diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 6421a7ef1..6ffe446bf 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -1,6 +1,6 @@ repos: - repo: https://github.com/psf/black - rev: 24.4.2 + rev: 24.8.0 hooks: - id: black language_version: python3 diff --git a/examples/plot_custom_precipitation_range.py b/examples/plot_custom_precipitation_range.py new file mode 100644 index 000000000..47338714e --- /dev/null +++ b/examples/plot_custom_precipitation_range.py @@ -0,0 +1,152 @@ +#!/bin/env python +""" +Plot precipitation using custom colormap +============= + +This tutorial shows how to plot data using a custom colormap with a specific +range of precipitation values. + +""" + +import os +from datetime import datetime +import matplotlib.pyplot as plt + +import pysteps +from pysteps import io, rcparams +from pysteps.utils import conversion +from pysteps.visualization import plot_precip_field +from pysteps.datasets import download_pysteps_data, create_default_pystepsrc + + +############################################################################### +# Download the data if it is not available +# ---------------------------------------- +# +# The following code block downloads datasets from the pysteps-data repository +# if it is not available on the disk. The dataset is used to demonstrate the +# plotting of precipitation data using a custom colormap. + +# Check if the pysteps-data repository is available (it would be pysteps-data in pysteps) +# Implies that you are running this script from the `pysteps/examples` folder + +if not os.path.exists(rcparams.data_sources["mrms"]["root_path"]): + download_pysteps_data("pysteps_data") + config_file_path = create_default_pystepsrc("pysteps_data") + print(f"Configuration file has been created at {config_file_path}") + + +############################################################################### +# Read precipitation field +# ------------------------ +# +# First thing, load a frame from Multi-Radar Multi-Sensor dataset and convert it +# to precipitation rate in mm/h. + +# Define the dataset and the date for which you want to load data +data_source = pysteps.rcparams.data_sources["mrms"] +date = datetime(2019, 6, 10, 0, 2, 0) # Example date + +# Extract the parameters from the data source +root_path = data_source["root_path"] +path_fmt = data_source["path_fmt"] +fn_pattern = data_source["fn_pattern"] +fn_ext = data_source["fn_ext"] +importer_name = data_source["importer"] +importer_kwargs = data_source["importer_kwargs"] +timestep = data_source["timestep"] + +# Find the frame in the archive for the specified date +fns = io.find_by_date( + date, root_path, path_fmt, fn_pattern, fn_ext, timestep, num_prev_files=1 +) + +# Read the frame from the archive +importer = io.get_method(importer_name, "importer") +R, _, metadata = io.read_timeseries(fns, importer, **importer_kwargs) + +# Convert the reflectivity data to rain rate +R, metadata = conversion.to_rainrate(R, metadata) + +# Plot the first rainfall field from the loaded data +plt.figure(figsize=(10, 5), dpi=300) +plt.axis("off") +plot_precip_field(R[0, :, :], geodata=metadata, axis="off") + +plt.tight_layout() +plt.show() + +# Save the plot if needed +# plt.savefig("precipitation.png", bbox_inches="tight", pad_inches=0.1) +# print("The precipitation field has been plotted and saved as precipitation.png") + + +############################################################################### +# Define the custom colormap +# -------------------------- +# +# Assume that the default colormap does not represent the precipitation values +# in the desired range. In this case, you can define a custom colormap that will +# be used to plot the precipitation data and pass the class instance to the +# `plot_precip_field` function. +# +# It essential for the custom colormap to have the following attributes: +# +# - `cmap`: The colormap object. +# - `norm`: The normalization object. +# - `clevs`: The color levels for the colormap. +# +# `plot_precip_field` can handle each of the classes defined in the `matplotlib.colors` +# https://matplotlib.org/stable/api/colors_api.html#colormaps +# There must be as many colors in the colormap as there are levels in the color levels. + + +# Define the custom colormap + +from matplotlib import colors + + +class ColormapConfig: + def __init__(self): + self.cmap = None + self.norm = None + self.clevs = None + + self.build_colormap() + + def build_colormap(self): + # Define the colormap boundaries and colors + # color_list = ['lightgrey', 'lightskyblue', 'blue', 'yellow', 'orange', 'red', 'darkred'] + color_list = ["blue", "navy", "yellow", "orange", "green", "brown", "red"] + + self.clevs = [0.1, 0.5, 1.5, 2.5, 4, 6, 10] # mm/hr + + # Create a ListedColormap object with the defined colors + self.cmap = colors.ListedColormap(color_list) + self.cmap.name = "Custom Colormap" + + # Set the color for values above the maximum level + self.cmap.set_over("darkmagenta") + # Set the color for values below the minimum level + self.cmap.set_under("none") + # Set the color for missing values + self.cmap.set_bad("gray", alpha=0.5) + + # Create a BoundaryNorm object to normalize the data values to the colormap boundaries + self.norm = colors.BoundaryNorm(self.clevs, self.cmap.N) + + +# Create an instance of the ColormapConfig class +config = ColormapConfig() + +# Plot the precipitation field using the custom colormap +plt.figure(figsize=(10, 5), dpi=300) +plt.axis("off") +plot_precip_field(R[0, :, :], geodata=metadata, axis="off", colormap_config=config) + +plt.tight_layout() +plt.show() + +# Save the plot if needed +plt.savefig("precipitation_custom.png", bbox_inches="tight") +print("The precipitation field has been plotted and saved as precipitation_custom.png") diff --git a/pysteps/visualization/precipfields.py b/pysteps/visualization/precipfields.py index da231ffb4..8b03ed807 100644 --- a/pysteps/visualization/precipfields.py +++ b/pysteps/visualization/precipfields.py @@ -43,6 +43,7 @@ def plot_precip_field( axis="on", cax=None, map_kwargs=None, + colormap_config=None, ): """ Function to plot a precipitation intensity or probability field with a @@ -114,6 +115,11 @@ def plot_precip_field( cax : Axes_ object, optional Axes into which the colorbar will be drawn. If no axes is provided the colorbar axes are created next to the plot. + colormap_config : ColormapConfig, optional + Custom colormap configuration. If provided, this will override the + colorscale parameter. + The ColormapConfig class must have the following attributes: cmap, + norm, clevs. Other parameters ---------------- @@ -158,20 +164,24 @@ def plot_precip_field( ax = get_basemap_axis(extent, ax=ax, geodata=geodata, map_kwargs=map_kwargs) precip = np.ma.masked_invalid(precip) - # plot rainfield + + # Handle colormap configuration + if colormap_config is None: + cmap, norm, clevs, clevs_str = get_colormap(ptype, units, colorscale) + else: + cmap, norm, clevs = _validate_colormap_config(colormap_config, ptype) + clevs_str = _dynamic_formatting_floats(clevs) + + # Plot the precipitation field if regular_grid: - im = _plot_field(precip, ax, ptype, units, colorscale, extent, origin=origin) + im = _plot_field(precip, ax, extent, cmap, norm, origin=origin) else: - im = _plot_field( - precip, ax, ptype, units, colorscale, extent, x_grid=x_grid, y_grid=y_grid - ) + im = _plot_field(precip, ax, extent, cmap, norm, x_grid=x_grid, y_grid=y_grid) plt.title(title) - # add colorbar + # Add colorbar if colorbar: - # get colormap and color levels - _, _, clevs, clevs_str = get_colormap(ptype, units, colorscale) if ptype in ["intensity", "depth"]: extend = "max" else: @@ -202,14 +212,9 @@ def plot_precip_field( return ax -def _plot_field( - precip, ax, ptype, units, colorscale, extent, origin=None, x_grid=None, y_grid=None -): +def _plot_field(precip, ax, extent, cmap, norm, origin=None, x_grid=None, y_grid=None): precip = precip.copy() - # Get colormap and color levels - cmap, norm, _, _ = get_colormap(ptype, units, colorscale) - if (x_grid is None) or (y_grid is None): im = ax.imshow( precip, @@ -510,3 +515,40 @@ def _dynamic_formatting_floats(float_array, colorscale="pysteps"): labels.append(str(int(label))) return labels + + +def _validate_colormap_config(colormap_config, ptype): + """Validate the colormap configuration provided by the user.""" + + # Ensure colormap_config has the necessary attributes + required_attrs = ["cmap", "norm", "clevs"] + missing_attrs = [ + attr for attr in required_attrs if not hasattr(colormap_config, attr) + ] + if missing_attrs: + raise ValueError( + f"colormap_config is missing required attributes: {', '.join(missing_attrs)}" + ) + + # Ensure that ptype is appropriate when colormap_config is provided + if ptype not in ["intensity", "depth"]: + raise ValueError( + "colormap_config is only supported for ptype='intensity' or 'depth'" + ) + + cmap = colormap_config.cmap + clevs = colormap_config.clevs + + # Validate that the number of colors matches len(clevs) + if isinstance(cmap, colors.ListedColormap): + num_colors = len(cmap.colors) + else: + num_colors = cmap.N + + expected_colors = len(clevs) + if num_colors != expected_colors: + raise ValueError( + f"Number of colors in colormap (N={num_colors}) does not match len(clevs) (N={expected_colors})." + ) + + return colormap_config.cmap, colormap_config.norm, colormap_config.clevs