-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
478 lines (377 loc) · 20.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import torch.nn as nn
import torch.nn.parallel
import random
import argparse
from network.resnet import resnet18, resnet34
from network.pointnet import PointNetCls
from torch.utils.data import DataLoader
import os
import numpy as np
from data.cifar10_train_val_test import CIFAR10, CIFAR100
from data.modelnet40 import ModelNet40
import torch.optim as optim
from torch.optim import lr_scheduler
import torchvision.transforms as transforms
from termcolor import cprint
from knn_utils import calc_knn_graph, calc_topo_weights_with_components_idx
from noise import noisify_with_P, noisify_cifar10_asymmetric, \
noisify_cifar100_asymmetric, noisify_pairflip, noisify_modelnet40_asymmetric
import copy
from scipy.stats import mode
def check_folder(save_dir):
if not os.path.exists(save_dir):
os.makedirs(save_dir)
return save_dir
# random seed related
def _init_fn(worker_id):
np.random.seed(77 + worker_id)
def main(args):
random_seed = args.seed
np.random.seed(random_seed)
random.seed(random_seed)
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed)
torch.backends.cudnn.deterministic = True # need to set to True as well
print('Using {}\nTest on {}\nRandom Seed {}\nk_cc {}\nk_outlier {}\nevery n epoch {}\n'.format(args.net,
args.dataset,
args.seed,
args.k_cc,
args.k_outlier,
args.every))
# -- training parameters --
if args.dataset == 'cifar10' or args.dataset == 'cifar100':
num_epoch = 180
milestone = [int(x) for x in args.milestone.split(',')]
batch_size = 128
elif args.dataset == 'pc':
num_epoch = 90
milestone = [30, 60]
batch_size = 128
else:
ValueError('Invalid Dataset!')
start_epoch = 0
num_workers = args.nworker
weight_decay = 1e-4
gamma = 0.5
lr = 0.001
which_data_set = args.dataset # 'cifar100', 'cifar10', 'pc'
noise_level = args.noise # noise level
noise_type = args.type # "uniform", "asymmetric"
train_val_ratio = 0.8
which_net = args.net # "resnet34", "resnet18", "pc"
# -- denoising related parameters --
k_cc = args.k_cc
k_outlier = args.k_outlier
when_to_denoise = args.start_clean # starting from which epoch we denoise
denoise_every_n_epoch = args.every # every n epoch, we perform denoising
# -- specify dataset --
# data augmentation
if which_data_set[:5] == 'cifar':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
else:
transform_train = None
transform_test = None
if which_data_set == 'cifar10':
trainset = CIFAR10(root='./data', split='train', train_ratio=train_val_ratio, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers,
worker_init_fn=_init_fn)
valset = CIFAR10(root='./data', split='val', train_ratio=train_val_ratio, download=True, transform=transform_test)
valloader = torch.utils.data.DataLoader(valset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
testset = CIFAR10(root='./data', split='test', download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
num_class = 10
in_channel = 3
elif which_data_set == 'cifar100':
trainset = CIFAR100(root='./data', split='train', train_ratio=train_val_ratio, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers,
worker_init_fn=_init_fn)
valset = CIFAR100(root='./data', split='val', train_ratio=train_val_ratio, download=True, transform=transform_test)
valloader = torch.utils.data.DataLoader(valset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
testset = CIFAR100(root='./data', split='test', download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
num_class = 100
in_channel = 3
elif which_data_set == 'pc':
trainset = ModelNet40(split='train', train_ratio=train_val_ratio, num_ptrs=1024, random_jitter=True)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers,
worker_init_fn=_init_fn, drop_last=True)
valset = ModelNet40(split='val', train_ratio=train_val_ratio, num_ptrs=1024)
valloader = torch.utils.data.DataLoader(valset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
testset = ModelNet40(split='test', num_ptrs=1024)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
num_class = 40
else:
ValueError('Invalid Dataset!')
print('train data size:', len(trainset))
print('validation data size:', len(valset))
print('test data size:', len(testset))
ntrain = len(trainset)
# -- generate noise --
y_train = trainset.get_data_labels()
y_train = np.array(y_train)
noise_y_train = None
keep_indices = None
p = None
if noise_type == 'none':
pass
else:
if noise_type == "uniform":
noise_y_train, p, keep_indices = noisify_with_P(y_train, nb_classes=num_class, noise=noise_level, random_state=random_seed)
trainset.update_corrupted_label(noise_y_train)
print("apply uniform noise")
else:
if which_data_set == 'cifar10':
noise_y_train, p, keep_indices = noisify_cifar10_asymmetric(y_train, noise=noise_level, random_state=random_seed)
elif which_data_set == 'cifar100':
noise_y_train, p, keep_indices = noisify_cifar100_asymmetric(y_train, noise=noise_level, random_state=random_seed)
elif which_data_set == 'pc':
noise_y_train, p, keep_indices = noisify_modelnet40_asymmetric(y_train, noise=noise_level,
random_state=random_seed)
trainset.update_corrupted_label(noise_y_train)
print("apply asymmetric noise")
print("clean data num:", len(keep_indices))
print("probability transition matrix:\n{}".format(p))
# -- create log file --
file_name = '(' + which_data_set + '_' + which_net + ')' \
+ 'type_' + noise_type + '_noise_' + str(noise_level) \
+ '_k_cc_' + str(k_cc) + '_k_outlier_' + str(k_outlier) + '_start_' + str(when_to_denoise) \
+ '_every_' + str(denoise_every_n_epoch) + '.txt'
log_dir = check_folder('logs/logs_txt_' + str(random_seed))
file_name = os.path.join(log_dir, file_name)
saver = open(file_name, "w")
saver.write('noise type: {}\nnoise level: {}\nk_cc: {}\nk_outlier: {}\nwhen_to_apply_epoch: {}\n'.format(
noise_type, noise_level, k_cc, k_outlier, when_to_denoise))
if noise_type != 'none':
saver.write('total clean data num: {}\n'.format(len(keep_indices)))
saver.write('probability transition matrix:\n{}\n'.format(p))
saver.flush()
# -- set network, optimizer, scheduler, etc --
if which_net == 'resnet18':
net = resnet18(in_channel=in_channel, num_classes=num_class)
feature_size = 512
elif which_net == 'resnet34':
net = resnet34(in_channel=in_channel, num_classes=num_class)
feature_size = 512
elif which_net == 'pc':
net = PointNetCls(k=num_class)
feature_size = 256
else:
ValueError('Invalid network!')
optimizer = optim.Adam(net.parameters(), lr=lr, weight_decay=weight_decay)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = net.to(device)
################################################
exp_lr_scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=milestone, gamma=gamma)
criterion = nn.NLLLoss() # since the output of network is by log softmax
# -- misc --
best_acc = 0
best_epoch = 0
best_weights = None
curr_trainloader = trainloader
big_comp = set()
patience = args.patience
no_improve_counter = 0
# -- start training --
for epoch in range(start_epoch, num_epoch):
train_correct = 0
train_loss = 0
train_total = 0
exp_lr_scheduler.step()
net.train()
print("current train data size:", len(curr_trainloader.dataset))
for _, (images, labels, _) in enumerate(curr_trainloader):
if images.size(0) == 1: # when batch size equals 1, skip, due to batch normalization
continue
images, labels = images.to(device), labels.to(device)
outputs, features = net(images)
log_outputs = torch.log_softmax(outputs, 1)
loss = criterion(log_outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
train_total += images.size(0)
_, predicted = outputs.max(1)
train_correct += predicted.eq(labels).sum().item()
train_acc = train_correct / train_total * 100.
cprint('epoch: {}'.format(epoch), 'white')
cprint('train accuracy: {}\ntrain loss:{}'.format(train_acc, train_loss), 'yellow')
# --- compute big connected components ---
net.eval()
features_all = torch.zeros(ntrain, feature_size).to(device)
prob_all = torch.zeros(ntrain, num_class)
labels_all = torch.zeros(ntrain, num_class)
train_gt_labels = np.zeros(ntrain, dtype=np.uint64)
train_pred_labels = np.zeros(ntrain, dtype=np.uint64)
for _, (images, labels, indices) in enumerate(trainloader):
images = images.to(device)
outputs, features = net(images)
softmax_outputs = torch.softmax(outputs, 1)
features_all[indices] = features.detach()
prob_all[indices] = softmax_outputs.detach().cpu()
tmp_zeros = torch.zeros(labels.shape[0], num_class)
tmp_zeros[torch.arange(labels.shape[0]), labels] = 1.0
labels_all[indices] = tmp_zeros
train_gt_labels[indices] = labels.cpu().numpy().astype(np.int64)
train_pred_labels[indices] = labels.cpu().numpy().astype(np.int64)
if epoch >= when_to_denoise and (epoch - when_to_denoise) % denoise_every_n_epoch == 0:
cprint('\n>> Computing Big Components <<', 'white')
labels_all = labels_all.numpy()
train_gt_labels = train_gt_labels.tolist()
train_pred_labels = np.squeeze(train_pred_labels).ravel().tolist()
_, idx_of_comp_idx2 = calc_topo_weights_with_components_idx(ntrain, labels_all, features_all,
train_gt_labels, train_pred_labels, k=k_cc,
use_log=False, cp_opt=3, nclass=num_class)
# --- update largest connected component ---
cur_big_comp = list(set(range(ntrain)) - set(idx_of_comp_idx2))
big_comp = big_comp.union(set(cur_big_comp))
# --- remove outliers in largest connected component ---
big_com_idx = list(big_comp)
feats_big_comp = features_all[big_com_idx]
labels_big_comp = np.array(train_gt_labels)[big_com_idx]
knnG_list = calc_knn_graph(feats_big_comp, k=args.k_outlier)
knnG_list = np.array(knnG_list)
knnG_shape = knnG_list.shape
knn_labels = labels_big_comp[knnG_list.ravel()]
knn_labels = np.reshape(knn_labels, knnG_shape)
majority, counts = mode(knn_labels, axis=-1)
majority = majority.ravel()
counts = counts.ravel()
if args.zeta > 1.0: # use majority vote
non_outlier_idx = np.where(majority == labels_big_comp)[0]
outlier_idx = np.where(majority != labels_big_comp)[0]
outlier_idx = np.array(list(big_comp))[outlier_idx]
print(">> majority == labels_big_comp -> size: ", len(non_outlier_idx))
else: # zeta filtering
non_outlier_idx = np.where((majority == labels_big_comp) & (counts >= args.k_outlier * args.zeta))[0]
print(">> zeta {}, then non_outlier_idx -> size: {}".format(args.zeta, len(non_outlier_idx)))
outlier_idx = np.where(majority != labels_big_comp)[0]
outlier_idx = np.array(list(big_comp))[outlier_idx]
cprint(">> The number of outliers: {}".format(len(outlier_idx)), 'red')
cprint(">> The purity of outliers: {}".format(np.sum(y_train[outlier_idx] == noise_y_train[outlier_idx])
/ float(len(outlier_idx))), 'red')
big_comp = np.array(list(big_comp))[non_outlier_idx]
big_comp = set(big_comp.tolist())
# --- construct updated dataset set, which contains the collected clean data ---
if which_data_set == 'cifar10':
trainset_ignore_noisy_data = CIFAR10(root='./data', split='train', train_ratio=train_val_ratio,
download=True, transform=transform_train)
elif which_data_set == 'cifar100':
trainset_ignore_noisy_data = CIFAR100(root='./data', split='train', train_ratio=train_val_ratio,
download=True, transform=transform_train)
else:
trainset_ignore_noisy_data = ModelNet40(split='train', train_ratio=train_val_ratio,
num_ptrs=1024, random_jitter=True)
trainloader_ignore_noisy_data = torch.utils.data.DataLoader(trainset_ignore_noisy_data,
batch_size=batch_size,
shuffle=True, num_workers=num_workers,
worker_init_fn=_init_fn, drop_last=True)
curr_trainloader = trainloader_ignore_noisy_data
noisy_data_indices = list(set(range(ntrain)) - big_comp)
trainset_ignore_noisy_data.update_corrupted_label(noise_y_train)
trainset_ignore_noisy_data.ignore_noise_data(noisy_data_indices)
clean_data_num = len(big_comp.intersection(set(keep_indices)))
noise_data_num = len(big_comp) - clean_data_num
print("Big Comp Number:", len(big_comp))
print("Found Noisy Data Number:", noise_data_num)
print("Found True Data Number:", clean_data_num)
# compute purity of the component
cc_size = len(big_comp)
equal = np.sum(noise_y_train[list(big_comp)] == y_train[list(big_comp)])
ratio = equal / float(cc_size)
print("Purity of current component: {}".format(ratio))
noise_size = len(noisy_data_indices)
equal = np.sum(noise_y_train[noisy_data_indices] == y_train[noisy_data_indices])
print("Purity of data outside component: {}".format(equal / float(noise_size)))
saver.write('Purity {}\tsize{}\t'.format(ratio, cc_size))
# --- validation ---
val_total = 0
val_correct = 0
net.eval()
with torch.no_grad():
for _, (images, labels, _) in enumerate(valloader):
images, labels = images.to(device), labels.to(device)
outputs, _ = net(images)
val_total += images.size(0)
_, predicted = outputs.max(1)
val_correct += predicted.eq(labels).sum().item()
val_acc = val_correct / val_total * 100.
if val_acc > best_acc:
best_acc = val_acc
best_epoch = epoch
best_weights = copy.deepcopy(net.state_dict())
no_improve_counter = 0
else:
no_improve_counter += 1
if no_improve_counter >= patience:
print('>> No improvement for {} epochs. Stop at epoch {}'.format(patience, epoch))
saver.write('>> No improvement for {} epochs. Stop at epoch {}'.format(patience, epoch))
saver.write('>> val epoch: {}\n>> current accuracy: {}\n'.format(epoch, val_acc))
saver.write('>> best accuracy: {}\tbest epoch: {}\n\n'.format(best_acc, best_epoch))
break
cprint('val accuracy: {}'.format(val_acc), 'cyan')
cprint('>> best accuracy: {}\n>> best epoch: {}\n'.format(best_acc, best_epoch), 'green')
saver.write('{}\n'.format(val_acc))
# -- testing
cprint('>> testing <<', 'cyan')
test_total = 0
test_correct = 0
net.load_state_dict(best_weights)
net.eval()
with torch.no_grad():
for _, (images, labels, _) in enumerate(testloader):
images, labels = images.to(device), labels.to(device)
outputs, _ = net(images)
test_total += images.size(0)
_, predicted = outputs.max(1)
test_correct += predicted.eq(labels).sum().item()
test_acc = test_correct / test_total * 100.
cprint('>> test accuracy: {}'.format(test_acc), 'cyan')
saver.write('>> test accuracy: {}\n'.format(test_acc))
# retest on the validation set, for sanity check
cprint('>> validation <<', 'cyan')
val_total = 0
val_correct = 0
net.eval()
with torch.no_grad():
for _, (images, labels, _) in enumerate(valloader):
images, labels = images.to(device), labels.to(device)
outputs, _ = net(images)
val_total += images.size(0)
_, predicted = outputs.max(1)
val_correct += predicted.eq(labels).sum().item()
val_acc = val_correct / val_total * 100.
cprint('>> validation accuracy: {}'.format(val_acc), 'cyan')
saver.write('>> validation accuracy: {}'.format(val_acc))
saver.close()
return test_acc
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--gpus', default='0', help='delimited list input of GPUs', type=str)
parser.add_argument('--every', default=5, help='collect the big connected component every n epochs', type=int)
parser.add_argument('--nworker', default=1, help='number of worker', type=int)
parser.add_argument('--start_clean', default=30, help='when to start collecting clean data', type=int)
parser.add_argument('--k_outlier', default=32, help='the k for knn in cleaning big connected component', type=int)
parser.add_argument('--k_cc', default=4, help='the k for knn in collecting big connected component', type=int)
parser.add_argument('--noise', default=0.4, help='the noise level', type=float)
parser.add_argument('--type', default='uniform', help='which type of noise [uniform | asym]', type=str)
parser.add_argument('--patience', default=65, help='if no improvement for consecutive $patience$ epochs, then stop', type=int)
parser.add_argument('--seed', default=80, help='random seed', type=int)
parser.add_argument('--dataset', default='cifar10', help='dataset [cifar10 | cifar100 | pc]', type=str)
parser.add_argument('--milestone', default='60,120', help='milestone', type=str)
parser.add_argument('--net', default='resnet18', help='network type [resnet18 | resnet34 | pc]', type=str)
parser.add_argument('--zeta', default=0.5, help='zeta', type=float)
args = parser.parse_args()
print(args)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
main(args)