
Go

Table of Contents

• 2. Using the Python Interpreter
◦ 2.1. Invoking the Interpreter

◾ 2.1.1. Argument Passing
◾ 2.1.2. Interactive Mode

◦ 2.2. The Interpreter and Its Environment
◾ 2.2.1. Source Code Encoding

Previous topic

1. Whetting Your Appetite

Next topic

3. An Informal Introduction to Python

This Page

• Report a Bug
• Show Source

Navigation

• index
• modules |
• next |
• previous |
•
• Python »
•
•
• 3.10.2 Documentation »
• The Python Tutorial »

2. Using the Python Interpreter

2.1. Invoking the Interpreter

The Python interpreter is usually installed as /usr/local/bin/python3.10 on those machines
where it is available; putting /usr/local/bin in your Unix shell’s search path makes it possible
to start it by typing the command:

python3.10

Page 1 of 42. Using the Python Interpreter

09/04/2022file:///C:/Users/jgmsc/AppData/Local/Temp/~hhBC52.htm

to the shell. [1] Since the choice of the directory where the interpreter lives is an installation
option, other places are possible; check with your local Python guru or system administrator.
(E.g., /usr/local/python is a popular alternative location.)

On Windows machines where you have installed Python from the Microsoft Store, the
python3.10 command will be available. If you have the py.exe launcher installed, you can use the
py command. See Excursus: Setting environment variables for other ways to launch Python.

Typing an end-of-file character (Control-D on Unix, Control-Z on Windows) at the primary
prompt causes the interpreter to exit with a zero exit status. If that doesn’t work, you can exit the
interpreter by typing the following command: quit().

The interpreter’s line-editing features include interactive editing, history substitution and code
completion on systems that support the GNU Readline library. Perhaps the quickest check to see
whether command line editing is supported is typing Control-P to the first Python prompt you
get. If it beeps, you have command line editing; see Appendix Interactive Input Editing and
History Substitution for an introduction to the keys. If nothing appears to happen, or if ^P is
echoed, command line editing isn’t available; you’ll only be able to use backspace to remove
characters from the current line.

The interpreter operates somewhat like the Unix shell: when called with standard input connected
to a tty device, it reads and executes commands interactively; when called with a file name
argument or with a file as standard input, it reads and executes a script from that file.

A second way of starting the interpreter is python -c command [arg] ..., which executes the
statement(s) in command, analogous to the shell’s -c option. Since Python statements often
contain spaces or other characters that are special to the shell, it is usually advised to quote
command in its entirety with single quotes.

Some Python modules are also useful as scripts. These can be invoked using python -m module
[arg] ..., which executes the source file for module as if you had spelled out its full name on
the command line.

When a script file is used, it is sometimes useful to be able to run the script and enter interactive
mode afterwards. This can be done by passing -i before the script.

All command line options are described in Command line and environment.

2.1.1. Argument Passing

When known to the interpreter, the script name and additional arguments thereafter are turned into
a list of strings and assigned to the argv variable in the sys module. You can access this list by
executing import sys. The length of the list is at least one; when no script and no arguments are
given, sys.argv[0] is an empty string. When the script name is given as '-' (meaning standard
input), sys.argv[0] is set to '-'. When -c command is used, sys.argv[0] is set to '-c'. When
-m module is used, sys.argv[0] is set to the full name of the located module. Options found after
-c command or -m module are not consumed by the Python interpreter’s option processing but left
in sys.argv for the command or module to handle.

2.1.2. Interactive Mode

When commands are read from a tty, the interpreter is said to be in interactive mode. In this mode
it prompts for the next command with the primary prompt, usually three greater-than signs (>>>);

Page 2 of 42. Using the Python Interpreter

09/04/2022file:///C:/Users/jgmsc/AppData/Local/Temp/~hhBC52.htm

for continuation lines it prompts with the secondary prompt, by default three dots (...). The
interpreter prints a welcome message stating its version number and a copyright notice before
printing the first prompt:

$ python3.10
Python 3.10 (default, June 4 2019, 09:25:04)
[GCC 4.8.2] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Continuation lines are needed when entering a multi-line construct. As an example, take a look at
this if statement:

>>> the_world_is_flat = True
>>> if the_world_is_flat:
... print("Be careful not to fall off!")
...
Be careful not to fall off!

For more on interactive mode, see Interactive Mode.

2.2. The Interpreter and Its Environment

2.2.1. Source Code Encoding

By default, Python source files are treated as encoded in UTF-8. In that encoding, characters of
most languages in the world can be used simultaneously in string literals, identifiers and
comments — although the standard library only uses ASCII characters for identifiers, a
convention that any portable code should follow. To display all these characters properly, your
editor must recognize that the file is UTF-8, and it must use a font that supports all the characters
in the file.

To declare an encoding other than the default one, a special comment line should be added as the
first line of the file. The syntax is as follows:

-*- coding: encoding -*-

where encoding is one of the valid codecs supported by Python.

For example, to declare that Windows-1252 encoding is to be used, the first line of your source
code file should be:

-*- coding: cp1252 -*-

One exception to the first line rule is when the source code starts with a UNIX “shebang” line. In
this case, the encoding declaration should be added as the second line of the file. For example:

#!/usr/bin/env python3
-*- coding: cp1252 -*-

Footnotes

[1]On Unix, the Python 3.x interpreter is by default not installed with the executable named
python, so that it does not conflict with a simultaneously installed Python 2.x executable.

Page 3 of 42. Using the Python Interpreter

09/04/2022file:///C:/Users/jgmsc/AppData/Local/Temp/~hhBC52.htm

Navigation

• index
• modules |
• next |
• previous |
•
• Python »
•
•
• 3.10.2 Documentation »
• The Python Tutorial »

© Copyright 2001-2022, Python Software Foundation.
This page is licensed under the Python Software Foundation License Version 2.
Examples, recipes, and other code in the documentation are additionally licensed under the Zero
Clause BSD License.
See History and License for more information.

The Python Software Foundation is a non-profit corporation. Please donate.

Last updated on Jan 17, 2022. Found a bug?
Created using Sphinx 2.2.0.

Page 4 of 42. Using the Python Interpreter

09/04/2022file:///C:/Users/jgmsc/AppData/Local/Temp/~hhBC52.htm

