Anserini: Experiments on Open Research
This document describes the steps to reproduce the BM25 results from Bhagavatula et. al (2018) in Anserini.
First, we need to download and extract the OpenResearch dataset (2017-02-21):
DATA_DIR=./openresearch_data
mkdir ${DATA_DIR}
wget https://s3-us-west-2.amazonaws.com/ai2-s2-research-public/open-corpus/2017-02-21/papers-2017-02-21.zip -P ${DATA_DIR}
unzip ${DATA_DIR}/papers-2017-02-21.zip -d ${DATA_DIR}
To confirm, papers-2017-02-21.json.gz
should have MD5 checksum of f35c40992e94b458db73fa030a79844b
Next, we need to convert the OpenResearch jsonlines collection into Anserini's format:
python ./src/main/python/openresearch/convert_openresearch_to_anserini_format.py \
--output_folder=${DATA_DIR}/anserini_format \
--collection_path=${DATA_DIR} \
--train_fraction=0.8 \
--max_docs_per_file=1000000 \
--use_abstract_in_query
The above script should generate 8 jsonl files in ${DATA_DIR}/anserini_format
, each with 1M lines (except for the last one, which should have 210,983 lines).
It should also produce training, dev, and test files for queries and qrels (which contains pairs of query id and relevant docs).
The option use_abstract_in_query
enables us to use both title and abstract as queries.
We can now index these docs as a JsonCollection
using Anserini:
sh ./target/appassembler/bin/IndexCollection -collection JsonCollection \
-generator DefaultLuceneDocumentGenerator -threads 8 -input ${DATA_DIR}/anserini_format/corpus \
-index ${DATA_DIR}/lucene-index-openresearch -optimize -storePositions -storeDocvectors -storeRawDocs
The output message should be something like this:
2019-06-05 21:22:18,827 INFO [main] index.IndexCollection (IndexCollection.java:615) - Total 7,210,983 documents indexed in 00:04:53
Your speed may vary... with a modern desktop machine with an SSD, indexing takes around a minute.
Optional: To further replicate the result presented in Bhagavatula et. al (2018), we could use key_terms_from_text
method presented in whoosh. For that purpose, we need to generate whoosh's own index:
python ./src/main/python/openresearch/convert_openresearch_to_whoosh_index.py \
--collection_path=${DATA_DIR} \
--whoosh_index=${DATA_DIR}/whoosh_index
It may take a few hours.
Since there are too many queries in the test set (250K), it would take a long time to retrieve all of them. To speed this up, we cap this set by selecting at random 20K queries:
shuf -n 20000 ${DATA_DIR}/anserini_format/queries.test.tsv --output ${DATA_DIR}/anserini_format/queries.small.test.tsv
We can now retrieve this smaller set of queries:
python ./src/main/python/openresearch/retrieve.py \
--index ${DATA_DIR}/lucene-index-openresearch \
--qid_queries ${DATA_DIR}/anserini_format/queries.small.test.tsv \
--output ${DATA_DIR}/anserini_format/run.small.test \
--hits 1000
or, if we would like to use key terms as query:
python ./src/main/python/openresearch/retrieve_with_key_terms.py \
--index ${DATA_DIR}/lucene-index-openresearch \
--qid_queries ${DATA_DIR}/anserini_format/queries.small.test.tsv \
--output ${DATA_DIR}/anserini_format/run.small.test \
--hits 1000 \
--whoosh_index ${DATA_DIR}/whoosh_index
Retrieval speed will vary by machine: On a modern desktop with an SSD, we can get ~0.04 per query (taking about five minutes) if using only title as query, ~1.5 for title and abstract, ~0.3 for key terms. On a slower machine with mechanical disks, the entire process might take as long as a couple of hours.
The option -hits
specifies the of documents per query to be retrieved.
Thus, the output file should have approximately 20,000 * 1,000 = 20M lines.
Finally, we can evaluate the retrieved documents using the official TREC evaluation script:
./eval/trec_eval.9.0.4/trec_eval -mrecip_rank -mmap -mrecall.20,1000 -mP.20 \
${DATA_DIR}/anserini_format/qrels.test ${DATA_DIR}/anserini_format/run.small.test
The output of only using title as query should be:
map all 0.0401
recip_rank all 0.2448
P_20 all 0.0539
recall_20 all 0.0786
recall_1000 all 0.2866
The output of using the concatenation of title and abstract as query should be:
map all 0.0626
recip_rank all 0.3512
P_20 all 0.0811
recall_20 all 0.1132
recall_1000 all 0.3628
The output of using key terms in title and abstract as query should be:
map all 0.0528
recip_rank all 0.2202
P_20 all 0.0428
recall_20 all 0.1022
recall_1000 all 0.3344
The table below compares our BM25 results against Bhagavatula's et. al (2018):
F1@20 | MRR | |
---|---|---|
BM25 (Bhagavatula et. al, 2018) | 0.058 | 0.218 |
BM25 (Anserini, Ours, title) | 0.063 | 0.244 |
BM25 (Anserini, Ours, title+abstract) | 0.095 | 0.351 |
BM25 (Anserini, Ours, key terms) | 0.060 | 0.220 |
Follow citeomatic's repo to download the necessary data.
The steps are similar to run baseline on OpenResearch, to run all three experiments on PubMed and DBLP quickly, run
./src/main/python/openresearch/run_pubmed_dblp.sh -citeomatic_data <YOUR CITEOMATIC_DATA_ROOT> -output_folder <YOUR_OUTPUT_FOLDER>
The results are as follows:
The output of using PubMed title as query
map all 0.1615
recip_rank all 0.5844
P_20 all 0.2034
recall_20 all 0.1954
recall_1000 all 0.6536
f1_20 all 0.199
The output of using PubMed key terms from title and abstract as query
map all 0.1637
recip_rank all 0.5953
P_20 all 0.2058
recall_20 all 0.1969
recall_1000 all 0.6041
f1_20 all 0.201
The output of using PubMed title + abstract as query
map all 0.2361
recip_rank all 0.7208
P_20 all 0.2726
recall_20 all 0.2632
recall_1000 all 0.7649
f1_20 all 0.268
The output of using DBLP title as query
map all 0.1056
recip_rank all 0.4244
P_20 all 0.1090
recall_20 all 0.1721
recall_1000 all 0.5511
f1_20 all 0.133
The output of using DBLP key terms from title and abstract as query
map all 0.1015
recip_rank all 0.4254
P_20 all 0.1059
recall_20 all 0.1669
recall_1000 all 0.5099
f1_20 all 0.130
The output of using DBLP title + abstract as query
map all 0.1687
recip_rank all 0.5851
P_20 all 0.1586
recall_20 all 0.2511
recall_1000 all 0.6913
f1_20 all 0.194
The table below compares our BM25 results against Bhagavatula's et. al (2018):
PubMed
F1@20 | MRR | |
---|---|---|
BM25 (Bhagavatula et. al, 2018) | 0.209 | 0.574 |
BM25 (Anserini, Ours, title) | 0.199 | 0.584 |
BM25 (Anserini, Ours, key terms) | 0.201 | 0.595 |
BM25 (Anserini, Ours, title+abstract) | 0.268 | 0.720 |
DBLP
F1@20 | MRR | |
---|---|---|
BM25 (Bhagavatula et. al, 2018) | 0.119 | 0.425 |
BM25 (Anserini, Ours, title) | 0.133 | 0.424 |
BM25 (Anserini, Ours, key terms) | 0.130 | 0.425 |
BM25 (Anserini, Ours, title+abstract) | 0.194 | 0.585 |