From bc7a1145b59255a7f7566a27a63e352517a8f9df Mon Sep 17 00:00:00 2001
From: tdurieux
Date: Tue, 7 Mar 2017 13:17:08 +0100
Subject: [PATCH] buggy files form Math #54
---
.../54/org/apache/commons/math/dfp/Dfp.java | 2400 +++++++++++++++++
1 file changed, 2400 insertions(+)
create mode 100644 projects/Math/54/org/apache/commons/math/dfp/Dfp.java
diff --git a/projects/Math/54/org/apache/commons/math/dfp/Dfp.java b/projects/Math/54/org/apache/commons/math/dfp/Dfp.java
new file mode 100644
index 0000000..73f1ea3
--- /dev/null
+++ b/projects/Math/54/org/apache/commons/math/dfp/Dfp.java
@@ -0,0 +1,2400 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math.dfp;
+
+import java.util.Arrays;
+
+import org.apache.commons.math.FieldElement;
+
+/**
+ * Decimal floating point library for Java
+ *
+ * Another floating point class. This one is built using radix 10000
+ * which is 104, so its almost decimal.
+ *
+ * The design goals here are:
+ *
+ * - Decimal math, or close to it
+ * - Settable precision (but no mix between numbers using different settings)
+ * - Portability. Code should be keep as portable as possible.
+ * - Performance
+ * - Accuracy - Results should always be +/- 1 ULP for basic
+ * algebraic operation
+ * - Comply with IEEE 854-1987 as much as possible.
+ * (See IEEE 854-1987 notes below)
+ *
+ *
+ * Trade offs:
+ *
+ * - Memory foot print. I'm using more memory than necessary to
+ * represent numbers to get better performance.
+ * - Digits are bigger, so rounding is a greater loss. So, if you
+ * really need 12 decimal digits, better use 4 base 10000 digits
+ * there can be one partially filled.
+ *
+ *
+ * Numbers are represented in the following form:
+ *
+ * n = sign × mant × (radix)exp;
+ *
+ * where sign is ±1, mantissa represents a fractional number between
+ * zero and one. mant[0] is the least significant digit.
+ * exp is in the range of -32767 to 32768
+ *
+ * IEEE 854-1987 Notes and differences
+ *
+ * IEEE 854 requires the radix to be either 2 or 10. The radix here is
+ * 10000, so that requirement is not met, but it is possible that a
+ * subclassed can be made to make it behave as a radix 10
+ * number. It is my opinion that if it looks and behaves as a radix
+ * 10 number then it is one and that requirement would be met.
+ *
+ * The radix of 10000 was chosen because it should be faster to operate
+ * on 4 decimal digits at once instead of one at a time. Radix 10 behavior
+ * can be realized by add an additional rounding step to ensure that
+ * the number of decimal digits represented is constant.
+ *
+ * The IEEE standard specifically leaves out internal data encoding,
+ * so it is reasonable to conclude that such a subclass of this radix
+ * 10000 system is merely an encoding of a radix 10 system.
+ *
+ * IEEE 854 also specifies the existence of "sub-normal" numbers. This
+ * class does not contain any such entities. The most significant radix
+ * 10000 digit is always non-zero. Instead, we support "gradual underflow"
+ * by raising the underflow flag for numbers less with exponent less than
+ * expMin, but don't flush to zero until the exponent reaches MIN_EXP-digits.
+ * Thus the smallest number we can represent would be:
+ * 1E(-(MIN_EXP-digits-1)*4), eg, for digits=5, MIN_EXP=-32767, that would
+ * be 1e-131092.
+ *
+ * IEEE 854 defines that the implied radix point lies just to the right
+ * of the most significant digit and to the left of the remaining digits.
+ * This implementation puts the implied radix point to the left of all
+ * digits including the most significant one. The most significant digit
+ * here is the one just to the right of the radix point. This is a fine
+ * detail and is really only a matter of definition. Any side effects of
+ * this can be rendered invisible by a subclass.
+ * @see DfpField
+ * @version $Revision$ $Date$
+ * @since 2.2
+ */
+public class Dfp implements FieldElement {
+
+ /** The radix, or base of this system. Set to 10000 */
+ public static final int RADIX = 10000;
+
+ /** The minimum exponent before underflow is signaled. Flush to zero
+ * occurs at minExp-DIGITS */
+ public static final int MIN_EXP = -32767;
+
+ /** The maximum exponent before overflow is signaled and results flushed
+ * to infinity */
+ public static final int MAX_EXP = 32768;
+
+ /** The amount under/overflows are scaled by before going to trap handler */
+ public static final int ERR_SCALE = 32760;
+
+ /** Indicator value for normal finite numbers. */
+ public static final byte FINITE = 0;
+
+ /** Indicator value for Infinity. */
+ public static final byte INFINITE = 1;
+
+ /** Indicator value for signaling NaN. */
+ public static final byte SNAN = 2;
+
+ /** Indicator value for quiet NaN. */
+ public static final byte QNAN = 3;
+
+ /** String for NaN representation. */
+ private static final String NAN_STRING = "NaN";
+
+ /** String for positive infinity representation. */
+ private static final String POS_INFINITY_STRING = "Infinity";
+
+ /** String for negative infinity representation. */
+ private static final String NEG_INFINITY_STRING = "-Infinity";
+
+ /** Name for traps triggered by addition. */
+ private static final String ADD_TRAP = "add";
+
+ /** Name for traps triggered by multiplication. */
+ private static final String MULTIPLY_TRAP = "multiply";
+
+ /** Name for traps triggered by division. */
+ private static final String DIVIDE_TRAP = "divide";
+
+ /** Name for traps triggered by square root. */
+ private static final String SQRT_TRAP = "sqrt";
+
+ /** Name for traps triggered by alignment. */
+ private static final String ALIGN_TRAP = "align";
+
+ /** Name for traps triggered by truncation. */
+ private static final String TRUNC_TRAP = "trunc";
+
+ /** Name for traps triggered by nextAfter. */
+ private static final String NEXT_AFTER_TRAP = "nextAfter";
+
+ /** Name for traps triggered by lessThan. */
+ private static final String LESS_THAN_TRAP = "lessThan";
+
+ /** Name for traps triggered by greaterThan. */
+ private static final String GREATER_THAN_TRAP = "greaterThan";
+
+ /** Name for traps triggered by newInstance. */
+ private static final String NEW_INSTANCE_TRAP = "newInstance";
+
+ /** Mantissa. */
+ protected int[] mant;
+
+ /** Sign bit: 1 for positive, -1 for negative. */
+ protected byte sign;
+
+ /** Exponent. */
+ protected int exp;
+
+ /** Indicator for non-finite / non-number values. */
+ protected byte nans;
+
+ /** Factory building similar Dfp's. */
+ private final DfpField field;
+
+ /** Makes an instance with a value of zero.
+ * @param field field to which this instance belongs
+ */
+ protected Dfp(final DfpField field) {
+ mant = new int[field.getRadixDigits()];
+ sign = 1;
+ exp = 0;
+ nans = FINITE;
+ this.field = field;
+ }
+
+ /** Create an instance from a byte value.
+ * @param field field to which this instance belongs
+ * @param x value to convert to an instance
+ */
+ protected Dfp(final DfpField field, byte x) {
+ this(field, (long) x);
+ }
+
+ /** Create an instance from an int value.
+ * @param field field to which this instance belongs
+ * @param x value to convert to an instance
+ */
+ protected Dfp(final DfpField field, int x) {
+ this(field, (long) x);
+ }
+
+ /** Create an instance from a long value.
+ * @param field field to which this instance belongs
+ * @param x value to convert to an instance
+ */
+ protected Dfp(final DfpField field, long x) {
+
+ // initialize as if 0
+ mant = new int[field.getRadixDigits()];
+ nans = FINITE;
+ this.field = field;
+
+ boolean isLongMin = false;
+ if (x == Long.MIN_VALUE) {
+ // special case for Long.MIN_VALUE (-9223372036854775808)
+ // we must shift it before taking its absolute value
+ isLongMin = true;
+ ++x;
+ }
+
+ // set the sign
+ if (x < 0) {
+ sign = -1;
+ x = -x;
+ } else {
+ sign = 1;
+ }
+
+ exp = 0;
+ while (x != 0) {
+ System.arraycopy(mant, mant.length - exp, mant, mant.length - 1 - exp, exp);
+ mant[mant.length - 1] = (int) (x % RADIX);
+ x /= RADIX;
+ exp++;
+ }
+
+ if (isLongMin) {
+ // remove the shift added for Long.MIN_VALUE
+ // we know in this case that fixing the last digit is sufficient
+ for (int i = 0; i < mant.length - 1; i++) {
+ if (mant[i] != 0) {
+ mant[i]++;
+ break;
+ }
+ }
+ }
+ }
+
+ /** Create an instance from a double value.
+ * @param field field to which this instance belongs
+ * @param x value to convert to an instance
+ */
+ protected Dfp(final DfpField field, double x) {
+
+ // initialize as if 0
+ mant = new int[field.getRadixDigits()];
+ sign = 1;
+ exp = 0;
+ nans = FINITE;
+ this.field = field;
+
+ long bits = Double.doubleToLongBits(x);
+ long mantissa = bits & 0x000fffffffffffffL;
+ int exponent = (int) ((bits & 0x7ff0000000000000L) >> 52) - 1023;
+
+ if (exponent == -1023) {
+ // Zero or sub-normal
+ if (x == 0) {
+ // make sure 0 has the right sign
+ return;
+ }
+
+ exponent++;
+
+ // Normalize the subnormal number
+ while ( (mantissa & 0x0010000000000000L) == 0) {
+ exponent--;
+ mantissa <<= 1;
+ }
+ mantissa &= 0x000fffffffffffffL;
+ }
+
+ if (exponent == 1024) {
+ // infinity or NAN
+ if (x != x) {
+ sign = (byte) 1;
+ nans = QNAN;
+ } else if (x < 0) {
+ sign = (byte) -1;
+ nans = INFINITE;
+ } else {
+ sign = (byte) 1;
+ nans = INFINITE;
+ }
+ return;
+ }
+
+ Dfp xdfp = new Dfp(field, mantissa);
+ xdfp = xdfp.divide(new Dfp(field, 4503599627370496l)).add(field.getOne()); // Divide by 2^52, then add one
+ xdfp = xdfp.multiply(DfpMath.pow(field.getTwo(), exponent));
+
+ if ((bits & 0x8000000000000000L) != 0) {
+ xdfp = xdfp.negate();
+ }
+
+ System.arraycopy(xdfp.mant, 0, mant, 0, mant.length);
+ sign = xdfp.sign;
+ exp = xdfp.exp;
+ nans = xdfp.nans;
+
+ }
+
+ /** Copy constructor.
+ * @param d instance to copy
+ */
+ public Dfp(final Dfp d) {
+ mant = d.mant.clone();
+ sign = d.sign;
+ exp = d.exp;
+ nans = d.nans;
+ field = d.field;
+ }
+
+ /** Create an instance from a String representation.
+ * @param field field to which this instance belongs
+ * @param s string representation of the instance
+ */
+ protected Dfp(final DfpField field, final String s) {
+
+ // initialize as if 0
+ mant = new int[field.getRadixDigits()];
+ sign = 1;
+ exp = 0;
+ nans = FINITE;
+ this.field = field;
+
+ boolean decimalFound = false;
+ final int rsize = 4; // size of radix in decimal digits
+ final int offset = 4; // Starting offset into Striped
+ final char[] striped = new char[getRadixDigits() * rsize + offset * 2];
+
+ // Check some special cases
+ if (s.equals(POS_INFINITY_STRING)) {
+ sign = (byte) 1;
+ nans = INFINITE;
+ return;
+ }
+
+ if (s.equals(NEG_INFINITY_STRING)) {
+ sign = (byte) -1;
+ nans = INFINITE;
+ return;
+ }
+
+ if (s.equals(NAN_STRING)) {
+ sign = (byte) 1;
+ nans = QNAN;
+ return;
+ }
+
+ // Check for scientific notation
+ int p = s.indexOf("e");
+ if (p == -1) { // try upper case?
+ p = s.indexOf("E");
+ }
+
+ final String fpdecimal;
+ int sciexp = 0;
+ if (p != -1) {
+ // scientific notation
+ fpdecimal = s.substring(0, p);
+ String fpexp = s.substring(p+1);
+ boolean negative = false;
+
+ for (int i=0; i= '0' && fpexp.charAt(i) <= '9')
+ sciexp = sciexp * 10 + fpexp.charAt(i) - '0';
+ }
+
+ if (negative) {
+ sciexp = -sciexp;
+ }
+ } else {
+ // normal case
+ fpdecimal = s;
+ }
+
+ // If there is a minus sign in the number then it is negative
+ if (fpdecimal.indexOf("-") != -1) {
+ sign = -1;
+ }
+
+ // First off, find all of the leading zeros, trailing zeros, and significant digits
+ p = 0;
+
+ // Move p to first significant digit
+ int decimalPos = 0;
+ for (;;) {
+ if (fpdecimal.charAt(p) >= '1' && fpdecimal.charAt(p) <= '9') {
+ break;
+ }
+
+ if (decimalFound && fpdecimal.charAt(p) == '0') {
+ decimalPos--;
+ }
+
+ if (fpdecimal.charAt(p) == '.') {
+ decimalFound = true;
+ }
+
+ p++;
+
+ if (p == fpdecimal.length()) {
+ break;
+ }
+ }
+
+ // Copy the string onto Stripped
+ int q = offset;
+ striped[0] = '0';
+ striped[1] = '0';
+ striped[2] = '0';
+ striped[3] = '0';
+ int significantDigits=0;
+ for(;;) {
+ if (p == (fpdecimal.length())) {
+ break;
+ }
+
+ // Don't want to run pass the end of the array
+ if (q == mant.length*rsize+offset+1) {
+ break;
+ }
+
+ if (fpdecimal.charAt(p) == '.') {
+ decimalFound = true;
+ decimalPos = significantDigits;
+ p++;
+ continue;
+ }
+
+ if (fpdecimal.charAt(p) < '0' || fpdecimal.charAt(p) > '9') {
+ p++;
+ continue;
+ }
+
+ striped[q] = fpdecimal.charAt(p);
+ q++;
+ p++;
+ significantDigits++;
+ }
+
+
+ // If the decimal point has been found then get rid of trailing zeros.
+ if (decimalFound && q != offset) {
+ for (;;) {
+ q--;
+ if (q == offset) {
+ break;
+ }
+ if (striped[q] == '0') {
+ significantDigits--;
+ } else {
+ break;
+ }
+ }
+ }
+
+ // special case of numbers like "0.00000"
+ if (decimalFound && significantDigits == 0) {
+ decimalPos = 0;
+ }
+
+ // Implicit decimal point at end of number if not present
+ if (!decimalFound) {
+ decimalPos = q-offset;
+ }
+
+ // Find the number of significant trailing zeros
+ q = offset; // set q to point to first sig digit
+ p = significantDigits-1+offset;
+
+ int trailingZeros = 0;
+ while (p > q) {
+ if (striped[p] != '0') {
+ break;
+ }
+ trailingZeros++;
+ p--;
+ }
+
+ // Make sure the decimal is on a mod 10000 boundary
+ int i = ((rsize * 100) - decimalPos - sciexp % rsize) % rsize;
+ q -= i;
+ decimalPos += i;
+
+ // Make the mantissa length right by adding zeros at the end if necessary
+ while ((p - q) < (mant.length * rsize)) {
+ for (i = 0; i < rsize; i++) {
+ striped[++p] = '0';
+ }
+ }
+
+ // Ok, now we know how many trailing zeros there are,
+ // and where the least significant digit is
+ for (i = mant.length - 1; i >= 0; i--) {
+ mant[i] = (striped[q] - '0') * 1000 +
+ (striped[q+1] - '0') * 100 +
+ (striped[q+2] - '0') * 10 +
+ (striped[q+3] - '0');
+ q += 4;
+ }
+
+
+ exp = (decimalPos+sciexp) / rsize;
+
+ if (q < striped.length) {
+ // Is there possible another digit?
+ round((striped[q] - '0')*1000);
+ }
+
+ }
+
+ /** Creates an instance with a non-finite value.
+ * @param field field to which this instance belongs
+ * @param sign sign of the Dfp to create
+ * @param nans code of the value, must be one of {@link #INFINITE},
+ * {@link #SNAN}, {@link #QNAN}
+ */
+ protected Dfp(final DfpField field, final byte sign, final byte nans) {
+ this.field = field;
+ this.mant = new int[field.getRadixDigits()];
+ this.sign = sign;
+ this.exp = 0;
+ this.nans = nans;
+ }
+
+ /** Create an instance with a value of 0.
+ * Use this internally in preference to constructors to facilitate subclasses
+ * @return a new instance with a value of 0
+ */
+ public Dfp newInstance() {
+ return new Dfp(getField());
+ }
+
+ /** Create an instance from a byte value.
+ * @param x value to convert to an instance
+ * @return a new instance with value x
+ */
+ public Dfp newInstance(final byte x) {
+ return new Dfp(getField(), x);
+ }
+
+ /** Create an instance from an int value.
+ * @param x value to convert to an instance
+ * @return a new instance with value x
+ */
+ public Dfp newInstance(final int x) {
+ return new Dfp(getField(), x);
+ }
+
+ /** Create an instance from a long value.
+ * @param x value to convert to an instance
+ * @return a new instance with value x
+ */
+ public Dfp newInstance(final long x) {
+ return new Dfp(getField(), x);
+ }
+
+ /** Create an instance from a double value.
+ * @param x value to convert to an instance
+ * @return a new instance with value x
+ */
+ public Dfp newInstance(final double x) {
+ return new Dfp(getField(), x);
+ }
+
+ /** Create an instance by copying an existing one.
+ * Use this internally in preference to constructors to facilitate subclasses.
+ * @param d instance to copy
+ * @return a new instance with the same value as d
+ */
+ public Dfp newInstance(final Dfp d) {
+
+ // make sure we don't mix number with different precision
+ if (field.getRadixDigits() != d.field.getRadixDigits()) {
+ field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
+ final Dfp result = newInstance(getZero());
+ result.nans = QNAN;
+ return dotrap(DfpField.FLAG_INVALID, NEW_INSTANCE_TRAP, d, result);
+ }
+
+ return new Dfp(d);
+
+ }
+
+ /** Create an instance from a String representation.
+ * Use this internally in preference to constructors to facilitate subclasses.
+ * @param s string representation of the instance
+ * @return a new instance parsed from specified string
+ */
+ public Dfp newInstance(final String s) {
+ return new Dfp(field, s);
+ }
+
+ /** Creates an instance with a non-finite value.
+ * @param sig sign of the Dfp to create
+ * @param code code of the value, must be one of {@link #INFINITE},
+ * {@link #SNAN}, {@link #QNAN}
+ * @return a new instance with a non-finite value
+ */
+ public Dfp newInstance(final byte sig, final byte code) {
+ return field.newDfp(sig, code);
+ }
+
+ /** Get the {@link org.apache.commons.math.Field Field} (really a {@link DfpField}) to which the instance belongs.
+ *
+ * The field is linked to the number of digits and acts as a factory
+ * for {@link Dfp} instances.
+ *
+ * @return {@link org.apache.commons.math.Field Field} (really a {@link DfpField}) to which the instance belongs
+ */
+ public DfpField getField() {
+ return field;
+ }
+
+ /** Get the number of radix digits of the instance.
+ * @return number of radix digits
+ */
+ public int getRadixDigits() {
+ return field.getRadixDigits();
+ }
+
+ /** Get the constant 0.
+ * @return a Dfp with value zero
+ */
+ public Dfp getZero() {
+ return field.getZero();
+ }
+
+ /** Get the constant 1.
+ * @return a Dfp with value one
+ */
+ public Dfp getOne() {
+ return field.getOne();
+ }
+
+ /** Get the constant 2.
+ * @return a Dfp with value two
+ */
+ public Dfp getTwo() {
+ return field.getTwo();
+ }
+
+ /** Shift the mantissa left, and adjust the exponent to compensate.
+ */
+ protected void shiftLeft() {
+ for (int i = mant.length - 1; i > 0; i--) {
+ mant[i] = mant[i-1];
+ }
+ mant[0] = 0;
+ exp--;
+ }
+
+ /* Note that shiftRight() does not call round() as that round() itself
+ uses shiftRight() */
+ /** Shift the mantissa right, and adjust the exponent to compensate.
+ */
+ protected void shiftRight() {
+ for (int i = 0; i < mant.length - 1; i++) {
+ mant[i] = mant[i+1];
+ }
+ mant[mant.length - 1] = 0;
+ exp++;
+ }
+
+ /** Make our exp equal to the supplied one, this may cause rounding.
+ * Also causes de-normalized numbers. These numbers are generally
+ * dangerous because most routines assume normalized numbers.
+ * Align doesn't round, so it will return the last digit destroyed
+ * by shifting right.
+ * @param e desired exponent
+ * @return last digit destroyed by shifting right
+ */
+ protected int align(int e) {
+ int lostdigit = 0;
+ boolean inexact = false;
+
+ int diff = exp - e;
+
+ int adiff = diff;
+ if (adiff < 0) {
+ adiff = -adiff;
+ }
+
+ if (diff == 0) {
+ return 0;
+ }
+
+ if (adiff > (mant.length + 1)) {
+ // Special case
+ Arrays.fill(mant, 0);
+ exp = e;
+
+ field.setIEEEFlagsBits(DfpField.FLAG_INEXACT);
+ dotrap(DfpField.FLAG_INEXACT, ALIGN_TRAP, this, this);
+
+ return 0;
+ }
+
+ for (int i = 0; i < adiff; i++) {
+ if (diff < 0) {
+ /* Keep track of loss -- only signal inexact after losing 2 digits.
+ * the first lost digit is returned to add() and may be incorporated
+ * into the result.
+ */
+ if (lostdigit != 0) {
+ inexact = true;
+ }
+
+ lostdigit = mant[0];
+
+ shiftRight();
+ } else {
+ shiftLeft();
+ }
+ }
+
+ if (inexact) {
+ field.setIEEEFlagsBits(DfpField.FLAG_INEXACT);
+ dotrap(DfpField.FLAG_INEXACT, ALIGN_TRAP, this, this);
+ }
+
+ return lostdigit;
+
+ }
+
+ /** Check if instance is less than x.
+ * @param x number to check instance against
+ * @return true if instance is less than x and neither are NaN, false otherwise
+ */
+ public boolean lessThan(final Dfp x) {
+
+ // make sure we don't mix number with different precision
+ if (field.getRadixDigits() != x.field.getRadixDigits()) {
+ field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
+ final Dfp result = newInstance(getZero());
+ result.nans = QNAN;
+ dotrap(DfpField.FLAG_INVALID, LESS_THAN_TRAP, x, result);
+ return false;
+ }
+
+ /* if a nan is involved, signal invalid and return false */
+ if (isNaN() || x.isNaN()) {
+ field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
+ dotrap(DfpField.FLAG_INVALID, LESS_THAN_TRAP, x, newInstance(getZero()));
+ return false;
+ }
+
+ return compare(this, x) < 0;
+ }
+
+ /** Check if instance is greater than x.
+ * @param x number to check instance against
+ * @return true if instance is greater than x and neither are NaN, false otherwise
+ */
+ public boolean greaterThan(final Dfp x) {
+
+ // make sure we don't mix number with different precision
+ if (field.getRadixDigits() != x.field.getRadixDigits()) {
+ field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
+ final Dfp result = newInstance(getZero());
+ result.nans = QNAN;
+ dotrap(DfpField.FLAG_INVALID, GREATER_THAN_TRAP, x, result);
+ return false;
+ }
+
+ /* if a nan is involved, signal invalid and return false */
+ if (isNaN() || x.isNaN()) {
+ field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
+ dotrap(DfpField.FLAG_INVALID, GREATER_THAN_TRAP, x, newInstance(getZero()));
+ return false;
+ }
+
+ return compare(this, x) > 0;
+ }
+
+ /** Check if instance is infinite.
+ * @return true if instance is infinite
+ */
+ public boolean isInfinite() {
+ return nans == INFINITE;
+ }
+
+ /** Check if instance is not a number.
+ * @return true if instance is not a number
+ */
+ public boolean isNaN() {
+ return (nans == QNAN) || (nans == SNAN);
+ }
+
+ /** Check if instance is equal to x.
+ * @param other object to check instance against
+ * @return true if instance is equal to x and neither are NaN, false otherwise
+ */
+ @Override
+ public boolean equals(final Object other) {
+
+ if (other instanceof Dfp) {
+ final Dfp x = (Dfp) other;
+ if (isNaN() || x.isNaN() || field.getRadixDigits() != x.field.getRadixDigits()) {
+ return false;
+ }
+
+ return compare(this, x) == 0;
+ }
+
+ return false;
+
+ }
+
+ /**
+ * Gets a hashCode for the instance.
+ * @return a hash code value for this object
+ */
+ @Override
+ public int hashCode() {
+ return 17 + (sign << 8) + (nans << 16) + exp + Arrays.hashCode(mant);
+ }
+
+ /** Check if instance is not equal to x.
+ * @param x number to check instance against
+ * @return true if instance is not equal to x and neither are NaN, false otherwise
+ */
+ public boolean unequal(final Dfp x) {
+ if (isNaN() || x.isNaN() || field.getRadixDigits() != x.field.getRadixDigits()) {
+ return false;
+ }
+
+ return greaterThan(x) || lessThan(x);
+ }
+
+ /** Compare two instances.
+ * @param a first instance in comparison
+ * @param b second instance in comparison
+ * @return -1 if ab and 0 if a==b
+ * Note this method does not properly handle NaNs or numbers with different precision.
+ */
+ private static int compare(final Dfp a, final Dfp b) {
+ // Ignore the sign of zero
+ if (a.mant[a.mant.length - 1] == 0 && b.mant[b.mant.length - 1] == 0 &&
+ a.nans == FINITE && b.nans == FINITE) {
+ return 0;
+ }
+
+ if (a.sign != b.sign) {
+ if (a.sign == -1) {
+ return -1;
+ } else {
+ return 1;
+ }
+ }
+
+ // deal with the infinities
+ if (a.nans == INFINITE && b.nans == FINITE) {
+ return a.sign;
+ }
+
+ if (a.nans == FINITE && b.nans == INFINITE) {
+ return -b.sign;
+ }
+
+ if (a.nans == INFINITE && b.nans == INFINITE) {
+ return 0;
+ }
+
+ // Handle special case when a or b is zero, by ignoring the exponents
+ if (b.mant[b.mant.length-1] != 0 && a.mant[b.mant.length-1] != 0) {
+ if (a.exp < b.exp) {
+ return -a.sign;
+ }
+
+ if (a.exp > b.exp) {
+ return a.sign;
+ }
+ }
+
+ // compare the mantissas
+ for (int i = a.mant.length - 1; i >= 0; i--) {
+ if (a.mant[i] > b.mant[i]) {
+ return a.sign;
+ }
+
+ if (a.mant[i] < b.mant[i]) {
+ return -a.sign;
+ }
+ }
+
+ return 0;
+
+ }
+
+ /** Round to nearest integer using the round-half-even method.
+ * That is round to nearest integer unless both are equidistant.
+ * In which case round to the even one.
+ * @return rounded value
+ */
+ public Dfp rint() {
+ return trunc(DfpField.RoundingMode.ROUND_HALF_EVEN);
+ }
+
+ /** Round to an integer using the round floor mode.
+ * That is, round toward -Infinity
+ * @return rounded value
+ */
+ public Dfp floor() {
+ return trunc(DfpField.RoundingMode.ROUND_FLOOR);
+ }
+
+ /** Round to an integer using the round ceil mode.
+ * That is, round toward +Infinity
+ * @return rounded value
+ */
+ public Dfp ceil() {
+ return trunc(DfpField.RoundingMode.ROUND_CEIL);
+ }
+
+ /** Returns the IEEE remainder.
+ * @param d divisor
+ * @return this less n × d, where n is the integer closest to this/d
+ */
+ public Dfp remainder(final Dfp d) {
+
+ final Dfp result = this.subtract(this.divide(d).rint().multiply(d));
+
+ // IEEE 854-1987 says that if the result is zero, then it carries the sign of this
+ if (result.mant[mant.length-1] == 0) {
+ result.sign = sign;
+ }
+
+ return result;
+
+ }
+
+ /** Does the integer conversions with the specified rounding.
+ * @param rmode rounding mode to use
+ * @return truncated value
+ */
+ protected Dfp trunc(final DfpField.RoundingMode rmode) {
+ boolean changed = false;
+
+ if (isNaN()) {
+ return newInstance(this);
+ }
+
+ if (nans == INFINITE) {
+ return newInstance(this);
+ }
+
+ if (mant[mant.length-1] == 0) {
+ // a is zero
+ return newInstance(this);
+ }
+
+ /* If the exponent is less than zero then we can certainly
+ * return zero */
+ if (exp < 0) {
+ field.setIEEEFlagsBits(DfpField.FLAG_INEXACT);
+ Dfp result = newInstance(getZero());
+ result = dotrap(DfpField.FLAG_INEXACT, TRUNC_TRAP, this, result);
+ return result;
+ }
+
+ /* If the exponent is greater than or equal to digits, then it
+ * must already be an integer since there is no precision left
+ * for any fractional part */
+
+ if (exp >= mant.length) {
+ return newInstance(this);
+ }
+
+ /* General case: create another dfp, result, that contains the
+ * a with the fractional part lopped off. */
+
+ Dfp result = newInstance(this);
+ for (int i = 0; i < mant.length-result.exp; i++) {
+ changed |= result.mant[i] != 0;
+ result.mant[i] = 0;
+ }
+
+ if (changed) {
+ switch (rmode) {
+ case ROUND_FLOOR:
+ if (result.sign == -1) {
+ // then we must increment the mantissa by one
+ result = result.add(newInstance(-1));
+ }
+ break;
+
+ case ROUND_CEIL:
+ if (result.sign == 1) {
+ // then we must increment the mantissa by one
+ result = result.add(getOne());
+ }
+ break;
+
+ case ROUND_HALF_EVEN:
+ default:
+ final Dfp half = newInstance("0.5");
+ Dfp a = subtract(result); // difference between this and result
+ a.sign = 1; // force positive (take abs)
+ if (a.greaterThan(half)) {
+ a = newInstance(getOne());
+ a.sign = sign;
+ result = result.add(a);
+ }
+
+ /** If exactly equal to 1/2 and odd then increment */
+ if (a.equals(half) && result.exp > 0 && (result.mant[mant.length-result.exp]&1) != 0) {
+ a = newInstance(getOne());
+ a.sign = sign;
+ result = result.add(a);
+ }
+ break;
+ }
+
+ field.setIEEEFlagsBits(DfpField.FLAG_INEXACT); // signal inexact
+ result = dotrap(DfpField.FLAG_INEXACT, TRUNC_TRAP, this, result);
+ return result;
+ }
+
+ return result;
+ }
+
+ /** Convert this to an integer.
+ * If greater than 2147483647, it returns 2147483647. If less than -2147483648 it returns -2147483648.
+ * @return converted number
+ */
+ public int intValue() {
+ Dfp rounded;
+ int result = 0;
+
+ rounded = rint();
+
+ if (rounded.greaterThan(newInstance(2147483647))) {
+ return 2147483647;
+ }
+
+ if (rounded.lessThan(newInstance(-2147483648))) {
+ return -2147483648;
+ }
+
+ for (int i = mant.length - 1; i >= mant.length - rounded.exp; i--) {
+ result = result * RADIX + rounded.mant[i];
+ }
+
+ if (rounded.sign == -1) {
+ result = -result;
+ }
+
+ return result;
+ }
+
+ /** Get the exponent of the greatest power of 10000 that is
+ * less than or equal to the absolute value of this. I.E. if
+ * this is 106 then log10K would return 1.
+ * @return integer base 10000 logarithm
+ */
+ public int log10K() {
+ return exp - 1;
+ }
+
+ /** Get the specified power of 10000.
+ * @param e desired power
+ * @return 10000e
+ */
+ public Dfp power10K(final int e) {
+ Dfp d = newInstance(getOne());
+ d.exp = e + 1;
+ return d;
+ }
+
+ /** Get the exponent of the greatest power of 10 that is less than or equal to abs(this).
+ * @return integer base 10 logarithm
+ */
+ public int log10() {
+ if (mant[mant.length-1] > 1000) {
+ return exp * 4 - 1;
+ }
+ if (mant[mant.length-1] > 100) {
+ return exp * 4 - 2;
+ }
+ if (mant[mant.length-1] > 10) {
+ return exp * 4 - 3;
+ }
+ return exp * 4 - 4;
+ }
+
+ /** Return the specified power of 10.
+ * @param e desired power
+ * @return 10e
+ */
+ public Dfp power10(final int e) {
+ Dfp d = newInstance(getOne());
+
+ if (e >= 0) {
+ d.exp = e / 4 + 1;
+ } else {
+ d.exp = (e + 1) / 4;
+ }
+
+ switch ((e % 4 + 4) % 4) {
+ case 0:
+ break;
+ case 1:
+ d = d.multiply(10);
+ break;
+ case 2:
+ d = d.multiply(100);
+ break;
+ default:
+ d = d.multiply(1000);
+ }
+
+ return d;
+ }
+
+ /** Negate the mantissa of this by computing the complement.
+ * Leaves the sign bit unchanged, used internally by add.
+ * Denormalized numbers are handled properly here.
+ * @param extra ???
+ * @return ???
+ */
+ protected int complement(int extra) {
+
+ extra = RADIX-extra;
+ for (int i = 0; i < mant.length; i++) {
+ mant[i] = RADIX-mant[i]-1;
+ }
+
+ int rh = extra / RADIX;
+ extra = extra - rh * RADIX;
+ for (int i = 0; i < mant.length; i++) {
+ final int r = mant[i] + rh;
+ rh = r / RADIX;
+ mant[i] = r - rh * RADIX;
+ }
+
+ return extra;
+ }
+
+ /** Add x to this.
+ * @param x number to add
+ * @return sum of this and x
+ */
+ public Dfp add(final Dfp x) {
+
+ // make sure we don't mix number with different precision
+ if (field.getRadixDigits() != x.field.getRadixDigits()) {
+ field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
+ final Dfp result = newInstance(getZero());
+ result.nans = QNAN;
+ return dotrap(DfpField.FLAG_INVALID, ADD_TRAP, x, result);
+ }
+
+ /* handle special cases */
+ if (nans != FINITE || x.nans != FINITE) {
+ if (isNaN()) {
+ return this;
+ }
+
+ if (x.isNaN()) {
+ return x;
+ }
+
+ if (nans == INFINITE && x.nans == FINITE) {
+ return this;
+ }
+
+ if (x.nans == INFINITE && nans == FINITE) {
+ return x;
+ }
+
+ if (x.nans == INFINITE && nans == INFINITE && sign == x.sign) {
+ return x;
+ }
+
+ if (x.nans == INFINITE && nans == INFINITE && sign != x.sign) {
+ field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
+ Dfp result = newInstance(getZero());
+ result.nans = QNAN;
+ result = dotrap(DfpField.FLAG_INVALID, ADD_TRAP, x, result);
+ return result;
+ }
+ }
+
+ /* copy this and the arg */
+ Dfp a = newInstance(this);
+ Dfp b = newInstance(x);
+
+ /* initialize the result object */
+ Dfp result = newInstance(getZero());
+
+ /* Make all numbers positive, but remember their sign */
+ final byte asign = a.sign;
+ final byte bsign = b.sign;
+
+ a.sign = 1;
+ b.sign = 1;
+
+ /* The result will be signed like the arg with greatest magnitude */
+ byte rsign = bsign;
+ if (compare(a, b) > 0) {
+ rsign = asign;
+ }
+
+ /* Handle special case when a or b is zero, by setting the exponent
+ of the zero number equal to the other one. This avoids an alignment
+ which would cause catastropic loss of precision */
+ if (b.mant[mant.length-1] == 0) {
+ b.exp = a.exp;
+ }
+
+ if (a.mant[mant.length-1] == 0) {
+ a.exp = b.exp;
+ }
+
+ /* align number with the smaller exponent */
+ int aextradigit = 0;
+ int bextradigit = 0;
+ if (a.exp < b.exp) {
+ aextradigit = a.align(b.exp);
+ } else {
+ bextradigit = b.align(a.exp);
+ }
+
+ /* complement the smaller of the two if the signs are different */
+ if (asign != bsign) {
+ if (asign == rsign) {
+ bextradigit = b.complement(bextradigit);
+ } else {
+ aextradigit = a.complement(aextradigit);
+ }
+ }
+
+ /* add the mantissas */
+ int rh = 0; /* acts as a carry */
+ for (int i = 0; i < mant.length; i++) {
+ final int r = a.mant[i]+b.mant[i]+rh;
+ rh = r / RADIX;
+ result.mant[i] = r - rh * RADIX;
+ }
+ result.exp = a.exp;
+ result.sign = rsign;
+
+ /* handle overflow -- note, when asign!=bsign an overflow is
+ * normal and should be ignored. */
+
+ if (rh != 0 && (asign == bsign)) {
+ final int lostdigit = result.mant[0];
+ result.shiftRight();
+ result.mant[mant.length-1] = rh;
+ final int excp = result.round(lostdigit);
+ if (excp != 0) {
+ result = dotrap(excp, ADD_TRAP, x, result);
+ }
+ }
+
+ /* normalize the result */
+ for (int i = 0; i < mant.length; i++) {
+ if (result.mant[mant.length-1] != 0) {
+ break;
+ }
+ result.shiftLeft();
+ if (i == 0) {
+ result.mant[0] = aextradigit+bextradigit;
+ aextradigit = 0;
+ bextradigit = 0;
+ }
+ }
+
+ /* result is zero if after normalization the most sig. digit is zero */
+ if (result.mant[mant.length-1] == 0) {
+ result.exp = 0;
+
+ if (asign != bsign) {
+ // Unless adding 2 negative zeros, sign is positive
+ result.sign = 1; // Per IEEE 854-1987 Section 6.3
+ }
+ }
+
+ /* Call round to test for over/under flows */
+ final int excp = result.round(aextradigit + bextradigit);
+ if (excp != 0) {
+ result = dotrap(excp, ADD_TRAP, x, result);
+ }
+
+ return result;
+ }
+
+ /** Returns a number that is this number with the sign bit reversed.
+ * @return the opposite of this
+ */
+ public Dfp negate() {
+ Dfp result = newInstance(this);
+ result.sign = (byte) - result.sign;
+ return result;
+ }
+
+ /** Subtract x from this.
+ * @param x number to subtract
+ * @return difference of this and a
+ */
+ public Dfp subtract(final Dfp x) {
+ return add(x.negate());
+ }
+
+ /** Round this given the next digit n using the current rounding mode.
+ * @param n ???
+ * @return the IEEE flag if an exception occurred
+ */
+ protected int round(int n) {
+ boolean inc = false;
+ switch (field.getRoundingMode()) {
+ case ROUND_DOWN:
+ inc = false;
+ break;
+
+ case ROUND_UP:
+ inc = n != 0; // round up if n!=0
+ break;
+
+ case ROUND_HALF_UP:
+ inc = n >= 5000; // round half up
+ break;
+
+ case ROUND_HALF_DOWN:
+ inc = n > 5000; // round half down
+ break;
+
+ case ROUND_HALF_EVEN:
+ inc = n > 5000 || (n == 5000 && (mant[0] & 1) == 1); // round half-even
+ break;
+
+ case ROUND_HALF_ODD:
+ inc = n > 5000 || (n == 5000 && (mant[0] & 1) == 0); // round half-odd
+ break;
+
+ case ROUND_CEIL:
+ inc = sign == 1 && n != 0; // round ceil
+ break;
+
+ case ROUND_FLOOR:
+ default:
+ inc = sign == -1 && n != 0; // round floor
+ break;
+ }
+
+ if (inc) {
+ // increment if necessary
+ int rh = 1;
+ for (int i = 0; i < mant.length; i++) {
+ final int r = mant[i] + rh;
+ rh = r / RADIX;
+ mant[i] = r - rh * RADIX;
+ }
+
+ if (rh != 0) {
+ shiftRight();
+ mant[mant.length-1] = rh;
+ }
+ }
+
+ // check for exceptional cases and raise signals if necessary
+ if (exp < MIN_EXP) {
+ // Gradual Underflow
+ field.setIEEEFlagsBits(DfpField.FLAG_UNDERFLOW);
+ return DfpField.FLAG_UNDERFLOW;
+ }
+
+ if (exp > MAX_EXP) {
+ // Overflow
+ field.setIEEEFlagsBits(DfpField.FLAG_OVERFLOW);
+ return DfpField.FLAG_OVERFLOW;
+ }
+
+ if (n != 0) {
+ // Inexact
+ field.setIEEEFlagsBits(DfpField.FLAG_INEXACT);
+ return DfpField.FLAG_INEXACT;
+ }
+
+ return 0;
+
+ }
+
+ /** Multiply this by x.
+ * @param x multiplicand
+ * @return product of this and x
+ */
+ public Dfp multiply(final Dfp x) {
+
+ // make sure we don't mix number with different precision
+ if (field.getRadixDigits() != x.field.getRadixDigits()) {
+ field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
+ final Dfp result = newInstance(getZero());
+ result.nans = QNAN;
+ return dotrap(DfpField.FLAG_INVALID, MULTIPLY_TRAP, x, result);
+ }
+
+ Dfp result = newInstance(getZero());
+
+ /* handle special cases */
+ if (nans != FINITE || x.nans != FINITE) {
+ if (isNaN()) {
+ return this;
+ }
+
+ if (x.isNaN()) {
+ return x;
+ }
+
+ if (nans == INFINITE && x.nans == FINITE && x.mant[mant.length-1] != 0) {
+ result = newInstance(this);
+ result.sign = (byte) (sign * x.sign);
+ return result;
+ }
+
+ if (x.nans == INFINITE && nans == FINITE && mant[mant.length-1] != 0) {
+ result = newInstance(x);
+ result.sign = (byte) (sign * x.sign);
+ return result;
+ }
+
+ if (x.nans == INFINITE && nans == INFINITE) {
+ result = newInstance(this);
+ result.sign = (byte) (sign * x.sign);
+ return result;
+ }
+
+ if ( (x.nans == INFINITE && nans == FINITE && mant[mant.length-1] == 0) ||
+ (nans == INFINITE && x.nans == FINITE && x.mant[mant.length-1] == 0) ) {
+ field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
+ result = newInstance(getZero());
+ result.nans = QNAN;
+ result = dotrap(DfpField.FLAG_INVALID, MULTIPLY_TRAP, x, result);
+ return result;
+ }
+ }
+
+ int[] product = new int[mant.length*2]; // Big enough to hold even the largest result
+
+ for (int i = 0; i < mant.length; i++) {
+ int rh = 0; // acts as a carry
+ for (int j=0; j= 0; i--) {
+ if (product[i] != 0) {
+ md = i;
+ break;
+ }
+ }
+
+ // Copy the digits into the result
+ for (int i = 0; i < mant.length; i++) {
+ result.mant[mant.length - i - 1] = product[md - i];
+ }
+
+ // Fixup the exponent.
+ result.exp = exp + x.exp + md - 2 * mant.length + 1;
+ result.sign = (byte)((sign == x.sign)?1:-1);
+
+ if (result.mant[mant.length-1] == 0) {
+ // if result is zero, set exp to zero
+ result.exp = 0;
+ }
+
+ final int excp;
+ if (md > (mant.length-1)) {
+ excp = result.round(product[md-mant.length]);
+ } else {
+ excp = result.round(0); // has no effect except to check status
+ }
+
+ if (excp != 0) {
+ result = dotrap(excp, MULTIPLY_TRAP, x, result);
+ }
+
+ return result;
+
+ }
+
+ /** Multiply this by a single digit 0<=x<radix.
+ * There are speed advantages in this special case
+ * @param x multiplicand
+ * @return product of this and x
+ */
+ public Dfp multiply(final int x) {
+ Dfp result = newInstance(this);
+
+ /* handle special cases */
+ if (nans != FINITE) {
+ if (isNaN()) {
+ return this;
+ }
+
+ if (nans == INFINITE && x != 0) {
+ result = newInstance(this);
+ return result;
+ }
+
+ if (nans == INFINITE && x == 0) {
+ field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
+ result = newInstance(getZero());
+ result.nans = QNAN;
+ result = dotrap(DfpField.FLAG_INVALID, MULTIPLY_TRAP, newInstance(getZero()), result);
+ return result;
+ }
+ }
+
+ /* range check x */
+ if (x < 0 || x >= RADIX) {
+ field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
+ result = newInstance(getZero());
+ result.nans = QNAN;
+ result = dotrap(DfpField.FLAG_INVALID, MULTIPLY_TRAP, result, result);
+ return result;
+ }
+
+ int rh = 0;
+ for (int i = 0; i < mant.length; i++) {
+ final int r = mant[i] * x + rh;
+ rh = r / RADIX;
+ result.mant[i] = r - rh * RADIX;
+ }
+
+ int lostdigit = 0;
+ if (rh != 0) {
+ lostdigit = result.mant[0];
+ result.shiftRight();
+ result.mant[mant.length-1] = rh;
+ }
+
+ if (result.mant[mant.length-1] == 0) { // if result is zero, set exp to zero
+ result.exp = 0;
+ }
+
+ final int excp = result.round(lostdigit);
+ if (excp != 0) {
+ result = dotrap(excp, MULTIPLY_TRAP, result, result);
+ }
+
+ return result;
+ }
+
+ /** Divide this by divisor.
+ * @param divisor divisor
+ * @return quotient of this by divisor
+ */
+ public Dfp divide(Dfp divisor) {
+ int dividend[]; // current status of the dividend
+ int quotient[]; // quotient
+ int remainder[];// remainder
+ int qd; // current quotient digit we're working with
+ int nsqd; // number of significant quotient digits we have
+ int trial=0; // trial quotient digit
+ int minadj; // minimum adjustment
+ boolean trialgood; // Flag to indicate a good trail digit
+ int md=0; // most sig digit in result
+ int excp; // exceptions
+
+ // make sure we don't mix number with different precision
+ if (field.getRadixDigits() != divisor.field.getRadixDigits()) {
+ field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
+ final Dfp result = newInstance(getZero());
+ result.nans = QNAN;
+ return dotrap(DfpField.FLAG_INVALID, DIVIDE_TRAP, divisor, result);
+ }
+
+ Dfp result = newInstance(getZero());
+
+ /* handle special cases */
+ if (nans != FINITE || divisor.nans != FINITE) {
+ if (isNaN()) {
+ return this;
+ }
+
+ if (divisor.isNaN()) {
+ return divisor;
+ }
+
+ if (nans == INFINITE && divisor.nans == FINITE) {
+ result = newInstance(this);
+ result.sign = (byte) (sign * divisor.sign);
+ return result;
+ }
+
+ if (divisor.nans == INFINITE && nans == FINITE) {
+ result = newInstance(getZero());
+ result.sign = (byte) (sign * divisor.sign);
+ return result;
+ }
+
+ if (divisor.nans == INFINITE && nans == INFINITE) {
+ field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
+ result = newInstance(getZero());
+ result.nans = QNAN;
+ result = dotrap(DfpField.FLAG_INVALID, DIVIDE_TRAP, divisor, result);
+ return result;
+ }
+ }
+
+ /* Test for divide by zero */
+ if (divisor.mant[mant.length-1] == 0) {
+ field.setIEEEFlagsBits(DfpField.FLAG_DIV_ZERO);
+ result = newInstance(getZero());
+ result.sign = (byte) (sign * divisor.sign);
+ result.nans = INFINITE;
+ result = dotrap(DfpField.FLAG_DIV_ZERO, DIVIDE_TRAP, divisor, result);
+ return result;
+ }
+
+ dividend = new int[mant.length+1]; // one extra digit needed
+ quotient = new int[mant.length+2]; // two extra digits needed 1 for overflow, 1 for rounding
+ remainder = new int[mant.length+1]; // one extra digit needed
+
+ /* Initialize our most significant digits to zero */
+
+ dividend[mant.length] = 0;
+ quotient[mant.length] = 0;
+ quotient[mant.length+1] = 0;
+ remainder[mant.length] = 0;
+
+ /* copy our mantissa into the dividend, initialize the
+ quotient while we are at it */
+
+ for (int i = 0; i < mant.length; i++) {
+ dividend[i] = mant[i];
+ quotient[i] = 0;
+ remainder[i] = 0;
+ }
+
+ /* outer loop. Once per quotient digit */
+ nsqd = 0;
+ for (qd = mant.length+1; qd >= 0; qd--) {
+ /* Determine outer limits of our quotient digit */
+
+ // r = most sig 2 digits of dividend
+ final int divMsb = dividend[mant.length]*RADIX+dividend[mant.length-1];
+ int min = divMsb / (divisor.mant[mant.length-1]+1);
+ int max = (divMsb + 1) / divisor.mant[mant.length-1];
+
+ trialgood = false;
+ while (!trialgood) {
+ // try the mean
+ trial = (min+max)/2;
+
+ /* Multiply by divisor and store as remainder */
+ int rh = 0;
+ for (int i = 0; i < mant.length + 1; i++) {
+ int dm = (i= 2) {
+ min = trial+minadj; // update the minimum
+ continue;
+ }
+
+ /* May have a good one here, check more thoroughly. Basically
+ its a good one if it is less than the divisor */
+ trialgood = false; // assume false
+ for (int i = mant.length - 1; i >= 0; i--) {
+ if (divisor.mant[i] > remainder[i]) {
+ trialgood = true;
+ }
+ if (divisor.mant[i] < remainder[i]) {
+ break;
+ }
+ }
+
+ if (remainder[mant.length] != 0) {
+ trialgood = false;
+ }
+
+ if (trialgood == false) {
+ min = trial+1;
+ }
+ }
+
+ /* Great we have a digit! */
+ quotient[qd] = trial;
+ if (trial != 0 || nsqd != 0) {
+ nsqd++;
+ }
+
+ if (field.getRoundingMode() == DfpField.RoundingMode.ROUND_DOWN && nsqd == mant.length) {
+ // We have enough for this mode
+ break;
+ }
+
+ if (nsqd > mant.length) {
+ // We have enough digits
+ break;
+ }
+
+ /* move the remainder into the dividend while left shifting */
+ dividend[0] = 0;
+ for (int i = 0; i < mant.length; i++) {
+ dividend[i + 1] = remainder[i];
+ }
+ }
+
+ /* Find the most sig digit */
+ md = mant.length; // default
+ for (int i = mant.length + 1; i >= 0; i--) {
+ if (quotient[i] != 0) {
+ md = i;
+ break;
+ }
+ }
+
+ /* Copy the digits into the result */
+ for (int i=0; i (mant.length-1)) {
+ excp = result.round(quotient[md-mant.length]);
+ } else {
+ excp = result.round(0);
+ }
+
+ if (excp != 0) {
+ result = dotrap(excp, DIVIDE_TRAP, divisor, result);
+ }
+
+ return result;
+ }
+
+ /** Divide by a single digit less than radix.
+ * Special case, so there are speed advantages. 0 <= divisor < radix
+ * @param divisor divisor
+ * @return quotient of this by divisor
+ */
+ public Dfp divide(int divisor) {
+
+ // Handle special cases
+ if (nans != FINITE) {
+ if (isNaN()) {
+ return this;
+ }
+
+ if (nans == INFINITE) {
+ return newInstance(this);
+ }
+ }
+
+ // Test for divide by zero
+ if (divisor == 0) {
+ field.setIEEEFlagsBits(DfpField.FLAG_DIV_ZERO);
+ Dfp result = newInstance(getZero());
+ result.sign = sign;
+ result.nans = INFINITE;
+ result = dotrap(DfpField.FLAG_DIV_ZERO, DIVIDE_TRAP, getZero(), result);
+ return result;
+ }
+
+ // range check divisor
+ if (divisor < 0 || divisor >= RADIX) {
+ field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
+ Dfp result = newInstance(getZero());
+ result.nans = QNAN;
+ result = dotrap(DfpField.FLAG_INVALID, DIVIDE_TRAP, result, result);
+ return result;
+ }
+
+ Dfp result = newInstance(this);
+
+ int rl = 0;
+ for (int i = mant.length-1; i >= 0; i--) {
+ final int r = rl*RADIX + result.mant[i];
+ final int rh = r / divisor;
+ rl = r - rh * divisor;
+ result.mant[i] = rh;
+ }
+
+ if (result.mant[mant.length-1] == 0) {
+ // normalize
+ result.shiftLeft();
+ final int r = rl * RADIX; // compute the next digit and put it in
+ final int rh = r / divisor;
+ rl = r - rh * divisor;
+ result.mant[0] = rh;
+ }
+
+ final int excp = result.round(rl * RADIX / divisor); // do the rounding
+ if (excp != 0) {
+ result = dotrap(excp, DIVIDE_TRAP, result, result);
+ }
+
+ return result;
+
+ }
+
+ /** Compute the square root.
+ * @return square root of the instance
+ */
+ public Dfp sqrt() {
+
+ // check for unusual cases
+ if (nans == FINITE && mant[mant.length-1] == 0) {
+ // if zero
+ return newInstance(this);
+ }
+
+ if (nans != FINITE) {
+ if (nans == INFINITE && sign == 1) {
+ // if positive infinity
+ return newInstance(this);
+ }
+
+ if (nans == QNAN) {
+ return newInstance(this);
+ }
+
+ if (nans == SNAN) {
+ Dfp result;
+
+ field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
+ result = newInstance(this);
+ result = dotrap(DfpField.FLAG_INVALID, SQRT_TRAP, null, result);
+ return result;
+ }
+ }
+
+ if (sign == -1) {
+ // if negative
+ Dfp result;
+
+ field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
+ result = newInstance(this);
+ result.nans = QNAN;
+ result = dotrap(DfpField.FLAG_INVALID, SQRT_TRAP, null, result);
+ return result;
+ }
+
+ Dfp x = newInstance(this);
+
+ /* Lets make a reasonable guess as to the size of the square root */
+ if (x.exp < -1 || x.exp > 1) {
+ x.exp = this.exp / 2;
+ }
+
+ /* Coarsely estimate the mantissa */
+ switch (x.mant[mant.length-1] / 2000) {
+ case 0:
+ x.mant[mant.length-1] = x.mant[mant.length-1]/2+1;
+ break;
+ case 2:
+ x.mant[mant.length-1] = 1500;
+ break;
+ case 3:
+ x.mant[mant.length-1] = 2200;
+ break;
+ default:
+ x.mant[mant.length-1] = 3000;
+ }
+
+ Dfp dx = newInstance(x);
+
+ /* Now that we have the first pass estimate, compute the rest
+ by the formula dx = (y - x*x) / (2x); */
+
+ Dfp px = getZero();
+ Dfp ppx = getZero();
+ while (x.unequal(px)) {
+ dx = newInstance(x);
+ dx.sign = -1;
+ dx = dx.add(this.divide(x));
+ dx = dx.divide(2);
+ ppx = px;
+ px = x;
+ x = x.add(dx);
+
+ if (x.equals(ppx)) {
+ // alternating between two values
+ break;
+ }
+
+ // if dx is zero, break. Note testing the most sig digit
+ // is a sufficient test since dx is normalized
+ if (dx.mant[mant.length-1] == 0) {
+ break;
+ }
+ }
+
+ return x;
+
+ }
+
+ /** Get a string representation of the instance.
+ * @return string representation of the instance
+ */
+ @Override
+ public String toString() {
+ if (nans != FINITE) {
+ // if non-finite exceptional cases
+ if (nans == INFINITE) {
+ return (sign < 0) ? NEG_INFINITY_STRING : POS_INFINITY_STRING;
+ } else {
+ return NAN_STRING;
+ }
+ }
+
+ if (exp > mant.length || exp < -1) {
+ return dfp2sci();
+ }
+
+ return dfp2string();
+
+ }
+
+ /** Convert an instance to a string using scientific notation.
+ * @return string representation of the instance in scientific notation
+ */
+ protected String dfp2sci() {
+ char rawdigits[] = new char[mant.length * 4];
+ char outputbuffer[] = new char[mant.length * 4 + 20];
+ int p;
+ int q;
+ int e;
+ int ae;
+ int shf;
+
+ // Get all the digits
+ p = 0;
+ for (int i = mant.length - 1; i >= 0; i--) {
+ rawdigits[p++] = (char) ((mant[i] / 1000) + '0');
+ rawdigits[p++] = (char) (((mant[i] / 100) %10) + '0');
+ rawdigits[p++] = (char) (((mant[i] / 10) % 10) + '0');
+ rawdigits[p++] = (char) (((mant[i]) % 10) + '0');
+ }
+
+ // Find the first non-zero one
+ for (p = 0; p < rawdigits.length; p++) {
+ if (rawdigits[p] != '0') {
+ break;
+ }
+ }
+ shf = p;
+
+ // Now do the conversion
+ q = 0;
+ if (sign == -1) {
+ outputbuffer[q++] = '-';
+ }
+
+ if (p != rawdigits.length) {
+ // there are non zero digits...
+ outputbuffer[q++] = rawdigits[p++];
+ outputbuffer[q++] = '.';
+
+ while (p ae; p /= 10) {
+ // nothing to do
+ }
+
+ if (e < 0) {
+ outputbuffer[q++] = '-';
+ }
+
+ while (p > 0) {
+ outputbuffer[q++] = (char)(ae / p + '0');
+ ae = ae % p;
+ p = p / 10;
+ }
+
+ return new String(outputbuffer, 0, q);
+
+ }
+
+ /** Convert an instance to a string using normal notation.
+ * @return string representation of the instance in normal notation
+ */
+ protected String dfp2string() {
+ char buffer[] = new char[mant.length*4 + 20];
+ int p = 1;
+ int q;
+ int e = exp;
+ boolean pointInserted = false;
+
+ buffer[0] = ' ';
+
+ if (e <= 0) {
+ buffer[p++] = '0';
+ buffer[p++] = '.';
+ pointInserted = true;
+ }
+
+ while (e < 0) {
+ buffer[p++] = '0';
+ buffer[p++] = '0';
+ buffer[p++] = '0';
+ buffer[p++] = '0';
+ e++;
+ }
+
+ for (int i = mant.length - 1; i >= 0; i--) {
+ buffer[p++] = (char) ((mant[i] / 1000) + '0');
+ buffer[p++] = (char) (((mant[i] / 100) % 10) + '0');
+ buffer[p++] = (char) (((mant[i] / 10) % 10) + '0');
+ buffer[p++] = (char) (((mant[i]) % 10) + '0');
+ if (--e == 0) {
+ buffer[p++] = '.';
+ pointInserted = true;
+ }
+ }
+
+ while (e > 0) {
+ buffer[p++] = '0';
+ buffer[p++] = '0';
+ buffer[p++] = '0';
+ buffer[p++] = '0';
+ e--;
+ }
+
+ if (!pointInserted) {
+ // Ensure we have a radix point!
+ buffer[p++] = '.';
+ }
+
+ // Suppress leading zeros
+ q = 1;
+ while (buffer[q] == '0') {
+ q++;
+ }
+ if (buffer[q] == '.') {
+ q--;
+ }
+
+ // Suppress trailing zeros
+ while (buffer[p-1] == '0') {
+ p--;
+ }
+
+ // Insert sign
+ if (sign < 0) {
+ buffer[--q] = '-';
+ }
+
+ return new String(buffer, q, p - q);
+
+ }
+
+ /** Raises a trap. This does not set the corresponding flag however.
+ * @param type the trap type
+ * @param what - name of routine trap occurred in
+ * @param oper - input operator to function
+ * @param result - the result computed prior to the trap
+ * @return The suggested return value from the trap handler
+ */
+ public Dfp dotrap(int type, String what, Dfp oper, Dfp result) {
+ Dfp def = result;
+
+ switch (type) {
+ case DfpField.FLAG_INVALID:
+ def = newInstance(getZero());
+ def.sign = result.sign;
+ def.nans = QNAN;
+ break;
+
+ case DfpField.FLAG_DIV_ZERO:
+ if (nans == FINITE && mant[mant.length-1] != 0) {
+ // normal case, we are finite, non-zero
+ def = newInstance(getZero());
+ def.sign = (byte)(sign*oper.sign);
+ def.nans = INFINITE;
+ }
+
+ if (nans == FINITE && mant[mant.length-1] == 0) {
+ // 0/0
+ def = newInstance(getZero());
+ def.nans = QNAN;
+ }
+
+ if (nans == INFINITE || nans == QNAN) {
+ def = newInstance(getZero());
+ def.nans = QNAN;
+ }
+
+ if (nans == INFINITE || nans == SNAN) {
+ def = newInstance(getZero());
+ def.nans = QNAN;
+ }
+ break;
+
+ case DfpField.FLAG_UNDERFLOW:
+ if ( (result.exp+mant.length) < MIN_EXP) {
+ def = newInstance(getZero());
+ def.sign = result.sign;
+ } else {
+ def = newInstance(result); // gradual underflow
+ }
+ result.exp = result.exp + ERR_SCALE;
+ break;
+
+ case DfpField.FLAG_OVERFLOW:
+ result.exp = result.exp - ERR_SCALE;
+ def = newInstance(getZero());
+ def.sign = result.sign;
+ def.nans = INFINITE;
+ break;
+
+ default: def = result; break;
+ }
+
+ return trap(type, what, oper, def, result);
+
+ }
+
+ /** Trap handler. Subclasses may override this to provide trap
+ * functionality per IEEE 854-1987.
+ *
+ * @param type The exception type - e.g. FLAG_OVERFLOW
+ * @param what The name of the routine we were in e.g. divide()
+ * @param oper An operand to this function if any
+ * @param def The default return value if trap not enabled
+ * @param result The result that is specified to be delivered per
+ * IEEE 854, if any
+ * @return the value that should be return by the operation triggering the trap
+ */
+ protected Dfp trap(int type, String what, Dfp oper, Dfp def, Dfp result) {
+ return def;
+ }
+
+ /** Returns the type - one of FINITE, INFINITE, SNAN, QNAN.
+ * @return type of the number
+ */
+ public int classify() {
+ return nans;
+ }
+
+ /** Creates an instance that is the same as x except that it has the sign of y.
+ * abs(x) = dfp.copysign(x, dfp.one)
+ * @param x number to get the value from
+ * @param y number to get the sign from
+ * @return a number with the value of x and the sign of y
+ */
+ public static Dfp copysign(final Dfp x, final Dfp y) {
+ Dfp result = x.newInstance(x);
+ result.sign = y.sign;
+ return result;
+ }
+
+ /** Returns the next number greater than this one in the direction of x.
+ * If this==x then simply returns this.
+ * @param x direction where to look at
+ * @return closest number next to instance in the direction of x
+ */
+ public Dfp nextAfter(final Dfp x) {
+
+ // make sure we don't mix number with different precision
+ if (field.getRadixDigits() != x.field.getRadixDigits()) {
+ field.setIEEEFlagsBits(DfpField.FLAG_INVALID);
+ final Dfp result = newInstance(getZero());
+ result.nans = QNAN;
+ return dotrap(DfpField.FLAG_INVALID, NEXT_AFTER_TRAP, x, result);
+ }
+
+ // if this is greater than x
+ boolean up = false;
+ if (this.lessThan(x)) {
+ up = true;
+ }
+
+ if (compare(this, x) == 0) {
+ return newInstance(x);
+ }
+
+ if (lessThan(getZero())) {
+ up = !up;
+ }
+
+ final Dfp inc;
+ Dfp result;
+ if (up) {
+ inc = newInstance(getOne());
+ inc.exp = this.exp-mant.length+1;
+ inc.sign = this.sign;
+
+ if (this.equals(getZero())) {
+ inc.exp = MIN_EXP-mant.length;
+ }
+
+ result = add(inc);
+ } else {
+ inc = newInstance(getOne());
+ inc.exp = this.exp;
+ inc.sign = this.sign;
+
+ if (this.equals(inc)) {
+ inc.exp = this.exp-mant.length;
+ } else {
+ inc.exp = this.exp-mant.length+1;
+ }
+
+ if (this.equals(getZero())) {
+ inc.exp = MIN_EXP-mant.length;
+ }
+
+ result = this.subtract(inc);
+ }
+
+ if (result.classify() == INFINITE && this.classify() != INFINITE) {
+ field.setIEEEFlagsBits(DfpField.FLAG_INEXACT);
+ result = dotrap(DfpField.FLAG_INEXACT, NEXT_AFTER_TRAP, x, result);
+ }
+
+ if (result.equals(getZero()) && this.equals(getZero()) == false) {
+ field.setIEEEFlagsBits(DfpField.FLAG_INEXACT);
+ result = dotrap(DfpField.FLAG_INEXACT, NEXT_AFTER_TRAP, x, result);
+ }
+
+ return result;
+
+ }
+
+ /** Convert the instance into a double.
+ * @return a double approximating the instance
+ * @see #toSplitDouble()
+ */
+ public double toDouble() {
+
+ if (isInfinite()) {
+ if (lessThan(getZero())) {
+ return Double.NEGATIVE_INFINITY;
+ } else {
+ return Double.POSITIVE_INFINITY;
+ }
+ }
+
+ if (isNaN()) {
+ return Double.NaN;
+ }
+
+ Dfp y = this;
+ boolean negate = false;
+ if (lessThan(getZero())) {
+ y = negate();
+ negate = true;
+ }
+
+ /* Find the exponent, first estimate by integer log10, then adjust.
+ Should be faster than doing a natural logarithm. */
+ int exponent = (int)(y.log10() * 3.32);
+ if (exponent < 0) {
+ exponent--;
+ }
+
+ Dfp tempDfp = DfpMath.pow(getTwo(), exponent);
+ while (tempDfp.lessThan(y) || tempDfp.equals(y)) {
+ tempDfp = tempDfp.multiply(2);
+ exponent++;
+ }
+ exponent--;
+
+ /* We have the exponent, now work on the mantissa */
+
+ y = y.divide(DfpMath.pow(getTwo(), exponent));
+ if (exponent > -1023) {
+ y = y.subtract(getOne());
+ }
+
+ if (exponent < -1074) {
+ return 0;
+ }
+
+ if (exponent > 1023) {
+ return negate ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY;
+ }
+
+
+ y = y.multiply(newInstance(4503599627370496l)).rint();
+ String str = y.toString();
+ str = str.substring(0, str.length()-1);
+ long mantissa = Long.parseLong(str);
+
+ if (mantissa == 4503599627370496L) {
+ // Handle special case where we round up to next power of two
+ mantissa = 0;
+ exponent++;
+ }
+
+ /* Its going to be subnormal, so make adjustments */
+ if (exponent <= -1023) {
+ exponent--;
+ }
+
+ while (exponent < -1023) {
+ exponent++;
+ mantissa >>>= 1;
+ }
+
+ long bits = mantissa | ((exponent + 1023L) << 52);
+ double x = Double.longBitsToDouble(bits);
+
+ if (negate) {
+ x = -x;
+ }
+
+ return x;
+
+ }
+
+ /** Convert the instance into a split double.
+ * @return an array of two doubles which sum represent the instance
+ * @see #toDouble()
+ */
+ public double[] toSplitDouble() {
+ double split[] = new double[2];
+ long mask = 0xffffffffc0000000L;
+
+ split[0] = Double.longBitsToDouble(Double.doubleToLongBits(toDouble()) & mask);
+ split[1] = subtract(newInstance(split[0])).toDouble();
+
+ return split;
+ }
+
+}