DOUBLE LAYER NONDIMENSIONALIZATION

We briefly derive the nondimensionalized evolution equation for the solid-electrolyte

overpotential for a DFN model.

1. NOTATIONAL CONVENTIONS

I will adopt the notational convention for dimensional /nondimensional variables
from [I]. In brief, hats will denote dimensional variables while no-hats will denote
nondimensional variables. Additionally, we make the distinction if 7 as a through-
cell current density and j as a pore-wall current density.

2. DIMENSIONAL EQUATION

We begin with the equations describing:

e total pore-wall current density as the sum of Faradaic and non-Faradaic
current densities,

e non-Faradaic current density expressed via double layer capacitance,

e conservation of charge in electrolyte,

given respectively by

jtotal = jf +jnf7
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Here 3 denotes the various components of the pore-wall current density [Am~2], g/b\
denotes the solid-electrolyte overpotential [V], i denotes the current density in the
electrolyte [Am~—2], C denotes the double layer capacitance [Fm~2], and @ denotes
the specific surface area [m~!]. Combining the equations in we arrive at the
dimensional PDE describing the change in the solid-electrolyte overpotential:
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3. NONDIMENSIONALIZATION

For all dimensional variables, we assume the following dimensional scaling:

U= Yoy,

where 3 denotes the dimensional variable, yo denotes the characteristic dimension
(i.e., the scaling value), and y denotes the dimensionless variable. Performing the
appropriate variable substitutions in we find

Opop 1 1 . o
@ dtot — apaCoC xov (ioie) — aoajojs | -

1




2 DOUBLE LAYER NONDIMENSIONALIZATION

Then collecting all dimensional scalings to the right-hand side of the equation we
arrive at
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4. DIMENSIONAL SCALINGS IN PYBAMM
Looking through the source code and referring again to [I], we find the dimen-
sional scalings as in Table |1 If we plug these values into we find
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TABLE 1. Dimensional scalings in PyBaMM for a standard DFN model.
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When comparing this final equation with the expression shown here (link), we
find a missing scaling of 1/a.

Remark 1 (Spatially-uniform particle sizes and active material volume fraction).
In the often-used assumption of a spatially-uniform distribution of particle sizes and
active material volume fractions throughout the DFN model, we have @ = ayy, and
thus a = 1. Therefore, with this assumption the expression used in PyBaMM for the
overpotential dynamics remains valid. However, to the best of our understanding, if
there is a situation where the particle sizes and/or active material volume fraction is
allowed to spatially vary, it seems the expression needs to be corrected by including
the scaling factor of 1/a.
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