-
Notifications
You must be signed in to change notification settings - Fork 5
/
hyper.py
66 lines (57 loc) · 2.08 KB
/
hyper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# -*- coding: utf-8 -*-
""" GPML hyper parameter treatment.
Provide iterator, getter and setter.
Created: Mon Jan 13 11:01:19 2014 by Hannes Nickisch, Philips Research Hamburg.
Modified: $Id: hyper.py 1263 2013-12-13 13:36:13Z hn $
"""
__version__ = "$Id: hyper.py 913 2013-08-15 12:54:33Z hn $"
import numpy as np
class HyperIter:
def __init__(self):
self.chil = []
def __iter__(self):
""" Iterate over hyperparameters.
"""
for s,h in self.hyp.iteritems():
if isinstance(h,float) or isinstance(h,int): # scalar parameter
yield s,None,h,self
else: # vector parameter
for i,hi in enumerate(h): yield s,i,hi,self
for c in self.chil: # recursion over children
for y in c: yield y
def get_hyp(self):
""" Obtain hyperparameters as a vector.
"""
hyp = []
for s,i,hi,k in self: hyp.append(hi)
return np.array(hyp)
def set_hyp(self,hyp,j=None):
""" Set all hyperparameters jointly or individually.
"""
ii = 0
for s,i,hi,k in self:
if j==None:
if i==None: k.hyp[s] = hyp[ii]
else: k.hyp[s][i] = hyp[ii]
elif j==ii:
if i==None: k.hyp[s] = hyp
else: k.hyp[s][i] = hyp
ii += 1
return self
def get_nhyp(self):
""" Obtain total number of hyperparameters.
"""
return sum(1 for _ in self)
def get_hyp_tree(self):
""" Construct the tree of hyperparameters.
"""
hyp_tree = []
def dfs(k,s): # depth first search over the tree
s += k.name
if k.chil!=None:
for i,ki in enumerate(k.chil):
dfs(ki,'%s%d/'%(s,i+1))
for v,h in k.hyp.items():
hyp_tree.append( (s,h) )
dfs(self,'')
return hyp_tree