对于二叉树,其常见操作方法的逻辑 + 实现,这些都是面试高频:
- 求节点个数
- 求树的高度
- 求根节点
- 求当前节点的左孩子
- 求当前节点的右孩子
- 查找当前节点
- 查找当前节点的父节点
- 将二叉树置空
- 两个二叉树是否相同的比较
- 复制一个二叉树
- 。。。
均是C++实现先根序创建二叉树及其其它方法。
我认为在二叉树的创建方法和遍历以外,以下方法值得我们关注:
public:
int size()const; //求结点个数
int height()const; //求树的高度
BinTreeNode<Type>* root_1()const; //求根节点
BinTreeNode<Type>* leftChild(BinTreeNode<Type>* cur)const; //求当前结点的左孩子
BinTreeNode<Type>* rightChild(BinTreeNode<Type>* cur)const; //求当前结点的右孩子
BinTreeNode<Type>* find(const Type &key)const; //查找当前结点
BinTreeNode<Type>* parent(BinTreeNode<Type>* cur)const; //查找当前结点的父结点
void makeEmpty(); //将二叉树置空
bool equal(const BinTree<Type> &t)const; //两个二叉树是否相同的比较
BinTreeNode<Type>* copy(BinTreeNode<Type> *t)const; //拷贝构造函数的方法,复制一个二叉树
template<typename Type>
int BinTree<Type>::size(BinTreeNode<Type> *t)const{
if(t == NULL){
return 0;
}
return size(t->leftChild) + size(t->rightChild) + 1;
}
template<typename Type>
int BinTree<Type>::height(BinTreeNode<Type> *t)const{
if(t == NULL){
return 0;
}
int leftHeight = height(t->leftChild);
int rightHeight = height(t->rightChild);
return (leftHeight > rightHeight ? leftHeight : rightHeight) + 1;
}
template<typename Type>
BinTreeNode<Type>* BinTree<Type>::find(const Type &key, BinTreeNode<Type> *t)const{
if(t == NULL){
return NULL;
}
if(t->data == key){
return t;
}
BinTreeNode<Type> *p = find(key, t->leftChild);
if(p != NULL){
return p;
}
return find(key, t->rightChild);
}
template<typename Type>
BinTreeNode<Type>* BinTree<Type>::parent(BinTreeNode<Type>* cur, BinTreeNode<Type> *t)const{
if(t == NULL || cur == NULL || cur == t){
return NULL;
}
if(t->leftChild == cur || t->rightChild == cur){
return t;
} //思路:利用父的孩子节点和当前节点比较
BinTreeNode<Type> *p = parent(cur, t->leftChild);
if(p != NULL){
return p;
}
return parent(cur, t->rightChild);
}
template<typename Type>
void BinTree<Type>::makeEmpty(BinTreeNode<Type> *t){
if(t != NULL){
makeEmpty(t->leftChild);
makeEmpty(t->rightChild);
delete t;
}
}
template<typename Type>
bool BinTree<Type>::equal(BinTreeNode<Type> *t, BinTreeNode<Type> *t1)const{
if(t == NULL && t1 == NULL){ //取反判断与这个是一个道理
return true;
}
if(t != NULL && t1!= NULL && t->data == t1->data && equal(t->leftChild, t1->leftChild)
&& equal(t->rightChild, t1->rightChild)){
return true;
}else{
return false;
}
}
template<typename Type>
BinTreeNode<Type>* BinTree<Type>::copy(BinTreeNode<Type> *t)const{
BinTreeNode<Type>* tmp;
if(t == NULL){
return NULL;
}else{
tmp = new BinTreeNode<Type>(t->data);
tmp->leftChild = copy(t->leftChild);
tmp->rightChild = copy(t->rightChild);
}
return tmp;
}
以上的这些方法都是利用二叉树的性质递归实现,比较好想清楚,就不做解释了,实在有问题,画画图就会好很多。
#ifndef _BIN_TREE_H_
#define _BIN_TREE_H_
#include<iostream>
#include<stack> //非递归遍历引入栈
#include<queue> //层次遍历引入队列
using namespace std;
template<typename Type> //为的是声明友元类,调用BinTreeNode<Type>的私有数据
class BinTree;
template<typename Type> //BinTreeNode类
class BinTreeNode{
friend class BinTree<Type>;
public:
BinTreeNode() : data(Type()), leftChild(NULL), rightChild(NULL){}
BinTreeNode(Type value, BinTreeNode<Type> *left = NULL, BinTreeNode<Type> *right = NULL) :
data(value), leftChild(left), rightChild(right){}
~BinTreeNode(){}
private:
Type data;
BinTreeNode *leftChild;
BinTreeNode *rightChild;
};
///////////////////////////////////////////////////////////////////////////////
template<typename Type> //BinTree类
class BinTree{
public:
BinTree() : root(NULL){}
BinTree(Type ref) : root(NULL), refval(ref){}
BinTree(const BinTree &t){
root = copy(t.root); //调用拷贝方法
}
~BinTree(){
makeEmpty(); //析构函数这里将二叉树置空
root = NULL;
}
public: //创建二叉树
void createBinTree();
void createBinTree(const char *str);
void createBinTree(const char *VLR, const char *LVR, int n);
void createBinTree_1(const char *LVR, const char *LRV, int n);
public: //递归遍历
void prevOrder()const;
void inOrder()const;
void endOrder()const;
public: //各种方法的声明
int size()const;
int height()const;
BinTreeNode<Type>* root_1()const; //以下的三个方法比较简单,就不在进行调用保护方法了;
BinTreeNode<Type>* leftChild(BinTreeNode<Type>* cur)const;
BinTreeNode<Type>* rightChild(BinTreeNode<Type>* cur)const;
BinTreeNode<Type>* find(const Type &key)const;
BinTreeNode<Type>* parent(BinTreeNode<Type>* cur)const;
void makeEmpty();
bool equal(const BinTree<Type> &t)const;
BinTreeNode<Type>* copy(BinTreeNode<Type> *t)const;
public: //非递归遍历
void prevOrder_1()const;
void inOrder_1()const;
void endOrder_1()const;
void levelOrder()const; //puublic:供外界提供的接口,
////////////////////////////////////////////////////////////////////////////////
protected: //protected:供自己函数内部调用,写保护方法
void prevOrder_1(BinTreeNode<Type>* t)const;
void inOrder_1(BinTreeNode<Type>* t)const;
void endOrder_1(BinTreeNode<Type>* t)const;
void levelOrder(BinTreeNode<Type>* t)const;
protected:
int size(BinTreeNode<Type> *t)const;
int height(BinTreeNode<Type> *t)const;
BinTreeNode<Type>* find(const Type &key, BinTreeNode<Type> *t)const;
BinTreeNode<Type>* parent(BinTreeNode<Type>* cur, BinTreeNode<Type> *t)const;
void makeEmpty(BinTreeNode<Type>* t);
bool equal(BinTreeNode<Type> *t, BinTreeNode<Type> *t1)const;
protected:
void prevOrder(BinTreeNode<Type> *t)const;
void inOrder(BinTreeNode<Type> *t)const;
void endOrder(BinTreeNode<Type> *t)const;
protected :
void createBinTree(BinTreeNode<Type> *&t);
BinTreeNode<Type>* createBinTree_1();
void createBinTree(const char *&str, BinTreeNode<Type> *&t);
BinTreeNode<Type>* createBinTree_1(const char *&str);
void createBinTree(BinTreeNode<Type> *&t, const char *VLR, const char *LVR, int n);
void createBinTree_1(BinTreeNode<Type> *&t, const char *LVR, const char *LRV, int n);
//以上都只是在类内声明;
private:
BinTreeNode<Type> *root;
Type refval; //'#'
};
///////////////////////////////////////////////////////////////////////////////
template<typename Type> //类外实现公有方法的调用
void BinTree<Type>::createBinTree(){ //创建二叉树
//createBinTree(root);
root = createBinTree_1();
}
template<typename Type>
void BinTree<Type>::prevOrder()const{ //先序递归遍历
cout<<"先根序如下: "<<endl;
prevOrder(root);
}
template<typename Type>
void BinTree<Type>::inOrder()const{ //中序递归遍历
cout<<"中根序如下: "<<endl;
inOrder(root);
}
template<typename Type>
void BinTree<Type>::endOrder()const{ //后序递归遍历
cout<<"后根序如下: "<<endl;
endOrder(root);
}
template<typename Type>
void BinTree<Type>::createBinTree(const char *str){ //创建二叉树
// createBinTree(str, root);
root = createBinTree_1(str);
}
template<typename Type>
int BinTree<Type>::size()const{ //求结点个数
return size(root);
}
template<typename Type>
int BinTree<Type>::height()const{ //求树的高度
return height(root);
}
template<typename Type>
BinTreeNode<Type>* BinTree<Type>::root_1()const{ //求根节点
return root;
}
template<typename Type>
BinTreeNode<Type>* BinTree<Type>::leftChild(BinTreeNode<Type>* cur)const{ //求当前结点的左孩子
return cur->leftChild;
}
template<typename Type>
BinTreeNode<Type>* BinTree<Type>::rightChild(BinTreeNode<Type>* cur)const{ //求当前结点的右孩子
return cur->rightChild;
}
template<typename Type>
BinTreeNode<Type>* BinTree<Type>::find(const Type &key)const{ //查找当前结点
return find(key, root);
}
template<typename Type>
BinTreeNode<Type>* BinTree<Type>::parent(BinTreeNode<Type>* cur)const{ //查找当前结点的父结点
return parent(cur, root);
}
template<typename Type>
void BinTree<Type>::makeEmpty(){ //将二叉树置空
makeEmpty(root);
}
template<typename Type>
bool BinTree<Type>::equal(const BinTree<Type> &t)const{ //两个二叉树是否相同的比较
return equal(t.root, root);
}
template<typename Type>
void BinTree<Type>::prevOrder_1()const{ //非递归先序
prevOrder_1(root);
}
template<typename Type>
void BinTree<Type>::inOrder_1()const{ //非递归中序
inOrder_1(root);
}
template<typename Type>
void BinTree<Type>::endOrder_1()const{ //非递归后序
endOrder(root);
}
template<typename Type>
void BinTree<Type>::levelOrder()const{ //层次遍历
levelOrder(root);
}
template<typename Type>
void BinTree<Type>::createBinTree(const char *VLR, const char *LVR, int n){ //创建二叉树
createBinTree(root, VLR, LVR, n);
}
template<typename Type>
void BinTree<Type>::createBinTree_1(const char *LVR, const char *LRV, int n){ //创建二叉树
createBinTree_1(root, LVR, LRV, n);
}
//////////////////////////////////////////////////////////////////////////////////////////
template<typename Type> //以下的都是写保护的方法,供自己使用
void BinTree<Type>::createBinTree_1(BinTreeNode<Type> *&t, const char *LVR, const char *LRV, int n){ //中序和后序创建二叉树
if(n == 0){
t = NULL;
return;
}
int k = 0;
while(LVR[k] != LRV[n-1]){
k++;
}
t = new BinTreeNode<Type>(LVR[k]);
createBinTree_1(t->rightChild, LVR+k+1, LRV+k, n-k-1);
createBinTree_1(t->leftChild, LVR, LRV, k);
}
template<typename Type>
void BinTree<Type>::createBinTree(BinTreeNode<Type> *&t, const char *VLR, const char *LVR, int n){ //先序和中序创建二叉树
if(n == 0){
t = NULL;
return;
}
int k = 0;
while(LVR[k] != VLR[0]){
k++;
}
t = new BinTreeNode<Type>(LVR[k]);
createBinTree(t->leftChild, VLR+1, LVR, k);
createBinTree(t->rightChild, VLR+k+1, LVR+k+1, n-k-1);
}
template<typename Type>
void BinTree<Type>::levelOrder(BinTreeNode<Type>* t)const{ //层次遍历
queue<BinTreeNode<Type> *> qu;
BinTreeNode<Type> *p;
if(t != NULL){
qu.push(t);
while(!qu.empty()){
p = qu.front();
qu.pop();
cout<<p->data<<" ";
if(p->leftChild){
qu.push(p->leftChild);
}
if(p->rightChild){
qu.push(p->rightChild);
}
}
}
}
typedef enum{L, R}Tag;
template<typename Type>
class stkNode{
public:
stkNode(BinTreeNode<Type> *p = NULL) : ptr(p), tag(L){}
public:
BinTreeNode<Type> *ptr;
Tag tag; //L R
};
template<typename Type>
void BinTree<Type>::endOrder_1(BinTreeNode<Type>* t)const{ //非递归后序
stkNode<Type> n;
stack<stkNode<Type>> st;
BinTreeNode<Type> *p = t;
do{
while(p != NULL){
n.ptr = p;
n.tar = L;
st.push(n);
p = p->leftChild;
}
bool isRun = true;
while(isRun && !st.empty()){
n = st.top();
st.pop();
switch(n.tag){
case L:
p = n.ptr;
n.tag = R;
st.push(n);
p = p->rightChild;
isRun = false;
break;
case R:
cout<<n.ptr->data<<" ";
break;
}
}
}while(!st.empty());//不用p1=NULL,因为当栈空时,最后一个节点刚好被访问完成。
}
template<typename Type>
void BinTree<Type>::inOrder_1(BinTreeNode<Type>* t)const{ //非递归中序
stack<BinTreeNode<Type> *> st;
BinTreeNode<Type> *p = t;
do{
while(p != NULL){
st.push(p);
p = p->leftChild;
}
if(!st.empty()){
p = st.top();
st.pop();
cout<<p->data<<" ";
p = p->rightChild;
}//中序遍历时,当root出栈时,此时占空,
}while(p != NULL || !st.empty()); //为根的时候右边还要入栈。
}
template<typename Type>
void BinTree<Type>::prevOrder_1(BinTreeNode<Type>* t)const{ //非递归先序
stack<BinTreeNode<Type> *> st;
BinTreeNode<Type> *tmp;
if(t != NULL){
st.push(t);
while(!st.empty()){
tmp = st.top();
st.pop();
cout<<tmp->data<<" ";
if(tmp->rightChild){
st.push(tmp->rightChild);
}
if(tmp->leftChild){
st.push(tmp->leftChild);
}
}
}
}
template<typename Type>
BinTreeNode<Type>* BinTree<Type>::copy(BinTreeNode<Type> *t)const{ //拷贝函数
BinTreeNode<Type>* tmp;
if(t == NULL){
return NULL;
}else{
tmp = new BinTreeNode<Type>(t->data);
tmp->leftChild = copy(t->leftChild);
tmp->rightChild = copy(t->rightChild);
}
return tmp;
}
template<typename Type>
bool BinTree<Type>::equal(BinTreeNode<Type> *t, BinTreeNode<Type> *t1)const{ //两个二叉树是否相同的比较
if(t == NULL && t1 == NULL){ //取反判断与这个是一个道理
return true;
}
if(t != NULL && t1!= NULL && t->data == t1->data && equal(t->leftChild, t1->leftChild)
&& equal(t->rightChild, t1->rightChild)){
return true;
}else{
return false;
}
}
template<typename Type>
void BinTree<Type>::makeEmpty(BinTreeNode<Type> *t){ //将二叉树置空
if(t != NULL){
makeEmpty(t->leftChild);
makeEmpty(t->rightChild);
delete t;
}
}
template<typename Type>
BinTreeNode<Type>* BinTree<Type>::parent(BinTreeNode<Type>* cur, BinTreeNode<Type> *t)const{ //查找当前结点的父结点
if(t == NULL || cur == NULL || cur == t){
return NULL;
}
if(t->leftChild == cur || t->rightChild == cur){
return t;
} //思路:利用父的孩子节点和当前节点比较
BinTreeNode<Type> *p = parent(cur, t->leftChild);
if(p != NULL){
return p;
}
return parent(cur, t->rightChild);
}
template<typename Type>
BinTreeNode<Type>* BinTree<Type>::find(const Type &key, BinTreeNode<Type> *t)const{ //查找当前结点
if(t == NULL){
return NULL;
}
if(t->data == key){
return t;
}
BinTreeNode<Type> *p = find(key, t->leftChild);
if(p != NULL){
return p;
}
return find(key, t->rightChild);
}
template<typename Type>
int BinTree<Type>::height(BinTreeNode<Type> *t)const{ //求树的高度
if(t == NULL){
return 0;
}
int leftHeight = height(t->leftChild);
int rightHeight = height(t->rightChild);
return (leftHeight > rightHeight ? leftHeight : rightHeight) + 1;
}
template<typename Type>
int BinTree<Type>::size(BinTreeNode<Type> *t)const{ //求结点个数
if(t == NULL){
return 0;
}
return size(t->leftChild) + size(t->rightChild) + 1;
}
template<typename Type>
BinTreeNode<Type>* BinTree<Type>::createBinTree_1(const char *&str){ //创建二叉树
BinTreeNode<Type> *t;
if(refval == *str){
t = NULL;
}else{
t = new BinTreeNode<Type>(*str);
t->leftChild = createBinTree_1(++str);
t->rightChild = createBinTree_1(++str);
}
return t;
}
template<typename Type>
void BinTree<Type>::createBinTree(const char *&str, BinTreeNode<Type> *&t){ //创建二叉树
if(*str == refval){
t = NULL;
}else{
t = new BinTreeNode<Type>(*str);
createBinTree(++str, t->leftChild); //前加,后加不一样!!!在这里,就是传引用,保证每次字符串都是往后走的
createBinTree(++str, t->rightChild);
}
}
template<typename Type>
BinTreeNode<Type>* BinTree<Type>::createBinTree_1(){ //创建二叉树
Type createData;
cin>>createData;
BinTreeNode<Type> *t;
if(refval == createData){
t = NULL;
}else{
t = new BinTreeNode<Type>(createData);
t->leftChild = createBinTree_1();
t->rightChild = createBinTree_1();
}
return t;
}
template<typename Type>
void BinTree<Type>::endOrder(BinTreeNode<Type> *t)const{ //后序递归遍历
if(t == NULL){
return;
}else{
endOrder(t->leftChild);
endOrder(t->rightChild);
cout<<t->data<<" ";
}
}
template<typename Type>
void BinTree<Type>::inOrder(BinTreeNode<Type> *t)const{ //中序递归遍历
if(t == NULL){
return;
}else{
inOrder(t->leftChild);
cout<<t->data<<" ";
inOrder(t->rightChild);
}
}
template<typename Type>
void BinTree<Type>::prevOrder(BinTreeNode<Type> *t)const{ //先序递归遍历
if(t == NULL){
return;
}else{
cout<<t->data<<" ";
prevOrder(t->leftChild);
prevOrder(t->rightChild);
}
}
//根据先根序创建二叉树
template<typename Type>
void BinTree<Type>::createBinTree(BinTreeNode<Type> *&t){ //创建二叉树
Type createData;
cin>>createData;
if(refval == createData){
t = NULL;
}else{
t = new BinTreeNode<Type>(createData);
createBinTree(t->leftChild);
createBinTree(t->rightChild);
}
}
#endif
以上代码我采用折叠的方式进行写的;类外公有调用下面紧跟保护方法的实现。
#include"BinTree.h"
//ABC##DE##F##G#H##
/*
先根序如下:
A B C D E F G H
中根序如下:
C B E D F A G H
后根序如下:
C E F D B H G A
*/
int main(void){
// char *VLR = "ABCDEFGH";
// char *LVR = "CBEDFAGH";
// char *LRV = "CEFDBHGA";
// BinTree<char> bt; //对象初始化不写'#';
// int n = strlen(VLR);
// bt.createBinTree(VLR, LVR, n); //在这里创建二叉树不用'#'结束,因为是由先序和中序创建,不看结束标志'#';
// bt.createBinTree_1(LVR, LRV, n);
// bt.prevOrder();
// cout<<endl;
//bt.createBinTree(VLR, LRV, n); 不能创建
/*
BinTree<char> bt('#');
char *str = "ABC##DE##F##G#H##";
// char *str = "ABC##DE###G#H##";
bt.createBinTree(str);
BinTree<char> bt1(bt);
bt1.levelOrder();
cout<<endl;
*/
/*
// st.createBinTree();
BinTree<char> bt('#');
BinTree<char> bt1('#');
char *str = "ABC##DE##F##G#H##";
bt.createBinTree(str);
bt1.createBinTree(str); //构建的是一颗空树,引用传递构建,原先字符串已经为空!
if(bt.equal(bt1)){
cout<<"相等"<<endl;
}else{
cout<<"不相等"<<endl;
}
*/
BinTree<char> bt('#');
char *str = "ABC##DE##F##G#H##";
bt.createBinTree(str);
cout<<bt.size()<<endl;
cout<<bt.height()<<endl;
BinTreeNode<char> *p = bt.find('H');
BinTreeNode<char> *t = bt.find('G');
printf("%p\n", t);
BinTreeNode<char> *q = bt.parent(p);
printf("%p\n", q);
bt.prevOrder();
cout<<endl;
bt.inOrder();
cout<<endl;
bt.endOrder();
cout<<endl;
return 0;
}
这是所有测试要用的代码,在编写时,写一个方法测试一个,将测试过的就注释起来了。
至于其它的测试结果就不在给出了,有兴趣可以在测测其它的方法。
原创文章链接:从零开始学习数据结构-->二叉树方法实现