-
Notifications
You must be signed in to change notification settings - Fork 0
/
cw7.xml
372 lines (258 loc) · 6.72 KB
/
cw7.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
<?xml version="1.0" encoding="ISO-8859-1"?>
<pipeline>
<vertex>
<![CDATA[#version 400
uniform mat4 mvMatrix;
uniform mat4 pMatrix;
uniform mat3 normalMatrix; //mv matrix without translation
uniform vec4 lightPosition_camSpace; //light Position in camera space
in vec4 vertex_worldSpace;
in vec3 normal_worldSpace;
in vec2 textureCoordinate_input;
out data
{
vec4 position_camSpace;
vec3 normal_camSpace;
vec2 textureCoordinate;
vec4 color;
}vertexIn;
//Vertex shader compute the vectors per vertex
void main(void)
{
//Put the vertex in the correct coordinate system by applying the model view matrix
vec4 vertex_camSpace = mvMatrix*vertex_worldSpace;
vertexIn.position_camSpace = vertex_camSpace;
//Apply the model-view transformation to the normal (only rotation, no translation)
//Normals put in the camera space
vertexIn.normal_camSpace = normalize(normalMatrix*normal_worldSpace);
//Color chosen as red
vertexIn.color = vec4(1.0,0.0,0.0,1.0);
//Texture coordinate
vertexIn.textureCoordinate = textureCoordinate_input;
gl_Position = pMatrix * vertex_camSpace;
}
]]></vertex>
<geom>
<![CDATA[#version 400
layout(triangles) in;
layout(triangle_strip, max_vertices = 3) out;
uniform mat4 mvMatrix;
uniform mat4 pMatrix;
uniform mat3 normalMatrix; //mv matrix without translation
uniform vec4 lightPosition_camSpace; //light Position in camera space
in data
{
vec4 position_camSpace;
vec3 normal_camSpace;
vec2 textureCoordinate;
vec4 color;
}vertexIn[3];
out fragmentData
{
vec4 position_camSpace;
vec3 normal_camSpace;
vec2 textureCoordinate;
vec4 color;
} frag;
void main() {
for(int i = 0; i < 3; i++) { // You used triangles, so it's always 3
gl_Position = gl_in[i].gl_Position;
frag.position_camSpace = vertexIn[i].position_camSpace;
frag.normal_camSpace = vertexIn[i].normal_camSpace;
frag.textureCoordinate = vertexIn[i].textureCoordinate;
frag.color = vertexIn[i].color;
EmitVertex();
}
EndPrimitive();
}
]]></geom>
<frag>
<![CDATA[#version 400
uniform vec4 ambient;
uniform vec4 diffuse;
uniform vec4 specular;
uniform float shininess;
uniform vec4 lightPosition_camSpace; //light Position in camera space
in fragmentData
{
vec4 position_camSpace;
vec3 normal_camSpace;
vec2 textureCoordinate;
vec4 color;
} frag;
out vec4 fragColor;
//Fragment shader computes the final color
void main(void)
{
//Not used in that task
fragColor = frag.color;
}
]]></frag>
<R2TVert>
<![CDATA[#version 400
#extension GL_ARB_separate_shader_objects : enable
uniform mat4 mMatrix;
uniform mat4 mvMatrix;
in vec4 vertex_worldSpace;
in vec3 normal_worldSpace;
out vec3 dir;
void main ()
{
vec4 vertex_modelSpace = mMatrix*vertex_worldSpace;
dir = normalize ( vec3 ( vertex_modelSpace.x * 1.6, vertex_modelSpace.y , -1.0 ));
gl_Position = vertex_modelSpace;
}
]]></R2TVert>
<R2TFrag>
<![CDATA[#version 400
in vec3 dir;
out vec4 outcolour;
float FLT_MAX = 3.402823e38;
uniform mat4 mMatrix;
uniform mat4 mvMatrix;
uniform mat4 mvMatrixScene;
uniform mat4 pMatrix;
uniform mat3 normalMatrix; //mv matrix without translation
const int raytraceDepth = 42;
const int numSpheres = 6;
//example data structures
struct Ray
{
vec3 origin;
vec3 dir;
};
struct Sphere
{
vec3 centre;
float radius;
vec3 colour;
};
struct Plane
{
vec3 point;
vec3 normal;
vec3 colour;
};
struct Intersection
{
float t; //closest hit
vec3 point; // hit point
vec3 normal; // normal
int hit; //did it hit?
vec3 colour; // colour accumulation, can be also implemented in struct Ray
};
float mag(vec3 v){
return dot(v,v);
}
void sphere_intersect(Sphere sph, Ray ray, inout Intersection intersect)
{
float u1,u2,u;
vec3 deltaP = ray.origin - sph.centre;
float sqrtarg = pow(dot(ray.dir,deltaP),2)-mag(deltaP)+pow(sph.radius,2);
if (sqrtarg>=0){
u1 = -1*dot(ray.dir,deltaP) + pow(sqrtarg,0.5);
u2 = -1*dot(ray.dir,deltaP) - pow(sqrtarg,0.5);
u = (u1<u2) ? u1 : u2;
if (u>=0 && u<intersect.t){
intersect.point = u*ray.dir;
intersect.hit = 1;
intersect.normal = intersect.point - sph.centre;
intersect.colour = sph.colour;
intersect.t = u;
}
//TODO epsilon stuff
}
}
void plane_intersect(Plane pl, Ray ray, inout Intersection intersect)
{
float denom = dot(ray.dir,pl.normal);
if (denom > 1e-10){
float u = dot(ray.origin-pl.point,pl.normal)/denom;
if (u<intersect.t && u >=0){
intersect.hit = 1;
vec3 p = u*ray.dir;
intersect.point = p;
vec3 col = pl.colour;
if (bool((int(p.x)+int(p.y)+int(p.z))%2)){
col = -pl.colour;
}
intersect.colour = col;
intersect.normal = pl.normal;
intersect.t = u;
}
}
}
Sphere sphere[numSpheres];
Plane plane;
void Intersect(Ray r, inout Intersection i)
{
// For each object in the scene, do intersect function
plane_intersect(plane, r, i);
for (int j=0;j<numSpheres;j++){
sphere_intersect(sphere[j],r,i);
}
}
int seed = 0;
float rnd()
{
seed = int(mod(float(seed)*1364.0+626.0, 509.0));
return float(seed)/509.0;
}
vec3 computeShadow(in Intersection intersect)
{
//TODO implement shadow computation
return vec3(0,0,0);
}
void main()
{
//please leave the scene config unaltered for marking
sphere[0].centre = vec3(-2.0, 1.5, -3.5);
sphere[0].radius = 1.5;
sphere[0].colour = vec3(0.8,0.8,0.8);
sphere[1].centre = vec3(-0.5, 0.0, -2.0);
sphere[1].radius = 0.6;
sphere[1].colour = vec3(0.3,0.8,0.3);
sphere[2].centre = vec3(1.0, 0.7, -2.2);
sphere[2].radius = 0.8;
sphere[2].colour = vec3(0.3,0.8,0.8);
sphere[3].centre = vec3(0.7, -0.3, -1.2);
sphere[3].radius = 0.2;
sphere[3].colour = vec3(0.8,0.8,0.3);
sphere[4].centre = vec3(-0.7, -0.3, -1.2);
sphere[4].radius = 0.2;
sphere[4].colour = vec3(0.8,0.3,0.3);
sphere[5].centre = vec3(0.2, -0.2, -1.2);
sphere[5].radius = 0.3;
sphere[5].colour = vec3(0.8,0.3,0.8);
plane.point = vec3(0,-0.5, 0);
plane.normal = vec3(0, 1.0, 0);
plane.colour = vec3(1, 1, 1);
seed = int(mod(dir.x * dir.y * 39786038.0, 65536.0));
//scene definition end
// float epsilon = 1e-10;
vec4 colour = vec4(0,0,0,1);
//TODO implement ray tracing main loop here
float decay = 0.5;
float epsilon = 1e-6;
Ray ray;
ray.origin = (mvMatrixScene*vec4(0,0,0,1)).xyz;// vec3(0,0,0);//(mvMatrix*vec4(0,0,0,1)).xyz;
ray.dir = -normalize((mvMatrixScene*vec4(dir,0)).xyz);
for(int depth = 0; depth < 6;depth++){
Intersection i;
i.t = FLT_MAX;
i.colour = vec3(0,0,0);
Intersect(ray,i);
if (i.hit != 0) {
colour += pow(decay,depth)*vec4(i.colour,0);
// computeShadow(intersection) {extension}
ray.origin = i.point;
ray.origin += epsilon * i.normal;
ray.dir = normalize(reflect(ray.dir,i.normal));
} else {
break;
}
}
outcolour = colour;
}
]]></R2TFrag>
</pipeline>