-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.py
114 lines (109 loc) · 3.73 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import argparse
import os
import numpy as np
from utilities.ml_utils import train, test
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--augmentation", action="store_true", help="whether or not to use augmentation"
)
parser.add_argument("--train", action="store_true", help="train model")
parser.add_argument("--test", action="store_true", help="generate test predictions")
parser.add_argument("--gpus", type=str, default="0")
parser.add_argument(
"--num-workers", type=int, help="number of data loader workers", default=1
)
parser.add_argument(
"--num-epochs", type=int, help="number of epochs to train", default=200
)
parser.add_argument(
"--save-period",
type=int,
help="epoch frequency to save model checkpoints",
default=2,
)
parser.add_argument("--save-best", action="store_true", help="save best weights")
parser.add_argument(
"--val-period",
type=int,
help="epoch frequency for running validation (zero if none)",
default=0,
)
parser.add_argument("--batch-size", type=int, help="batch size", default=4)
parser.add_argument(
"--downsample",
type=int,
help="factor for downsampling image at test time",
default=1,
)
parser.add_argument("--checkpoint-dir", type=str, default="./checkpoints")
parser.add_argument("--predictions-dir", type=str, default="./predictions")
parser.add_argument(
"--model-path",
type=str,
help="Default is most recent in checkpoint dir",
default=None,
)
parser.add_argument(
"--dataset-dir", type=str, help="dataset directory", default="./dataset"
)
parser.add_argument(
"--train-sub-dir",
type=str,
help="train folder within datset-dir",
default="train",
)
parser.add_argument(
"--test-sub-dir", type=str, help="test folder within datset-dir", default="test"
)
parser.add_argument(
"--valid-sub-dir",
type=str,
help="validation folder within datset-dir",
default="valid",
)
parser.add_argument("--backbone", type=str, default="resnet34")
parser.add_argument("--learning-rate", type=float, default=0.0001)
parser.add_argument(
"--sample-size",
type=int,
help="number of images to randomly sample for training",
default=None,
)
parser.add_argument("--agl-weight", type=float, help="agl loss weight", default=1)
parser.add_argument("--mag-weight", type=float, help="mag loss weight", default=2)
parser.add_argument(
"--angle-weight", type=float, help="angle loss weight", default=10
)
parser.add_argument(
"--scale-weight", type=float, help="scale loss weight", default=10
)
parser.add_argument(
"--rgb-suffix", type=str, help="suffix for rgb files", default="j2k"
)
parser.add_argument(
"--nan-placeholder",
type=int,
help="placeholder value for nans. use 0 for no placeholder",
default=65535,
)
parser.add_argument(
"--unit",
type=str,
help="unit of AGLS (m, cm) -- converted inputs are in cm, downsampled data is in m",
default="cm",
)
parser.add_argument(
"--convert-predictions-to-cm-and-compress",
type=bool,
help="Whether to process predictions by converting to cm and compressing",
default=True,
)
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
if args.train:
os.makedirs(args.checkpoint_dir, exist_ok=True)
train(args)
if args.test:
os.makedirs(args.predictions_dir, exist_ok=True)
test(args)