-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathfast_attention.py
83 lines (68 loc) · 3.83 KB
/
fast_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple
def patch_opt_attn(attn):
self = attn
def forward(
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
# assert self.is_decoder and not is_cross_attention, "Only decoder layers are implemented in fast_attention"
assert output_attentions is False, "output_attentions not implemented for fast_attention"
assert layer_head_mask is None, "layer_head_mask is not supported with fast_attention"
# assert hidden_states.dtype in [torch.float16, torch.bfloat16], "Only float16 and bfloat16 are supported for fast_attention"
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states)
query_states = self._shape(query_states, tgt_len, bsz)
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0].to(query_states.dtype)
value_states = past_key_value[1].to(query_states.dtype)
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0].to(key_states.dtype), key_states], dim=2)
value_states = torch.cat([past_key_value[1].to(value_states.dtype), value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention: save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# if uni-directional: self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
# Note that this does NOT support attention masks other than causal masking
attn_output = F.scaled_dot_product_attention(
query_states, key_states, value_states,
is_causal=True,
dropout_p=(self.dropout if self.training else 0.0),
)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned aross GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, None, past_key_value
self.forward = forward
def patch_opt(model):
for layer in model.model.decoder.layers:
patch_opt_attn(layer.self_attn)