-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
340 lines (277 loc) · 13.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
'''Train FiLM-Ensmeble for CIFAR10/Cifar100/ with PyTorch.'''
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import torch.backends.cudnn as cudnn
from loguru import logger
import os
import argparse
import random
import time
from models.vgg_film import vgg_cbn
from models.resnet_film import ResNet18_FILM, ResNet34_FILM
from utils_uncertainty import _ECELoss, function_space_analysis
def seed_everything(seed: int):
"""From https://pytorch-lightning.readthedocs.io/en/latest/_modules/pytorch_lightning/utilities/seed.html#seed_everything"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
print('seeding everything w/ seed', seed)
parser = argparse.ArgumentParser(description='FilM-Ensmeble CIFAR10/CIFAR100 Training')
parser.add_argument('--dataset', default='Cifar10', type=str, help='Cifar10/Cifar100')
parser.add_argument('--datadir', default='./data', type=str, help='dataset directory')
parser.add_argument('--ensemble', '-e', default=2, type=int, help='number of ensemble members')
parser.add_argument('--cbn', '-c', default='v1', type=str, help='CBN version: v2, v3')
parser.add_argument('--batch-mode', '-b', default='default', type=str, help='batching version: divide, default')
parser.add_argument('--is-cbn-trainable', default=True, type=bool, help='is_film gammas/betas are trainable trainable')
parser.add_argument('--use-consensus-pooling', default=False, type=bool, help='consensus pooling or mean for the final prediction')
parser.add_argument('--net-type', default='vit', type=str, help='net type: VGG11, VGG13, VGG16, VGG19, Resnet18, Resnet34')
parser.add_argument('--cln_gain', default=5.0, type=float, help='film initilization gain factor')
parser.add_argument('--cbn_gain', default=1.0, type=float, help='film initilization gain factor')
parser.add_argument('--init-type', default='xavier', type=str, help='film initilization type: xavier, bernoulli')
parser.add_argument('--drop-rate', default=0.0, type=float, help='Dropout rate')
parser.add_argument('--max-epoch', default=400, type=int, help='number of epochs to train')
parser.add_argument('--optim-config', default='C', type=str, help='optimizer configuration: A, B, C')
parser.add_argument('--lr', default=1e-4, type=float, help='learning rate')
parser.add_argument('--grad-clip', default=5, type=float, help='max gradient value allowed')
parser.add_argument('--eval', action='store_true', help='mode: eval or train')
parser.add_argument('--measure-time', action='store_true', help='measure inference time')
parser.add_argument('--resume', '-r', default=None, type=str, help='resume from checkpoint')
parser.add_argument('--save-model', default=True, type=bool, help='where the trained model is saved')
parser.add_argument('--save-dir', '-s', type=str, help='resume from checkpoint', default='./checkpoint/')
parser.add_argument('--seed', default=0, type=int, help='seed')
parser.add_argument('--wandb', default=False, action='store_true', help='use wandb')
parser.add_argument('--aug', default=True, action='store_true', help='use randomaug')
parser.add_argument('--num_heads', default = 8, type=int, help = 'number of heads in Transformer')
args = parser.parse_args()
print(args)
seed_everything(args.seed)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
num_ensembles = args.ensemble
watermark = "AffineFIX2_head{}_{}_lr{}_ens{}_gain{}_clip{}".format(args.num_heads, args.net_type, args.lr, args.ensemble, args.cln_gain, args.grad_clip)
if args.wandb:
import wandb
wandb.init(project='film', dir=args.save_dir, name=watermark)
wandb.config.update(vars(args))
#-----------------------Data transforms -------------------------------------
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),])
# Add RandAugment with N, M(hyperparameter)
if args.aug:
from randomaug import RandAugment
N = 2; M = 14;
transform_train.transforms.insert(0, RandAugment(N, M))
#-------------------------------Datasets----------------------------
if args.dataset=='Cifar10':
trainset = torchvision.datasets.CIFAR10(root=args.datadir, train=True, download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR10(root=args.datadir, train=False, download=True, transform=transform_test)
num_classes = 10
elif args.dataset=='Cifar100':
trainset = torchvision.datasets.CIFAR100(root=args.datadir, train=True, download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR100(root=args.datadir, train=False, download=True, transform=transform_test)
num_classes = 100
#----------------------------Dataloaders---------------------------
if args.batch_mode == 'divide':
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128//num_ensembles, shuffle=True, num_workers=8)
else:
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=8)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=8)
#---------------------------------Model---------------------------
print('==> Building model..')
if args.net_type in ['VGG11', 'VGG13', 'VGG16', 'VGG19']:
cfg = {
'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512,
'M'],
}
net = vgg_cbn(cfg=cfg[args.net_type], pretrained=False, task_count=num_ensembles,
is_cbn_trainable=args.is_cbn_trainable, cbn_gain=args.cbn_gain,
drop_rate=args.drop_rate,
cbn_version=args.cbn, num_classes=num_classes, init_type=args.init_type)
elif args.net_type == 'Resnet18':
net = ResNet18_FILM(task_count=num_ensembles, cbn_gain=args.cbn_gain, is_cbn_trainable=args.is_cbn_trainable,
num_classes=num_classes)
elif args.net_type == 'Resnet34':
net = ResNet34_FILM(task_count=num_ensembles, cbn_gain=args.cbn_gain, is_cbn_trainable=args.is_cbn_trainable,
num_classes=num_classes
)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
net.to(device)
print(net)
model_parameters = filter(lambda p: p.requires_grad, net.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print('Number of model parameters: ', params)
if args.wandb:
wandb.config.update({"number_params": params})
if args.eval and args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isfile(args.resume), 'Error: no checkpoint file found!'
checkpoint = torch.load(args.resume)
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
# loss
criterion = nn.CrossEntropyLoss()
nll_loss = nn.NLLLoss()
# Optimizer and lr scheduler
if args.optim_config == 'A':
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=0.9, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.max_epoch)
elif args.optim_config == 'B':
# This is optimizer and scheduler configuration in WideResnet paper
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=0.9, weight_decay=5e-4, nesterov=True)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=60, gamma=0.2)
elif args.optim_config == 'C':
optimizer = optim.Adam(net.parameters(), lr=args.lr,
betas=(0.9, 0.999), weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.max_epoch)
print(optimizer)
print(scheduler)
# Ensemble mode changer
def change_cbn_mode(m):
if hasattr(m, 'cbn_is_training'):
m.set_cbn_mode(cbn_training_mode)
# Uncertanity criteria
if device == 'cuda':
ece_criterion = _ECELoss().cuda()
else:
ece_criterion = _ECELoss()
# Subnetwork independency analysis
indAnaysisF = function_space_analysis()
# Training
def train(net, epoch):
print('\nEpoch: %d' % epoch)
net.train()
# Set the CBN mode
global cbn_training_mode
cbn_training_mode = True
net = net.apply(change_cbn_mode)
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
B = inputs.shape[0]
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
outputs = outputs.view(B * num_ensembles, -1) # (B, M, 10) -> (B * M, 10)
# repeat targets so that ensemble members are trained concurrently
targets = targets.repeat_interleave(num_ensembles)
loss = criterion(outputs, targets)
loss.backward()
# Apply gradient clipping
if args.grad_clip > 0:
torch.nn.utils.clip_grad_norm_(net.parameters(), args.grad_clip)
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
# progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
# % (train_loss / (batch_idx + 1), 100. * correct / total, correct, total))
if args.wandb:
wandb.log({'loss/train': train_loss / (batch_idx + 1), 'acc/train': 100. * correct / total}, epoch)
return net
# Testing
def test(net, loader, epoch, num_used_members, measure_batch_time=False):
print(str('Number of used members for perdiction: ' + str(num_used_members) ) )
global best_acc
net.eval()
# Set the CBN mode
global cbn_training_mode
cbn_training_mode = False
net = net.apply(change_cbn_mode)
test_loss = 0
correct = 0
total = 0
outputs_all = list()
outputs_all_mean = list()
targets_all = list()
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(loader):
inputs, targets = inputs.to(device), targets.to(device)
if measure_batch_time:
start_time = time.time()
outputs = net(inputs).view(inputs.shape[0], num_used_members, -1)
# average ensemble members softmax output
output_probs_mean = torch.softmax(outputs, 2).mean(1) # shape [B, 10]
if measure_batch_time:
end_time = time.time()
print('Inference time: {:.4f}'.format(end_time - start_time))
loss = nll_loss(torch.log(output_probs_mean), targets)
outputs_all.append(outputs)
outputs_all_mean.append(outputs.mean(1))
targets_all.append(targets)
test_loss += loss.item()
_, predicted = output_probs_mean.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
outputs_all_mean = torch.cat(outputs_all_mean)
outputs_all = torch.cat(outputs_all)
targets_all = torch.cat(targets_all)
# Calibration performances
ece, accs, confs = ece_criterion(outputs_all_mean, targets_all)
print('Epoch:%.1f Val: Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (epoch, test_loss / (batch_idx + 1), 100. * correct / total, correct, total))
print('ECE: {:.4f}'.format(ece.item()))
metrics = {
'loss/test': test_loss / (batch_idx + 1),
'acc/test': 100. * correct / total,
'ECE/test': ece.item(),
'best_acc/test': best_acc
}
if args.save_model:
# Save checkpoint.
acc = 100. * correct / total
if acc > best_acc:
logger.info('Saving the model here: ', args.save_dir)
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir(args.save_dir):
os.mkdir(args.save_dir)
torch.save(state, os.path.join(args.save_dir, 'ckpt_bestVal_Film-Enformer_seed{}_'.format(args.seed)+watermark+'.pth'))
best_acc = acc
elif epoch == args.max_epoch-1:
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
torch.save(state,
os.path.join(args.save_dir, 'ckpt_Film-Enformer_seed{}'.format(args.seed)+watermark+'.pth'))
if args.wandb:
wandb.log(metrics, epoch)
return outputs_all_mean, targets_all
# -------------MAIN---------------
if args.measure_time:
test(net=net, loader=testloader, epoch=0, num_used_members=args.ensemble, measure_batch_time=True)
elif args.eval:
test(net=net, loader=testloader, epoch=0, num_used_members=args.ensemble)
else:
for epoch in range(start_epoch, start_epoch + args.max_epoch):
net = train(net, epoch)
scheduler.step()
test(net, testloader, epoch, num_used_members=args.ensemble)