Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

TypeError: TaskPrompter.__init__() got an unexpected keyword argument 'default_cfg' #24

Open
op1009 opened this issue Nov 19, 2023 · 2 comments

Comments

@op1009
Copy link

op1009 commented Nov 19, 2023

Steps done:

  1. Clone repo
  2. Download .pth.tar files
  3. Run below commands
CUDA_VISIBLE_DEVICES=0
!python3 inference.py --config_path=configs/pascal/pascal_vitLp16_taskprompter.yml --image_path=/content/Screenshot7.png --ckp_path=/content/Multi-Task-Transformer/TaskPrompter/InvPT_pascal_vitLp16.pth.tar --save_dir=output

Error

Traceback (most recent call last):
  File "/content/Multi-Task-Transformer/TaskPrompter/inference.py", line 185, in <module>
    infer_one_image(args.image_path)
  File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "/content/Multi-Task-Transformer/TaskPrompter/inference.py", line 141, in infer_one_image
    model = initialize_model(p, checkpoint_path)
  File "/content/Multi-Task-Transformer/TaskPrompter/inference.py", line 60, in initialize_model
    model = get_model(p)
  File "/content/Multi-Task-Transformer/TaskPrompter/utils/common_config.py", line 79, in get_model
    backbone, backbone_channels = get_backbone(p)
  File "/content/Multi-Task-Transformer/TaskPrompter/utils/common_config.py", line 22, in get_backbone
    backbone = taskprompter_vit_large_patch16_384(p=p, pretrained=True, drop_path_rate=0.15, img_size=p.TRAIN.SCALE)
  File "/content/Multi-Task-Transformer/TaskPrompter/models/transformers/taskprompter.py", line 676, in taskprompter_vit_large_patch16_384
    model = _create_task_prompter('vit_large_patch16_384', pretrained=pretrained, **model_kwargs)
  File "/content/Multi-Task-Transformer/TaskPrompter/models/transformers/taskprompter.py", line 661, in _create_task_prompter
    model = build_model_with_cfg(
  File "/usr/local/lib/python3.10/dist-packages/timm/models/_builder.py", line 385, in build_model_with_cfg
    model = model_cls(**kwargs)
TypeError: TaskPrompter.__init__() got an unexpected keyword argument 'default_cfg'

Trying other solution from closed issue #10

CUDA_VISIBLE_DEVICES=0 
!python inference.py --image_path=/content/Screenshot7.png --ckp_path=/content/Multi-Task-Transformer/TaskPrompter/InvPT_pascal_vitLp16.pth.tar --save_dir=SAVE_DIR

Error

Traceback (most recent call last):
  File "/content/Multi-Task-Transformer/TaskPrompter/inference.py", line 185, in <module>
    infer_one_image(args.image_path)
  File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 115, in decorate_context
    return func(*args, **kwargs)
  File "/content/Multi-Task-Transformer/TaskPrompter/inference.py", line 121, in infer_one_image
    p = create_config(args.config_path, {'run_mode': 'infer'})
  File "/content/Multi-Task-Transformer/TaskPrompter/utils/config.py", line 94, in create_config
    with open(exp_file, 'r') as stream:
FileNotFoundError: [Errno 2] No such file or directory: './configs/pascal/pascal_vitLp16.yml'

Platform
Google colab with T4 runtime

@KevinChen880723
Copy link

Hi, I'm not the author, but I encountered a similar error:

File "/workspace/container_test_folder/Multi-Task-Transformer/InvPT/models/transformers/vit.py", line 546, in _create_vision_transformer
    model = build_model_with_cfg(
 File "/opt/conda/lib/python3.10/site-packages/timm/models/helpers.py", line 537, in build_model_with_cfg
    model = model_cls(**kwargs) if model_cfg is None else model_cls(cfg=model_cfg, **kwargs)
TypeError: VisionTransformer.__init__() got an unexpected keyword argument 'default_cfg'

The error can be resolved by simply modifying default_cfg at line 548 in "InvPT/models/transformers/vit.py" to pretrained_cfg. I hope this solution helps you :)

Before:

model = build_model_with_cfg(
        VisionTransformer, variant, pretrained,
        default_cfg=default_cfg,
        representation_size=repr_size,
        pretrained_filter_fn=checkpoint_filter_fn,
        pretrained_custom_load='npz' in default_cfg['url'],
        **kwargs)

After:

model = build_model_with_cfg(
        VisionTransformer, variant, pretrained,
        pretrained_cfg=default_cfg,
        representation_size=repr_size,
        pretrained_filter_fn=checkpoint_filter_fn,
        pretrained_custom_load='npz' in default_cfg['url'],
        **kwargs)

@op1009
Copy link
Author

op1009 commented Dec 2, 2023

@KevinChen880723 Thanks for your reply.

Can you help me with some other related issue, I am trying to detect 3D-bounding box over objects, how to do that ?
After 3d-bounding box, detect monocular depth of the detected objects.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants