forked from PiInTheSky/lora-gateway
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsha256.c
170 lines (150 loc) · 5.07 KB
/
sha256.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include "sha256.h"
// DBL_INT_ADD treats two unsigned ints a and b as one 64-bit integer and adds c to it
#define DBL_INT_ADD(a,b,c) if (a > 0xffffffff - (c)) ++b; a += c;
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
uint32_t k[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe,
0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa,
0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb,
0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624,
0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb,
0xbef9a3f7, 0xc67178f2
};
void
sha256_transform( SHA256_CTX * ctx, uint8_t data[] )
{
uint32_t a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
for ( i = 0, j = 0; i < 16; ++i, j += 4 )
m[i] =
( data[j] << 24 ) | ( data[j + 1] << 16 ) | ( data[j + 2] << 8 ) |
( data[j + 3] );
for ( ; i < 64; ++i )
m[i] = SIG1( m[i - 2] ) + m[i - 7] + SIG0( m[i - 15] ) + m[i - 16];
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
f = ctx->state[5];
g = ctx->state[6];
h = ctx->state[7];
for ( i = 0; i < 64; ++i )
{
t1 = h + EP1( e ) + CH( e, f, g ) + k[i] + m[i];
t2 = EP0( a ) + MAJ( a, b, c );
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
ctx->state[5] += f;
ctx->state[6] += g;
ctx->state[7] += h;
}
void
sha256_init( SHA256_CTX * ctx )
{
ctx->datalen = 0;
ctx->bitlen[0] = 0;
ctx->bitlen[1] = 0;
ctx->state[0] = 0x6a09e667;
ctx->state[1] = 0xbb67ae85;
ctx->state[2] = 0x3c6ef372;
ctx->state[3] = 0xa54ff53a;
ctx->state[4] = 0x510e527f;
ctx->state[5] = 0x9b05688c;
ctx->state[6] = 0x1f83d9ab;
ctx->state[7] = 0x5be0cd19;
}
void
sha256_update( SHA256_CTX * ctx, char data[], uint32_t len )
{
uint32_t i;
for ( i = 0; i < len; ++i )
{
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if ( ctx->datalen == 64 )
{
sha256_transform( ctx, ctx->data );
DBL_INT_ADD( ctx->bitlen[0], ctx->bitlen[1], 512 );
ctx->datalen = 0;
}
}
}
void
sha256_final( SHA256_CTX * ctx, uint8_t hash[] )
{
uint32_t i;
i = ctx->datalen;
// Pad whatever data is left in the buffer.
if ( ctx->datalen < 56 )
{
ctx->data[i++] = 0x80;
while ( i < 56 )
ctx->data[i++] = 0x00;
}
else
{
ctx->data[i++] = 0x80;
while ( i < 64 )
ctx->data[i++] = 0x00;
sha256_transform( ctx, ctx->data );
memset( ctx->data, 0, 56 );
}
// Append to the padding the total message's length in bits and transform.
DBL_INT_ADD( ctx->bitlen[0], ctx->bitlen[1], ctx->datalen * 8 );
ctx->data[63] = ctx->bitlen[0];
ctx->data[62] = ctx->bitlen[0] >> 8;
ctx->data[61] = ctx->bitlen[0] >> 16;
ctx->data[60] = ctx->bitlen[0] >> 24;
ctx->data[59] = ctx->bitlen[1];
ctx->data[58] = ctx->bitlen[1] >> 8;
ctx->data[57] = ctx->bitlen[1] >> 16;
ctx->data[56] = ctx->bitlen[1] >> 24;
sha256_transform( ctx, ctx->data );
// Since this implementation uses little endian byte ordering and SHA uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for ( i = 0; i < 4; ++i )
{
hash[i] = ( ctx->state[0] >> ( 24 - i * 8 ) ) & 0x000000ff;
hash[i + 4] = ( ctx->state[1] >> ( 24 - i * 8 ) ) & 0x000000ff;
hash[i + 8] = ( ctx->state[2] >> ( 24 - i * 8 ) ) & 0x000000ff;
hash[i + 12] = ( ctx->state[3] >> ( 24 - i * 8 ) ) & 0x000000ff;
hash[i + 16] = ( ctx->state[4] >> ( 24 - i * 8 ) ) & 0x000000ff;
hash[i + 20] = ( ctx->state[5] >> ( 24 - i * 8 ) ) & 0x000000ff;
hash[i + 24] = ( ctx->state[6] >> ( 24 - i * 8 ) ) & 0x000000ff;
hash[i + 28] = ( ctx->state[7] >> ( 24 - i * 8 ) ) & 0x000000ff;
}
}