-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
263 lines (222 loc) · 12.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import numpy as np
import tensorflow as tf
import argparse
import os
from utils.loss import *
import utils.edof_reader as edof_reader
import param.param as param
from utils.save import *
def build_model(network, args):
if network == 'optical_forward':
from models.optics_forward import forward_model
model = forward_model(args.patch_size, args.param)
elif network == 'HR_UNet':
from models.HR_UNet import HR_UNet
model = HR_UNet(args.patch_size, args.param)
elif network == 'HR_UNet_duotask':
from models.HR_UNet import HR_UNet_duotask
model = HR_UNet_duotask(args.patch_size, args.param)
return model
def log_eval(F,G,VGG, X_val, epoch, summary_writer,args):
output_image_sensor_org, [psfs,psf_temps], GT_img, response_curve, [height_map, height_map_2D] = F([args.param.input_field1, X_val], training = False)
output_image, output_image_rgb = G(output_image_sensor_org, training = False)
GTs_ms = tf.concat(tf.unstack(GT_img, axis=-1), axis = -1)[...,None]
outputs_ms = tf.concat(tf.unstack(output_image, axis=-1), axis = -1)[...,None]
GT_img_rgb = tf.gather(tf.nn.conv2d(GT_img,args.param.response_weight_rgb,strides=[1,1,1,1],padding = 'SAME'), [2,1,0], axis = -1)
output_image_rgb = tf.gather(tf.clip_by_value(output_image_rgb,0.,1.), [2,1,0], axis = -1)
GT_max_intensity = tf.reduce_max(GT_img_rgb)
forward_out = tf.concat(tf.unstack(output_image_sensor_org, axis=-1), axis = -1)[...,None]
if args.perc_weight > 0:
perc_loss = Perc_loss(output_image_rgb/GT_max_intensity, GT_img_rgb/GT_max_intensity, VGG, args.perc_weight)
else:
perc_loss = 0
center_sum_reg = center_sum_regularizer(psf_temps, args.reg_weight, target = 0.9)
l1_loss_ms = sam_loss(GT_img, output_image, args.l1_weight_ms)
l1_loss_rgb = L1_loss(GT_img_rgb, output_image_rgb, args.l1_weight_rgb)
total_loss = l1_loss_ms + l1_loss_rgb + perc_loss + center_sum_reg
response_curve_fig = pyplot.figure(figsize=(10,10))
pyplot.plot(response_curve[0,0].numpy())
with summary_writer.as_default():
tf.summary.scalar(name = 'val_loss/l1_loss', data = l1_loss_ms, step=epoch)
tf.summary.scalar(name = 'val_loss/l2_loss', data = l1_loss_rgb, step=epoch)
tf.summary.scalar(name = 'val_loss/perc_loss', data = perc_loss, step=epoch)
tf.summary.scalar(name = 'val_loss/reg_loss', data = center_sum_reg, step=epoch)
tf.summary.scalar(name = 'val_loss/total_loss', data = total_loss, step=epoch)
tf.summary.image(name = 'out_RGB', data = output_image_rgb[0:1]/GT_max_intensity,step=epoch)
tf.summary.image(name = 'out_31c', data = outputs_ms**(1/2.2), step=epoch)
tf.summary.image(name = 'forward_out', data = forward_out / tf.reduce_max(forward_out), step=epoch)
tf.summary.image(name = 'psfs_center', data = tf.concat(tf.unstack(tf.concat(tf.unstack(tf.image.central_crop(psfs/np.amax(psfs,axis=(1,2),keepdims=True), 1/16), axis=-1), axis = -1), axis=0), axis = 0)[None,...,None], step=epoch)
tf.summary.image(name = 'response_curve', data = plot_to_image(response_curve_fig), step=epoch)
if epoch == 0:
tf.summary.image(name = 'GT_RGB', data = GT_img_rgb[0:1]/GT_max_intensity,step=epoch)
tf.summary.image(name = 'GT_31c', data = GTs_ms**(1/2.2), step=epoch)
def train(args):
param = args.param
param.quantization = False
if not args.use_noise:
param.noise_max = 0
if not args.train_curve:
param.train_response_curve = False
if args.finetune_head:
assert args.pretrained_G is not None
args.train_F=False
# create models
F = build_model(args.forward_model, args)
H_optimizer = tf.keras.optimizers.Adam(args.H_lr, beta_1=0.9) # Height Map
C_optimizer = tf.keras.optimizers.Adam(args.C_lr, beta_1=0.9) # Color Filter
if args.pretrained_F is not None:
print('Loading pretrained F from %s' %args.pretrained_F)
F_checkpoint = tf.train.Checkpoint(F = F)
F_manager = tf.train.CheckpointManager(F_checkpoint, directory=args.pretrained_F, max_to_keep=10)
status = F_checkpoint.restore(F_manager.latest_checkpoint).expect_partial()
G = build_model(args.generator, args)
G_optimizer = tf.keras.optimizers.Adam(args.G_lr, beta_1=0.9)
if args.pretrained_G is not None:
G_checkpoint = tf.train.Checkpoint(G = G)
G_manager = tf.train.CheckpointManager(G_checkpoint, directory=args.pretrained_G, max_to_keep=10)
status = G_checkpoint.restore(G_manager.latest_checkpoint).expect_partial()
print('Loading pretrained G from %s' % G_manager.latest_checkpoint)
if args.finetune_head:
print('Freeze all feature layers')
for layer in G.layers[:-1]:
layer.trainable = False
if args.perc_weight > 0:
vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet')
vgg.trainable = False
VGG = tf.keras.Model(inputs=vgg.input, outputs=[vgg.get_layer(name).output for name in args.vgg_layers.split(',')])
else:
VGG = None
checkpoint = tf.train.Checkpoint(G = G, G_optimizer = G_optimizer, F = F, H_optimizer = H_optimizer, C_optimizer = C_optimizer)
manager = tf.train.CheckpointManager(checkpoint, directory=args.result_path, max_to_keep=10)
summary_writer = tf.summary.create_file_writer(args.result_path)
save_settings(args, param)
# load data
if args.debug:
train_image = edof_reader.load_CAVE(os.path.join(param.data_dir, 'CAVE'))
dataset_length = len(train_image)
val_image = train_image
else:
train_image = []
hsdb_image = edof_reader.load_hsdb(os.path.join(param.data_dir, 'hsdb'))
train_image += hsdb_image
icvl_image = edof_reader.load_ICVL(os.path.join(param.data_dir, 'ICVL'))
train_image += icvl_image
dataset_length = len(train_image)
val_image = edof_reader.load_CAVE(os.path.join(param.data_dir, 'CAVE'))
# fix val
val_idx = 30
args.val_idx = val_idx
X_val = edof_reader.dataset_preprocess(val_image[val_idx], patch_size = args.patch_size, num_depths= param.num_depths, is_val=True)
if args.linear_rgb:
x_input = x_input**2.2
for epoch in range(args.n_epochs):
if epoch % args.save_freq == 0:
manager.save()
log_eval(F,G,VGG, X_val, epoch, summary_writer,args)
train_idx = np.random.permutation(dataset_length)
X_train = []
train_l1_loss = []
train_l2_loss = []
train_perc_loss = []
train_reg_loss = []
train_total_loss = []
for i in range(dataset_length):
x_input = train_image[train_idx[i]]
X_train = edof_reader.dataset_preprocess(x_input, patch_size = args.patch_size, num_depths= param.num_depths)
with tf.GradientTape(persistent=True) as tape:
output_image_sensor_org, [psfs, psf_temps], GT_img, _, _ = F([param.input_field1, X_train], training = args.train_F)
output_image, output_image_rgb = G(output_image_sensor_org, training = True)
GT_img_rgb = tf.nn.conv2d(GT_img,args.param.response_weight_rgb,strides=[1,1,1,1],padding = 'SAME')
max_intensity = tf.reduce_max(GT_img_rgb)
if args.perc_weight > 0:
perc_loss = Perc_loss(output_image_rgb/max_intensity, GT_img_rgb/max_intensity, VGG, args.perc_weight)
else:
perc_loss = 0
center_sum_reg = center_sum_regularizer(psf_temps, args.reg_weight, target = 0.9)
l1_loss_ms = sam_loss(GT_img, output_image, args.l1_weight_ms)
l1_loss_rgb = L1_loss(GT_img_rgb, output_image_rgb, args.l1_weight_rgb)
total_loss = l1_loss_ms + l1_loss_rgb + perc_loss + center_sum_reg
G_gradients = tape.gradient(total_loss, G.trainable_variables)
G_optimizer.apply_gradients(zip(G_gradients, G.trainable_variables))
if args.train_F:
H_gradients = tape.gradient(total_loss, F.trainable_variables[0:1])
H_optimizer.apply_gradients(zip(H_gradients, F.trainable_variables[0:1]))
if args.train_curve:
C_gradients = tape.gradient(total_loss, F.trainable_variables[1:])
C_optimizer.apply_gradients(zip(C_gradients, F.trainable_variables[1:]))
train_l1_loss.append(l1_loss_ms)
train_l2_loss.append(l1_loss_rgb)
train_perc_loss.append(perc_loss)
train_reg_loss.append(center_sum_reg)
train_total_loss.append(total_loss)
with summary_writer.as_default():
tf.summary.scalar(name = 'train_loss/l1_loss', data = tf.reduce_mean(tf.stack(train_l1_loss, axis = 0)), step=epoch+1)
tf.summary.scalar(name = 'train_loss/l2_loss', data = tf.reduce_mean(tf.stack(train_l2_loss, axis = 0)), step=epoch+1)
tf.summary.scalar(name = 'train_loss/perc_loss', data = tf.reduce_mean(tf.stack(train_perc_loss, axis = 0)), step=epoch+1)
tf.summary.scalar(name = 'train_loss/reg_loss', data = tf.reduce_mean(tf.stack(train_reg_loss, axis = 0)), step=epoch+1)
tf.summary.scalar(name = 'train_loss/total_loss', data = tf.reduce_mean(tf.stack(train_total_loss, axis = 0)), step=epoch+1)
# save final results
manager.save()
log_eval(F,G,VGG, X_val, epoch, summary_writer,args)
def main():
parser = argparse.ArgumentParser()
def str2bool(v):
assert(v == 'True' or v == 'False')
return v.lower() in ('true')
def none_or_str(value):
if value.lower() == 'none':
return None
return value
parser = argparse.ArgumentParser()
parser.add_argument('--debug', action="store_true",
help='debug mode, train on validation data to speed up the process')
parser.add_argument('--linear_rgb', action="store_true",
help='whether to train the model in linear space')
parser.add_argument('--result_path', type=str, required=True,
help='Directory that checkpoints and tensorboard logfiles will be written to.')
parser.add_argument('--use_noise', type=str2bool, default = True,
help='whether add noise to simulation')
parser.add_argument('--train_curve', type=str2bool, default = True,
help='whether train response curve')
parser.add_argument('--train_F', type=str2bool, default=True,
help='whether train the forward model')
parser.add_argument('--pretrained_F', type=none_or_str, default=None,
help='ckpt dir of a pretrained forward model')
parser.add_argument('--pretrained_G', type=none_or_str, default=None,
help='ckpt dir of a pretrained reconstruction model')
parser.add_argument('--finetune_head', type=str2bool, default=False,
help='finetune the output head, assuming pretrained_G is not None')
parser.add_argument('--l1_weight_ms', type=float, default = 1e2,
help='Weight on L1 loss on MultiSpectral')
parser.add_argument('--l1_weight_rgb', type=float, default = 1e2,
help='Weight on L1 loss on RGB')
parser.add_argument('--vgg_layers', type=str, default='block2_conv1,block3_conv1,block4_conv1',
help = 'layers used for perceptual loss, seperated by , w/o space')
parser.add_argument('--perc_weight', type=float, default=0.01,
help='Weight on Percptual loss')
parser.add_argument('--reg_weight', type=float, default=0,
help = 'center sum regulization weight')
parser.add_argument('--patch_size', type=int, default = 512,
help = 'training patch size')
parser.add_argument('--n_epochs', type=int, default = 200,
help = 'total training epochs')
parser.add_argument('--save_freq', type=int, default = 10,
help = 'saving frequency (epoch)')
parser.add_argument('--forward_model', type=str, default = 'optical_forward',
help = 'forward model arch')
parser.add_argument('--generator', type=str, default = 'UNet',
help = 'generator arch')
parser.add_argument('--H_lr', type=float, default = 1e-4,
help='Height Map learning rate')
parser.add_argument('--C_lr', type=float, default = 1e-4,
help='Color Filter learning rate')
parser.add_argument('--G_lr', type=float, default = 1e-4,
help='Generator learning rate')
args = parser.parse_args()
num_GPUs = len(tf.config.list_physical_devices('GPU'))
args.num_GPUs = num_GPUs
print("Num GPUs Available: ", num_GPUs)
args.param = param
train(args)
if __name__ == '__main__':
main()