-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathtensorBoard.py
61 lines (45 loc) · 2.02 KB
/
tensorBoard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import tensorflow as tf
import numpy as np
def add_layer(inputs,in_size,out_size,n_layer,activation_function=None):
layer_name = "layer%s" % n_layer
with tf.name_scope(layer_name):
with tf.name_scope("Weights"):
Weights = tf.Variable(tf.random_normal([in_size,out_size]),name='W')
#概率分布的形式
tf.summary.histogram(layer_name+'/weights',Weights)
with tf.name_scope("biases"):
biases = tf.Variable(tf.zeros([1,out_size])+0.1,name='b')
tf.summary.histogram(layer_name + '/biases', biases)
with tf.name_scope("Wx_plus_b"):
Wx_plus_b = tf.add(tf.matmul(inputs,Weights),biases)
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
x_data = np.linspace(-1,1,300)[:,np.newaxis]
noise = np.random.normal(0,0.05,x_data.shape).astype(np.float32)
y_data = np.square(x_data) - 0.5 + noise
#None表示给多少个sample都可以
with tf.name_scope("input"):
xs = tf.placeholder(tf.float32,[None,1],name='x_input')
ys = tf.placeholder(tf.float32,[None,1],name='y_input')
l1 = add_layer(xs,1,10,1,activation_function=tf.nn.relu)
prediction = add_layer(l1,10,1,2,activation_function=None)
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
reduction_indices=[1]))
tf.summary.scalar("loss",loss)
with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(loss)
init = tf.global_variables_initializer()
with tf.Session() as sess:
# 1.2之前 tf.train.SummaryWriter("logs/",sess.graph)
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter('logs/',sess.graph)
sess.run(init)
for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i % 50 == 0:
result = sess.run(merged,feed_dict={xs:x_data,ys:y_data})
writer.add_summary(result,i)