forked from matthewsamuel95/ACM-ICPC-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AhoCorasickStringMatching.cpp
195 lines (158 loc) · 4.92 KB
/
AhoCorasickStringMatching.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
// C++ program for implementation of Aho Corasick algorithm
// for string matching
using namespace std;
#include <bits/stdc++.h>
// Max number of states in the matching machine.
// Should be equal to the sum of the length of all keywords.
const int MAXS = 500;
// Maximum number of characters in input alphabet
const int MAXC = 26;
// OUTPUT FUNCTION IS IMPLEMENTED USING out[]
// Bit i in this mask is one if the word with index i
// appears when the machine enters this state.
int out[MAXS];
// FAILURE FUNCTION IS IMPLEMENTED USING f[]
int f[MAXS];
// GOTO FUNCTION (OR TRIE) IS IMPLEMENTED USING g[][]
int g[MAXS][MAXC];
// Builds the string matching machine.
// arr - array of words. The index of each keyword is important:
// "out[state] & (1 << i)" is > 0 if we just found word[i]
// in the text.
// Returns the number of states that the built machine has.
// States are numbered 0 up to the return value - 1, inclusive.
int buildMatchingMachine(string arr[], int k)
{
// Initialize all values in output function as 0.
memset(out, 0, sizeof out);
// Initialize all values in goto function as -1.
memset(g, -1, sizeof g);
// Initially, we just have the 0 state
int states = 1;
// Construct values for goto function, i.e., fill g[][]
// This is same as building a Trie for arr[]
for (int i = 0; i < k; ++i)
{
const string &word = arr[i];
int currentState = 0;
// Insert all characters of current word in arr[]
for (int j = 0; j < word.size(); ++j)
{
int ch = word[j] - 'a';
// Allocate a new node (create a new state) if a
// node for ch doesn't exist.
if (g[currentState][ch] == -1)
g[currentState][ch] = states++;
currentState = g[currentState][ch];
}
// Add current word in output function
out[currentState] |= (1 << i);
}
// For all characters which don't have an edge from
// root (or state 0) in Trie, add a goto edge to state
// 0 itself
for (int ch = 0; ch < MAXC; ++ch)
if (g[0][ch] == -1)
g[0][ch] = 0;
// Now, let's build the failure function
// Initialize values in fail function
memset(f, -1, sizeof f);
// Failure function is computed in breadth first order
// using a queue
queue<int> q;
// Iterate over every possible input
for (int ch = 0; ch < MAXC; ++ch)
{
// All nodes of depth 1 have failure function value
// as 0. For example, in above diagram we move to 0
// from states 1 and 3.
if (g[0][ch] != 0)
{
f[g[0][ch]] = 0;
q.push(g[0][ch]);
}
}
// Now queue has states 1 and 3
while (q.size())
{
// Remove the front state from queue
int state = q.front();
q.pop();
// For the removed state, find failure function for
// all those characters for which goto function is
// not defined.
for (int ch = 0; ch <= MAXC; ++ch)
{
// If goto function is defined for character 'ch'
// and 'state'
if (g[state][ch] != -1)
{
// Find failure state of removed state
int failure = f[state];
// Find the deepest node labeled by proper
// suffix of string from root to current
// state.
while (g[failure][ch] == -1)
failure = f[failure];
failure = g[failure][ch];
f[g[state][ch]] = failure;
// Merge output values
out[g[state][ch]] |= out[failure];
// Insert the next level node (of Trie) in Queue
q.push(g[state][ch]);
}
}
}
return states;
}
// Returns the next state the machine will transition to using goto
// and failure functions.
// currentState - The current state of the machine. Must be between
// 0 and the number of states - 1, inclusive.
// nextInput - The next character that enters into the machine.
int findNextState(int currentState, char nextInput)
{
int answer = currentState;
int ch = nextInput - 'a';
// If goto is not defined, use failure function
while (g[answer][ch] == -1)
answer = f[answer];
return g[answer][ch];
}
// This function finds all occurrences of all array words
// in text.
void searchWords(string arr[], int k, string text)
{
// Preprocess patterns.
// Build machine with goto, failure and output functions
buildMatchingMachine(arr, k);
// Initialize current state
int currentState = 0;
// Traverse the text through the nuilt machine to find
// all occurrences of words in arr[]
for (int i = 0; i < text.size(); ++i)
{
currentState = findNextState(currentState, text[i]);
// If match not found, move to next state
if (out[currentState] == 0)
continue;
// Match found, print all matching words of arr[]
// using output function.
for (int j = 0; j < k; ++j)
{
if (out[currentState] & (1 << j))
{
cout << "Word " << arr[j] << " appears from "
<< i - arr[j].size() + 1 << " to " << i << endl;
}
}
}
}
int main()
{
string arr[] = {"he", "she", "hers", "his"};
string text = "ahishers" ;
int k = sizeof(arr)/sizeof(arr[0]);
searchWords(arr, k, text);
return 0;
}