - raise TypeError("inputs should be 'dict' but are {}".format(inputs_dict)) - # Sort input dictionary keys according to the symbolic inputs dictionary - # For practical number of input parameters this should be extremely fast and - # so is ok to do at each step - try: - inputs_dict_sorted = { - k: inputs_dict[k] for k in self.symbolic_inputs_dict.keys() - } - except KeyError as e: - raise KeyError("Inconsistent input keys. '{}' not found".format(e.args[0])) - inputs = casadi.vertcat(*[p for p in inputs_dict_sorted.values()]) - if inputs.shape[0] != self.symbolic_inputs_total_shape: - # Find the variable which caused the error, for a clearer error message - for key, inp in inputs_dict_sorted.items(): - if inp.shape[0] != self.symbolic_inputs_dict[key].shape[0]: - raise ValueError( - "Wrong shape for input '{}': expected {}, actual {}".format( - key, self.symbolic_inputs_dict[key].shape[0], inp.shape[0] - ) - ) - - return inputs - - @property - def data(self): - """Same as entries, but different name""" - return self.entries diff --git a/pybamm/solvers/processed_variable.py b/pybamm/solvers/processed_variable.py index e03754cb5f..968e95e1a6 100644 --- a/pybamm/solvers/processed_variable.py +++ b/pybamm/solvers/processed_variable.py @@ -47,8 +47,6 @@ def __init__(self, base_variables, base_variables_casadi, solution, warn=True): self.domains = base_variables[0].domains self.warn = warn - self.symbolic_inputs = solution.has_symbolic_inputs - # Sensitivity starts off uninitialized, only set when called self._sensitivities = None self.solution_sensitivities = solution.sensitivities @@ -307,15 +305,11 @@ def initialise_2D(self): self.second_dimension = "x" self.r_sol = first_dim_pts self.x_sol = second_dim_pts - elif ( - self.domain[0] - in [ - "negative electrode", - "separator", - "positive electrode", - ] - and self.domains["secondary"] == ["current collector"] - ): + elif self.domain[0] in [ + "negative electrode", + "separator", + "positive electrode", + ] and self.domains["secondary"] == ["current collector"]: self.first_dimension = "x" self.second_dimension = "z" self.x_sol = first_dim_pts diff --git a/pybamm/solvers/solution.py b/pybamm/solvers/solution.py index 992259123e..cbcf74ff06 100644 --- a/pybamm/solvers/solution.py +++ b/pybamm/solvers/solution.py @@ -102,12 +102,8 @@ def __init__( self._y_event = y_event self._termination = termination - self.has_symbolic_inputs = any( - isinstance(v, casadi.MX) for v in self.all_inputs[0].values() - ) - # Check no ys are too large - if check_solution and not self.has_symbolic_inputs: + if check_solution: self.check_ys_are_not_too_large() # Copy the timescale_eval and lengthscale_evals if they exist @@ -476,51 +472,36 @@ def update(self, variables): # Process for key in variables: pybamm.logger.debug("Post-processing {}".format(key)) - # If there are symbolic inputs then we need to make a - # ProcessedSymbolicVariable - if self.has_symbolic_inputs is True: - var = pybamm.ProcessedSymbolicVariable( - self.all_models[0].variables_and_events[key], self - ) - - # Otherwise a standard ProcessedVariable is ok - else: - vars_pybamm = [ - model.variables_and_events[key] for model in self.all_models - ] - - # Iterate through all models, some may be in the list several times and - # therefore only get set up once - vars_casadi = [] - for model, ys, inputs, var_pybamm in zip( - self.all_models, self.all_ys, self.all_inputs, vars_pybamm - ): - if key in model._variables_casadi: - var_casadi = model._variables_casadi[key] - else: - t_MX = casadi.MX.sym("t") - y_MX = casadi.MX.sym("y", ys.shape[0]) - symbolic_inputs_dict = { - key: casadi.MX.sym("input", value.shape[0]) - for key, value in inputs.items() - } - symbolic_inputs = casadi.vertcat( - *[p for p in symbolic_inputs_dict.values()] - ) - - # Convert variable to casadi - # Make all inputs symbolic first for converting to casadi - var_sym = var_pybamm.to_casadi( - t_MX, y_MX, inputs=symbolic_inputs_dict - ) - - var_casadi = casadi.Function( - "variable", [t_MX, y_MX, symbolic_inputs], [var_sym] - ) - model._variables_casadi[key] = var_casadi - vars_casadi.append(var_casadi) + vars_pybamm = [model.variables_and_events[key] for model in self.all_models] + + # Iterate through all models, some may be in the list several times and + # therefore only get set up once + vars_casadi = [] + for model, ys, inputs, var_pybamm in zip( + self.all_models, self.all_ys, self.all_inputs, vars_pybamm + ): + if key in model._variables_casadi: + var_casadi = model._variables_casadi[key] + else: + t_MX = casadi.MX.sym("t") + y_MX = casadi.MX.sym("y", ys.shape[0]) + inputs_MX_dict = { + key: casadi.MX.sym("input", value.shape[0]) + for key, value in inputs.items() + } + inputs_MX = casadi.vertcat(*[p for p in inputs_MX_dict.values()]) + + # Convert variable to casadi + # Make all inputs symbolic first for converting to casadi + var_sym = var_pybamm.to_casadi(t_MX, y_MX, inputs=inputs_MX_dict) + + var_casadi = casadi.Function( + "variable", [t_MX, y_MX, inputs_MX], [var_sym] + ) + model._variables_casadi[key] = var_casadi + vars_casadi.append(var_casadi) - var = pybamm.ProcessedVariable(vars_pybamm, vars_casadi, self) + var = pybamm.ProcessedVariable(vars_pybamm, vars_casadi, self) # Save variable and data self._variables[key] = var diff --git a/tests/unit/test_solvers/test_base_solver.py b/tests/unit/test_solvers/test_base_solver.py index d05ebd1698..3f184ef114 100644 --- a/tests/unit/test_solvers/test_base_solver.py +++ b/tests/unit/test_solvers/test_base_solver.py @@ -91,7 +91,7 @@ def test_block_symbolic_inputs(self): model.rhs = {a: a * p} with self.assertRaisesRegex( pybamm.SolverError, - "Only CasadiSolver and CasadiAlgebraicSolver can have symbolic inputs", + "No value provided for input 'p'" ): solver.solve(model, np.array([1, 2, 3])) @@ -217,7 +217,7 @@ def rhs_eval(self, t, y, inputs): def algebraic_eval(self, t, y, inputs): # algebraic equation has no root - return y ** 2 + 1 + return y**2 + 1 solver = pybamm.BaseSolver(root_method="hybr") @@ -349,7 +349,7 @@ def exact_diff_b(y, a, b): u = pybamm.Variable("u") a = pybamm.InputParameter("a") b = pybamm.InputParameter("b") - model.rhs = {v: a * v ** 2 + b * v + a ** 2} + model.rhs = {v: a * v**2 + b * v + a**2} model.algebraic = {u: a * v - u} model.initial_conditions = {v: 1, u: a * 1} model.convert_to_format = convert_to_format diff --git a/tests/unit/test_solvers/test_casadi_algebraic_solver.py b/tests/unit/test_solvers/test_casadi_algebraic_solver.py index f7af342562..6d432fed9d 100644 --- a/tests/unit/test_solvers/test_casadi_algebraic_solver.py +++ b/tests/unit/test_solvers/test_casadi_algebraic_solver.py @@ -58,13 +58,13 @@ class Model: p = casadi.MX.sym("p") length_scales = {} rhs = {} - casadi_algebraic = casadi.Function("alg", [t, y, p], [y ** 2 + 1]) + casadi_algebraic = casadi.Function("alg", [t, y, p], [y**2 + 1]) bounds = (np.array([-np.inf]), np.array([np.inf])) interpolant_extrapolation_events_eval = [] def algebraic_eval(self, t, y, inputs): # algebraic equation has no real root - return y ** 2 + 1 + return y**2 + 1 model = Model() @@ -86,13 +86,13 @@ class NaNModel: y = casadi.MX.sym("y") p = casadi.MX.sym("p") rhs = {} - casadi_algebraic = casadi.Function("alg", [t, y, p], [y ** 0.5]) + casadi_algebraic = casadi.Function("alg", [t, y, p], [y**0.5]) bounds = (np.array([-np.inf]), np.array([np.inf])) interpolant_extrapolation_events_eval = [] def algebraic_eval(self, t, y, inputs): # algebraic equation has no real root - return y ** 0.5 + return y**0.5 model = NaNModel() with self.assertRaisesRegex( @@ -189,15 +189,22 @@ def test_solve_with_symbolic_input(self): # Solve solver = pybamm.CasadiAlgebraicSolver() - solution = solver.solve(model, [0]) - np.testing.assert_array_equal(solution["var"].value({"param": 7}), -7) - np.testing.assert_array_equal(solution["var"].value({"param": 3}), -3) - np.testing.assert_array_equal(solution["var"].sensitivity({"param": 3}), -1) + solution = solver.solve( + model, [0], inputs={"param": 7}, calculate_sensitivities=True + ) + np.testing.assert_array_equal(solution["var"].data, -7) + + solution = solver.solve( + model, [0], inputs={"param": 3}, calculate_sensitivities=True + ) + np.testing.assert_array_equal(solution["var"].data, -3) + np.testing.assert_array_equal(solution["var"].sensitivities["param"], -1) def test_least_squares_fit(self): # Simple system: a single algebraic equation var = pybamm.Variable("var", domain="negative electrode") model = pybamm.BaseModel() + model._length_scales = {"negative electrode": pybamm.Scalar(1)} p = pybamm.InputParameter("p") q = pybamm.InputParameter("q") model.algebraic = {var: (var - p)} @@ -210,18 +217,25 @@ def test_least_squares_fit(self): # Solve solver = pybamm.CasadiAlgebraicSolver() - solution = solver.solve(model, [0]) - sol_var = solution["objective"] def objective(x): - return sol_var.value({"p": x[0], "q": x[1]}).full().flatten() + solution = solver.solve( + model, [0], inputs={"p": x[0], "q": x[1]}, calculate_sensitivities=True + ) + return solution["objective"].data.flatten() # without jacobian lsq_sol = least_squares(objective, [2, 2], method="lm") np.testing.assert_array_almost_equal(lsq_sol.x, [3, 3], decimal=3) def jac(x): - return sol_var.sensitivity({"p": x[0], "q": x[1]}) + solution = solver.solve( + model, [0], inputs={"p": x[0], "q": x[1]}, calculate_sensitivities=True + ) + return np.concatenate( + [solution["objective"].sensitivities[name] for name in ["p", "q"]], + axis=1, + ) # with jacobian lsq_sol = least_squares(objective, [2, 2], jac=jac, method="lm") @@ -230,6 +244,7 @@ def jac(x): def test_solve_with_symbolic_input_1D_scalar_input(self): var = pybamm.Variable("var", "negative electrode") model = pybamm.BaseModel() + model._length_scales = {"negative electrode": pybamm.Scalar(1)} param = pybamm.InputParameter("param") model.algebraic = {var: var + param} model.initial_conditions = {var: 2} @@ -241,14 +256,21 @@ def test_solve_with_symbolic_input_1D_scalar_input(self): # Solve - scalar input solver = pybamm.CasadiAlgebraicSolver() - solution = solver.solve(model, [0]) - np.testing.assert_array_equal(solution["var"].value({"param": 7}), -7) - np.testing.assert_array_equal(solution["var"].value({"param": 3}), -3) - np.testing.assert_array_equal(solution["var"].sensitivity({"param": 3}), -1) + solution = solver.solve( + model, [0], inputs={"param": 7}, calculate_sensitivities=True + ) + np.testing.assert_array_equal(solution["var"].data, -7) + + solution = solver.solve( + model, [0], inputs={"param": 3}, calculate_sensitivities=True + ) + np.testing.assert_array_equal(solution["var"].data, -3) + np.testing.assert_array_equal(solution["var"].sensitivities["param"], -1) def test_solve_with_symbolic_input_1D_vector_input(self): var = pybamm.Variable("var", "negative electrode") model = pybamm.BaseModel() + model._length_scales = {"negative electrode": pybamm.Scalar(1)} param = pybamm.InputParameter("param", "negative electrode") model.algebraic = {var: var + param} model.initial_conditions = {var: 2} @@ -260,23 +282,23 @@ def test_solve_with_symbolic_input_1D_vector_input(self): # Solve - scalar input solver = pybamm.CasadiAlgebraicSolver() - solution = solver.solve(model, [0]) n = disc.mesh["negative electrode"].npts solver = pybamm.CasadiAlgebraicSolver() - solution = solver.solve(model, [0]) - p = np.linspace(0, 1, n)[:, np.newaxis] - np.testing.assert_array_almost_equal( - solution["var"].value({"param": 3 * np.ones(n)}), -3 + solution = solver.solve( + model, [0], inputs={"param": 3 * np.ones(n)}, calculate_sensitivities=True ) np.testing.assert_array_almost_equal( - solution["var"].value({"param": 2 * p}), -2 * p + solution["var"].sensitivities["param"], -np.eye(40) ) - np.testing.assert_array_almost_equal( - solution["var"].sensitivity({"param": 3 * np.ones(n)}), -np.eye(40) + np.testing.assert_array_almost_equal(solution["var"].data, -3) + p = np.linspace(0, 1, n)[:, np.newaxis] + solution = solver.solve( + model, [0], inputs={"param": p}, calculate_sensitivities=True ) + np.testing.assert_array_almost_equal(solution["var"].data, -p) np.testing.assert_array_almost_equal( - solution["var"].sensitivity({"param": p}), -np.eye(40) + solution["var"].sensitivities["param"], -np.eye(40) ) def test_solve_with_symbolic_input_in_initial_conditions(self): @@ -293,15 +315,21 @@ def test_solve_with_symbolic_input_in_initial_conditions(self): # Solve solver = pybamm.CasadiAlgebraicSolver() - solution = solver.solve(model, [0]) - np.testing.assert_array_equal(solution["var"].value({"param": 7}), -2) - np.testing.assert_array_equal(solution["var"].value({"param": 3}), -2) - np.testing.assert_array_equal(solution["var"].sensitivity({"param": 3}), 0) + solution = solver.solve( + model, [0], inputs={"param": 7}, calculate_sensitivities=True + ) + np.testing.assert_array_equal(solution["var"].data, -2) + np.testing.assert_array_equal(solution["var"].sensitivities["param"], 0) + solution = solver.solve( + model, [0], inputs={"param": 3}, calculate_sensitivities=True + ) + np.testing.assert_array_equal(solution["var"].data, -2) def test_least_squares_fit_input_in_initial_conditions(self): # Simple system: a single algebraic equation var = pybamm.Variable("var", domain="negative electrode") model = pybamm.BaseModel() + model._length_scales = {"negative electrode": pybamm.Scalar(1)} p = pybamm.InputParameter("p") q = pybamm.InputParameter("q") model.algebraic = {var: (var - p)} @@ -314,11 +342,12 @@ def test_least_squares_fit_input_in_initial_conditions(self): # Solve solver = pybamm.CasadiAlgebraicSolver() - solution = solver.solve(model, [0]) - sol_var = solution["objective"] def objective(x): - return sol_var.value({"p": x[0], "q": x[1]}).full().flatten() + solution = solver.solve( + model, [0], inputs={"p": x[0], "q": x[1]}, calculate_sensitivities=True + ) + return solution["objective"].data.flatten() # without jacobian lsq_sol = least_squares(objective, [2, 2], method="lm") diff --git a/tests/unit/test_solvers/test_processed_symbolic_variable.py b/tests/unit/test_solvers/test_processed_symbolic_variable.py deleted file mode 100644 index 5f6ee9921f..0000000000 --- a/tests/unit/test_solvers/test_processed_symbolic_variable.py +++ /dev/null @@ -1,327 +0,0 @@ -# -# Tests for the Processed Variable class -# -import pybamm -import casadi - -import numpy as np -import unittest -import tests - - -class TestProcessedSymbolicVariable(unittest.TestCase): - def test_processed_variable_0D(self): - # without inputs - y = pybamm.StateVector(slice(0, 1)) - var = 2 * y - var.mesh = None - - t_sol = np.linspace(0, 1) - y_sol = np.array([np.linspace(0, 5)]) - solution = pybamm.Solution(t_sol, y_sol, pybamm.BaseModel(), {}) - processed_var = pybamm.ProcessedSymbolicVariable(var, solution) - np.testing.assert_array_equal(processed_var.value(), 2 * y_sol) - - # No sensitivity as variable is not symbolic - with self.assertRaisesRegex(ValueError, "Variable is not symbolic"): - processed_var.sensitivity() - - def test_processed_variable_0D_with_inputs(self): - # with symbolic inputs - y = pybamm.StateVector(slice(0, 1)) - p = pybamm.InputParameter("p") - q = pybamm.InputParameter("q") - var = p * y + q - var.mesh = None - - t_sol = np.linspace(0, 1) - y_sol = np.array([np.linspace(0, 5)]) - solution = pybamm.Solution( - t_sol, - y_sol, - pybamm.BaseModel(), - {"p": casadi.MX.sym("p"), "q": casadi.MX.sym("q")}, - ) - processed_var = pybamm.ProcessedSymbolicVariable(var, solution) - np.testing.assert_array_equal( - processed_var.value({"p": 3, "q": 4}).full(), 3 * y_sol + 4 - ) - np.testing.assert_array_equal( - processed_var.sensitivity({"p": 3, "q": 4}).full(), - np.c_[y_sol.T, np.ones_like(y_sol).T], - ) - - # via value_and_sensitivity - val, sens = processed_var.value_and_sensitivity({"p": 3, "q": 4}) - np.testing.assert_array_equal(val.full(), 3 * y_sol + 4) - np.testing.assert_array_equal( - sens.full(), np.c_[y_sol.T, np.ones_like(y_sol).T] - ) - - # Test bad inputs - with self.assertRaisesRegex(TypeError, "inputs should be 'dict'"): - processed_var.value(1) - with self.assertRaisesRegex(KeyError, "Inconsistent input keys"): - processed_var.value({"not p": 3}) - - def test_processed_variable_0D_some_inputs(self): - # with some symbolic inputs and some non-symbolic inputs - y = pybamm.StateVector(slice(0, 1)) - p = pybamm.InputParameter("p") - q = pybamm.InputParameter("q") - var = p * y - q - var.mesh = None - - t_sol = np.linspace(0, 1) - y_sol = np.array([np.linspace(0, 5)]) - solution = pybamm.Solution( - t_sol, y_sol, pybamm.BaseModel(), {"p": casadi.MX.sym("p"), "q": 2} - ) - processed_var = pybamm.ProcessedSymbolicVariable(var, solution) - np.testing.assert_array_equal( - processed_var.value({"p": 3}).full(), 3 * y_sol - 2 - ) - np.testing.assert_array_equal( - processed_var.sensitivity({"p": 3}).full(), y_sol.T - ) - - def test_processed_variable_1D(self): - var = pybamm.Variable("var", domain=["negative electrode", "separator"]) - x = pybamm.SpatialVariable("x", domain=["negative electrode", "separator"]) - eqn = var + x - - # On nodes - disc = tests.get_discretisation_for_testing() - disc.set_variable_slices([var]) - x_sol = disc.process_symbol(x).entries[:, 0] - eqn_sol = disc.process_symbol(eqn) - - # With scalar t_sol - t_sol = np.array([0]) - y_sol = np.ones_like(x_sol)[:, np.newaxis] * 5 - sol = pybamm.Solution(t_sol, y_sol, pybamm.BaseModel(), {}) - processed_eqn = pybamm.ProcessedSymbolicVariable(eqn_sol, sol) - np.testing.assert_array_equal( - processed_eqn.value(), y_sol + x_sol[:, np.newaxis] - ) - - # With vector t_sol - t_sol = np.linspace(0, 1) - y_sol = np.ones_like(x_sol)[:, np.newaxis] * np.linspace(0, 5) - sol = pybamm.Solution(t_sol, y_sol, pybamm.BaseModel(), {}) - processed_eqn = pybamm.ProcessedSymbolicVariable(eqn_sol, sol) - np.testing.assert_array_equal( - processed_eqn.value(), (y_sol + x_sol[:, np.newaxis]).T.reshape(-1, 1) - ) - - def test_processed_variable_1D_with_scalar_inputs(self): - var = pybamm.Variable("var", domain=["negative electrode", "separator"]) - x = pybamm.SpatialVariable("x", domain=["negative electrode", "separator"]) - p = pybamm.InputParameter("p") - q = pybamm.InputParameter("q") - eqn = var * p + 2 * q - - # On nodes - disc = tests.get_discretisation_for_testing() - disc.set_variable_slices([var]) - x_sol = disc.process_symbol(x).entries[:, 0] - eqn_sol = disc.process_symbol(eqn) - - # Scalar t - t_sol = np.array([0]) - y_sol = np.ones_like(x_sol)[:, np.newaxis] * 5 - - sol = pybamm.Solution( - t_sol, - y_sol, - pybamm.BaseModel(), - {"p": casadi.MX.sym("p"), "q": casadi.MX.sym("q")}, - ) - processed_eqn = pybamm.ProcessedSymbolicVariable(eqn_sol, sol) - - # Test values - np.testing.assert_array_equal( - processed_eqn.value({"p": 27, "q": -42}), 27 * y_sol - 84 - ) - - # Test sensitivities - np.testing.assert_array_equal( - processed_eqn.sensitivity({"p": 27, "q": -84}), - np.c_[y_sol, 2 * np.ones_like(y_sol)], - ) - - ################################################################################ - # Vector t - t_sol = np.linspace(0, 1) - y_sol = np.ones_like(x_sol)[:, np.newaxis] * np.linspace(0, 5) - - sol = pybamm.Solution( - t_sol, - y_sol, - pybamm.BaseModel(), - {"p": casadi.MX.sym("p"), "q": casadi.MX.sym("q")}, - ) - processed_eqn = pybamm.ProcessedSymbolicVariable(eqn_sol, sol) - - # Test values - np.testing.assert_array_equal( - processed_eqn.value({"p": 27, "q": -42}), (27 * y_sol - 84).T.reshape(-1, 1) - ) - - # Test sensitivities - np.testing.assert_array_equal( - processed_eqn.sensitivity({"p": 27, "q": -42}), - np.c_[y_sol.T.flatten(), 2 * np.ones_like(y_sol.T.flatten())], - ) - - def test_processed_variable_1D_with_vector_inputs(self): - var = pybamm.Variable("var", domain=["negative electrode", "separator"]) - x = pybamm.SpatialVariable("x", domain=["negative electrode", "separator"]) - p = pybamm.InputParameter("p", domain=["negative electrode", "separator"]) - q = pybamm.InputParameter("q") - eqn = (var * p) ** 2 + 2 * q - - # On nodes - disc = tests.get_discretisation_for_testing() - disc.set_variable_slices([var]) - x_sol = disc.process_symbol(x).entries[:, 0] - n = x_sol.size - eqn_sol = disc.process_symbol(eqn) - - # Scalar t - t_sol = np.array([0]) - y_sol = np.ones_like(x_sol)[:, np.newaxis] * 5 - sol = pybamm.Solution( - t_sol, - y_sol, - pybamm.BaseModel(), - {"p": casadi.MX.sym("p", n), "q": casadi.MX.sym("q")}, - ) - processed_eqn = pybamm.ProcessedSymbolicVariable(eqn_sol, sol) - - # Test values - constant p - np.testing.assert_array_equal( - processed_eqn.value({"p": 27 * np.ones(n), "q": -42}), - (27 * y_sol) ** 2 - 84, - ) - # Test values - varying p - p = np.linspace(0, 1, n) - np.testing.assert_array_equal( - processed_eqn.value({"p": p, "q": 3}), (p[:, np.newaxis] * y_sol) ** 2 + 6 - ) - - # Test sensitivities - constant p - np.testing.assert_array_equal( - processed_eqn.sensitivity({"p": 2 * np.ones(n), "q": -84}), - np.c_[100 * np.eye(y_sol.size), 2 * np.ones(n)], - ) - # Test sensitivities - varying p - # d/dy((py)**2) = (2*p*y) * y - np.testing.assert_array_equal( - processed_eqn.sensitivity({"p": p, "q": -84}), - np.c_[ - np.diag((2 * p[:, np.newaxis] * y_sol ** 2).flatten()), 2 * np.ones(n) - ], - ) - - # Bad shape - with self.assertRaisesRegex( - ValueError, "Wrong shape for input 'p': expected 65, actual 5" - ): - processed_eqn.value({"p": casadi.MX.sym("p", 5), "q": 1}) - - def test_1D_different_domains(self): - # Negative electrode domain - var = pybamm.Variable("var", domain=["negative electrode"]) - x = pybamm.SpatialVariable("x", domain=["negative electrode"]) - - disc = tests.get_discretisation_for_testing() - disc.set_variable_slices([var]) - x_sol = disc.process_symbol(x).entries[:, 0] - var_sol = disc.process_symbol(var) - - t_sol = np.array([0]) - y_sol = np.ones_like(x_sol)[:, np.newaxis] * 5 - sol = pybamm.Solution(t_sol, y_sol, pybamm.BaseModel(), {}) - pybamm.ProcessedSymbolicVariable(var_sol, sol) - - # Particle domain - var = pybamm.Variable("var", domain=["negative particle"]) - r = pybamm.SpatialVariable("r", domain=["negative particle"]) - - disc = tests.get_discretisation_for_testing() - disc.set_variable_slices([var]) - r_sol = disc.process_symbol(r).entries[:, 0] - var_sol = disc.process_symbol(var) - - t_sol = np.array([0]) - y_sol = np.ones_like(r_sol)[:, np.newaxis] * 5 - sol = pybamm.Solution(t_sol, y_sol, pybamm.BaseModel(), {}) - pybamm.ProcessedSymbolicVariable(var_sol, sol) - - # Current collector domain - var = pybamm.Variable("var", domain=["current collector"]) - z = pybamm.SpatialVariable("z", domain=["current collector"]) - - disc = tests.get_1p1d_discretisation_for_testing() - disc.set_variable_slices([var]) - z_sol = disc.process_symbol(z).entries[:, 0] - var_sol = disc.process_symbol(var) - - t_sol = np.array([0]) - y_sol = np.ones_like(z_sol)[:, np.newaxis] * 5 - sol = pybamm.Solution(t_sol, y_sol, pybamm.BaseModel(), {}) - pybamm.ProcessedSymbolicVariable(var_sol, sol) - - # Other domain - var = pybamm.Variable("var", domain=["line"]) - x = pybamm.SpatialVariable("x", domain=["line"]) - - geometry = pybamm.Geometry( - {"line": {x: {"min": pybamm.Scalar(0), "max": pybamm.Scalar(1)}}} - ) - submesh_types = {"line": pybamm.Uniform1DSubMesh} - var_pts = {x: 10} - mesh = pybamm.Mesh(geometry, submesh_types, var_pts) - disc = pybamm.Discretisation(mesh, {"line": pybamm.FiniteVolume()}) - disc.set_variable_slices([var]) - x_sol = disc.process_symbol(x).entries[:, 0] - var_sol = disc.process_symbol(var) - - t_sol = np.array([0]) - y_sol = np.ones_like(x_sol)[:, np.newaxis] * 5 - sol = pybamm.Solution(t_sol, y_sol, pybamm.BaseModel(), {}) - pybamm.ProcessedSymbolicVariable(var_sol, sol) - - # 2D fails - var = pybamm.Variable( - "var", - domain=["negative particle"], - auxiliary_domains={"secondary": "negative electrode"}, - ) - r = pybamm.SpatialVariable( - "r", - domain=["negative particle"], - auxiliary_domains={"secondary": "negative electrode"}, - ) - - disc = tests.get_p2d_discretisation_for_testing() - disc.set_variable_slices([var]) - r_sol = disc.process_symbol(r).entries[:, 0] - var_sol = disc.process_symbol(var) - - t_sol = np.array([0]) - y_sol = np.ones_like(r_sol)[:, np.newaxis] * 5 - sol = pybamm.Solution(t_sol, y_sol, pybamm.BaseModel(), {}) - with self.assertRaisesRegex(NotImplementedError, "Shape not recognized"): - pybamm.ProcessedSymbolicVariable(var_sol, sol) - - -if __name__ == "__main__": - print("Add -v for more debug output") - import sys - - if "-v" in sys.argv: - debug = True - pybamm.settings.debug_mode = True - unittest.main() diff --git a/tests/unit/test_solvers/test_processed_variable.py b/tests/unit/test_solvers/test_processed_variable.py index b6814668d6..f0ac25c683 100644 --- a/tests/unit/test_solvers/test_processed_variable.py +++ b/tests/unit/test_solvers/test_processed_variable.py @@ -13,16 +13,16 @@ def to_casadi(var_pybamm, y, inputs=None): t_MX = casadi.MX.sym("t") y_MX = casadi.MX.sym("y", y.shape[0]) - symbolic_inputs_dict = {} + inputs_MX_dict = {} inputs = inputs or {} for key, value in inputs.items(): - symbolic_inputs_dict[key] = casadi.MX.sym("input", value.shape[0]) + inputs_MX_dict[key] = casadi.MX.sym("input", value.shape[0]) - symbolic_inputs = casadi.vertcat(*[p for p in symbolic_inputs_dict.values()]) + inputs_MX = casadi.vertcat(*[p for p in inputs_MX_dict.values()]) - var_sym = var_pybamm.to_casadi(t_MX, y_MX, inputs=symbolic_inputs_dict) + var_sym = var_pybamm.to_casadi(t_MX, y_MX, inputs=inputs_MX_dict) - var_casadi = casadi.Function("variable", [t_MX, y_MX, symbolic_inputs], [var_sym]) + var_casadi = casadi.Function("variable", [t_MX, y_MX, inputs_MX], [var_sym]) return var_casadi From f550813996591cbad221cbf52994b142374a570c Mon Sep 17 00:00:00 2001 From: Valentin Sulzer Date: Mon, 5 Sep 2022 08:05:56 -0400 Subject: [PATCH 2/2] #2275 changelog --- CHANGELOG.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index d18b80e0a8..fc0c452b76 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -294,7 +294,7 @@ example notebook ([#1602](https://github.com/pybamm-team/PyBaMM/pull/1602)) ## Breaking changes - Refactored the `particle` submodel module, with the models having no size distribution now found in `particle.no_distribution`, and those with a size distribution in `particle.size_distribution`. Renamed submodels to indicate the transport model (Fickian diffusion, polynomial profile) and if they are "x-averaged". E.g., `FickianManyParticles` and `FickianSingleParticle` are now `no_distribution.FickianDiffusion` and `no_distribution.XAveragedFickianDiffusion` ([#1602](https://github.com/pybamm-team/PyBaMM/pull/1602)) -- Changed sensitivity API. Removed `ProcessedSymbolicVariable`, all sensitivity now handled within the solvers and `ProcessedVariable` () ([#1552](https://github.com/pybamm-team/PyBaMM/pull/1552)) +- Changed sensitivity API. Removed `ProcessedSymbolicVariable`, all sensitivity now handled within the solvers and `ProcessedVariable` ([#1552](https://github.com/pybamm-team/PyBaMM/pull/1552),[#2276](https://github.com/pybamm-team/PyBaMM/pull/2276)) - The `Yang2017` parameter set has been removed as the complete parameter set is not publicly available in the literature ([#1577](https://github.com/pybamm-team/PyBaMM/pull/1577)) - Changed how options are specified for the "loss of active material" and "particle cracking" submodels. "loss of active material" can now be one of "none", "stress-driven", or "reaction-driven", or a 2-tuple for different options in negative and positive electrode. Similarly "particle cracking" (now called "particle mechanics") can now be "none", "swelling only", "swelling and cracking", or a 2-tuple ([#1490](https://github.com/pybamm-team/PyBaMM/pull/1490)) - Changed the variable in the full diffusion model from "Electrolyte concentration" to "Porosity times concentration" ([#1476](https://github.com/pybamm-team/PyBaMM/pull/1476))