forked from jpcy/xatlas
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathxatlas.cpp
8173 lines (7568 loc) · 240 KB
/
xatlas.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
MIT License
Copyright (c) 2018-2019 Jonathan Young
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
/*
thekla_atlas
https://github.com/Thekla/thekla_atlas
MIT License
Copyright (c) 2013 Thekla, Inc
Copyright NVIDIA Corporation 2006 -- Ignacio Castano <[email protected]>
Fast-BVH
https://github.com/brandonpelfrey/Fast-BVH
MIT License
Copyright (c) 2012 Brandon Pelfrey
px_sched
https://github.com/pplux/px
MIT License
Copyright (c) 2017-2018 Jose L. Hidalgo (PpluX)
*/
#include <algorithm>
#include <atomic>
#include <condition_variable>
#include <mutex>
#include <thread>
#include <assert.h>
#include <float.h> // FLT_MAX
#include <limits.h>
#define _USE_MATH_DEFINES
#include <math.h>
#define __STDC_LIMIT_MACROS
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "xatlas.h"
#if !defined(NDEBUG) && !defined(_DEBUG)
#define _DEBUG 1
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#define XA_STR(x) #x
#define XA_XSTR(x) XA_STR(x)
#ifndef XA_ASSERT
#define XA_ASSERT(exp) if (!(exp)) { XA_PRINT_WARNING(0, "\rASSERT: %s %s %d\n", XA_XSTR(exp), __FILE__, __LINE__); }
#endif
#ifndef XA_DEBUG_ASSERT
#define XA_DEBUG_ASSERT(exp) assert(exp)
#endif
#define XA_ALLOC(type) (type *)internal::Realloc(NULL, sizeof(type), __FILE__, __LINE__)
#define XA_ALLOC_ARRAY(type, num) (type *)internal::Realloc(NULL, sizeof(type) * num, __FILE__, __LINE__)
#define XA_REALLOC(ptr, type, num) (type *)internal::Realloc(ptr, sizeof(type) * num, __FILE__, __LINE__)
#define XA_FREE(ptr) internal::Realloc(ptr, 0, __FILE__, __LINE__)
#define XA_NEW(type, ...) new (XA_ALLOC(type)) type(__VA_ARGS__)
#ifndef XA_PRINT
#define XA_PRINT(...) \
if (xatlas::internal::s_print && xatlas::internal::s_printVerbose) \
xatlas::internal::s_print(__VA_ARGS__);
#endif
#ifndef XA_PRINT_WARNING
#define XA_PRINT_WARNING(...) \
if (xatlas::internal::s_print) \
xatlas::internal::s_print(__VA_ARGS__);
#endif
#define XA_EPSILON (0.0001f)
#define XA_NORMAL_EPSILON (0.001f)
#define XA_RANDOM_SEED (845281456)
#define XA_UNUSED(a) ((void)(a))
#ifndef XA_MULTITHREADED
#define XA_MULTITHREADED 1
#endif
#define XA_CHECK_FACE_OVERLAP 1
#define XA_DEBUG_HEAP 0
#define XA_DEBUG_SINGLE_CHART 0
#ifndef XA_DEBUG_EXPORT_ATLAS_IMAGES
#define XA_DEBUG_EXPORT_ATLAS_IMAGES 0
#endif
#define XA_DEBUG_EXPORT_OBJ 0
#define XA_DEBUG_EXPORT_OBJ_SOURCE_MESHES 0
#define XA_DEBUG_EXPORT_OBJ_CHART_GROUPS 0
#define XA_DEBUG_EXPORT_OBJ_CHARTS 0
#define XA_DEBUG_EXPORT_OBJ_INVALID_PARAMETERIZATION 0
#define XA_DEBUG_EXPORT_OBJ_BEFORE_FIX_TJUNCTION 0
#define XA_DEBUG_EXPORT_OBJ_BEFORE_CLOSE_HOLES 0
#define XA_DEBUG_EXPORT_OBJ_FAILED_CLOSE_HOLES 0
#define XA_DEBUG_EXPORT_OBJ_NOT_DISK 0
namespace xatlas {
namespace internal {
static ReallocFunc s_realloc = realloc;
static PrintFunc s_print = printf;
static bool s_printVerbose = false;
#if XA_DEBUG_HEAP
struct AllocHeader
{
size_t size;
const char *file;
int line;
AllocHeader *prev, *next;
};
static AllocHeader *s_allocRoot = NULL;
static size_t s_allocTotalSize = 0;
static size_t s_allocPeakSize = 0;
static void *Realloc(void *ptr, size_t size, const char *file, int line)
{
if (!size && !ptr)
return NULL;
uint8_t *realPtr = NULL;
AllocHeader *header = NULL;
if (ptr) {
realPtr = ((uint8_t *)ptr) - sizeof(AllocHeader);
header = (AllocHeader *)realPtr;
}
if (!size || realPtr) {
// free or realloc, either way, remove.
s_allocTotalSize -= header->size;
if (header->prev)
header->prev->next = header->next;
else
s_allocRoot = header->next;
if (header->next)
header->next->prev = header->prev;
}
if (!size)
return s_realloc(realPtr, 0); // free
size += sizeof(AllocHeader);
uint8_t *newPtr = (uint8_t *)s_realloc(realPtr, size);
if (!newPtr)
return NULL;
header = (AllocHeader *)newPtr;
header->size = size;
header->file = file;
header->line = line;
if (!s_allocRoot) {
s_allocRoot = header;
header->prev = header->next = 0;
} else {
header->prev = NULL;
header->next = s_allocRoot;
s_allocRoot = header;
header->next->prev = header;
}
s_allocTotalSize += size;
if (s_allocTotalSize > s_allocPeakSize)
s_allocPeakSize = s_allocTotalSize;
return newPtr + sizeof(AllocHeader);
}
static void ReportAllocs()
{
AllocHeader *header = s_allocRoot;
while (header) {
printf("Leak: %d bytes %s %d\n", header->size, header->file, header->line);
header = header->next;
}
printf("%0.2fMB peak memory usage\n", s_allocPeakSize / 1024.0f / 1024.0f);
}
#else
static void *Realloc(void *ptr, size_t size, const char * /*file*/, int /*line*/)
{
void *mem = s_realloc(ptr, size);
if (size > 0) {
XA_DEBUG_ASSERT(mem);
}
return mem;
}
#endif
static int align(int x, int a)
{
return (x + a - 1) & ~(a - 1);
}
template <typename T>
static T max(const T &a, const T &b)
{
return a > b ? a : b;
}
template <typename T>
static T min(const T &a, const T &b)
{
return a < b ? a : b;
}
template <typename T>
static T max3(const T &a, const T &b, const T &c)
{
return max(a, max(b, c));
}
/// Return the maximum of the three arguments.
template <typename T>
static T min3(const T &a, const T &b, const T &c)
{
return min(a, min(b, c));
}
/// Clamp between two values.
template <typename T>
static T clamp(const T &x, const T &a, const T &b)
{
return min(max(x, a), b);
}
template <typename T>
static void swap(T &a, T &b)
{
T temp = a;
a = b;
b = temp;
temp = T();
}
union FloatUint32
{
float f;
uint32_t u;
};
static bool isFinite(float f)
{
FloatUint32 fu;
fu.f = f;
return fu.u != 0x7F800000u && fu.u != 0x7F800001u;
}
// Robust floating point comparisons:
// http://realtimecollisiondetection.net/blog/?p=89
static bool equal(const float f0, const float f1, const float epsilon = XA_EPSILON)
{
//return fabs(f0-f1) <= epsilon;
return fabs(f0 - f1) <= epsilon * max3(1.0f, fabsf(f0), fabsf(f1));
}
static int ftoi_ceil(float val)
{
return (int)ceilf(val);
}
static int ftoi_round(float f)
{
return int(floorf(f + 0.5f));
}
static bool isZero(const float f, const float epsilon = XA_EPSILON)
{
return fabs(f) <= epsilon;
}
static float square(float f)
{
return f * f;
}
/** Return the next power of two.
* @see http://graphics.stanford.edu/~seander/bithacks.html
* @warning Behaviour for 0 is undefined.
* @note isPowerOfTwo(x) == true -> nextPowerOfTwo(x) == x
* @note nextPowerOfTwo(x) = 2 << log2(x-1)
*/
static uint32_t nextPowerOfTwo(uint32_t x)
{
XA_DEBUG_ASSERT( x != 0 );
// On modern CPUs this is supposed to be as fast as using the bsr instruction.
x--;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return x + 1;
}
static uint32_t sdbmHash(const void *data_in, uint32_t size, uint32_t h = 5381)
{
const uint8_t *data = (const uint8_t *) data_in;
uint32_t i = 0;
while (i < size) {
h = (h << 16) + (h << 6) - h + (uint32_t ) data[i++];
}
return h;
}
template <typename T>
static uint32_t hash(const T &t, uint32_t h = 5381)
{
return sdbmHash(&t, sizeof(T), h);
}
// Functors for hash table:
template <typename Key> struct Hash
{
uint32_t operator()(const Key &k) const { return hash(k); }
};
template <typename Key> struct Equal
{
bool operator()(const Key &k0, const Key &k1) const { return k0 == k1; }
};
class Vector2
{
public:
Vector2() {}
explicit Vector2(float f) : x(f), y(f) {}
Vector2(float x, float y): x(x), y(y) {}
Vector2 operator-() const
{
return Vector2(-x, -y);
}
void operator+=(const Vector2 &v)
{
x += v.x;
y += v.y;
}
void operator-=(const Vector2 &v)
{
x -= v.x;
y -= v.y;
}
void operator*=(float s)
{
x *= s;
y *= s;
}
void operator*=(const Vector2 &v)
{
x *= v.x;
y *= v.y;
}
float x, y;
};
static bool operator==(const Vector2 &a, const Vector2 &b)
{
return a.x == b.x && a.y == b.y;
}
static bool operator!=(const Vector2 &a, const Vector2 &b)
{
return a.x != b.x || a.y != b.y;
}
static Vector2 operator+(const Vector2 &a, const Vector2 &b)
{
return Vector2(a.x + b.x, a.y + b.y);
}
static Vector2 operator-(const Vector2 &a, const Vector2 &b)
{
return Vector2(a.x - b.x, a.y - b.y);
}
static Vector2 operator*(const Vector2 &v, float s)
{
return Vector2(v.x * s, v.y * s);
}
static Vector2 operator*(const Vector2 &v1, const Vector2 &v2)
{
return Vector2(v1.x * v2.x, v1.y * v2.y);
}
static Vector2 lerp(const Vector2 &v1, const Vector2 &v2, float t)
{
const float s = 1.0f - t;
return Vector2(v1.x * s + t * v2.x, v1.y * s + t * v2.y);
}
static float dot(const Vector2 &a, const Vector2 &b)
{
return a.x * b.x + a.y * b.y;
}
static float lengthSquared(const Vector2 &v)
{
return v.x * v.x + v.y * v.y;
}
static float length(const Vector2 &v)
{
return sqrtf(lengthSquared(v));
}
#ifdef _DEBUG
static bool isNormalized(const Vector2 &v, float epsilon = XA_NORMAL_EPSILON)
{
return equal(length(v), 1, epsilon);
}
#endif
static Vector2 normalize(const Vector2 &v, float epsilon = XA_EPSILON)
{
float l = length(v);
XA_DEBUG_ASSERT(!isZero(l, epsilon));
XA_UNUSED(epsilon);
Vector2 n = v * (1.0f / l);
XA_DEBUG_ASSERT(isNormalized(n));
return n;
}
static bool equal(const Vector2 &v1, const Vector2 &v2, float epsilon = XA_EPSILON)
{
return equal(v1.x, v2.x, epsilon) && equal(v1.y, v2.y, epsilon);
}
static Vector2 min(const Vector2 &a, const Vector2 &b)
{
return Vector2(min(a.x, b.x), min(a.y, b.y));
}
static Vector2 max(const Vector2 &a, const Vector2 &b)
{
return Vector2(max(a.x, b.x), max(a.y, b.y));
}
static bool isFinite(const Vector2 &v)
{
return isFinite(v.x) && isFinite(v.y);
}
// Note, this is the area scaled by 2!
static float triangleArea(const Vector2 &v0, const Vector2 &v1)
{
return (v0.x * v1.y - v0.y * v1.x); // * 0.5f;
}
static float triangleArea(const Vector2 &a, const Vector2 &b, const Vector2 &c)
{
// IC: While it may be appealing to use the following expression:
//return (c.x * a.y + a.x * b.y + b.x * c.y - b.x * a.y - c.x * b.y - a.x * c.y); // * 0.5f;
// That's actually a terrible idea. Small triangles far from the origin can end up producing fairly large floating point
// numbers and the results becomes very unstable and dependent on the order of the factors.
// Instead, it's preferable to subtract the vertices first, and multiply the resulting small values together. The result
// in this case is always much more accurate (as long as the triangle is small) and less dependent of the location of
// the triangle.
//return ((a.x - c.x) * (b.y - c.y) - (a.y - c.y) * (b.x - c.x)); // * 0.5f;
return triangleArea(a - c, b - c);
}
static bool pointInTriangle(const Vector2 &p, const Vector2 &a, const Vector2 &b, const Vector2 &c)
{
return triangleArea(a, b, p) >= 0.00001f && triangleArea(b, c, p) >= 0.00001f && triangleArea(c, a, p) >= 0.00001f;
}
#if XA_CHECK_FACE_OVERLAP
static bool linesIntersect(const Vector2 &a1, const Vector2 &a2, const Vector2 &b1, const Vector2 &b2)
{
const Vector2 v0 = a2 - a1;
const Vector2 v1 = b2 - b1;
const float denom = -v1.x * v0.y + v0.x * v1.y;
if (equal(denom, 0.0f))
return false;
const float s = (-v0.y * (a1.x - b1.x) + v0.x * (a1.y - b1.y)) / denom;
const float t = ( v1.x * (a1.y - b1.y) - v1.y * (a1.x - b1.x)) / denom;
return s > 0.0f && s < 1.0f && t > 0.0f && t < 1.0f;
}
#endif
class Vector3
{
public:
Vector3() {}
explicit Vector3(float f) : x(f), y(f), z(f) {}
Vector3(float x, float y, float z) : x(x), y(y), z(z) {}
Vector3(const Vector2 &v, float z) : x(v.x), y(v.y), z(z) {}
Vector2 xy() const
{
return Vector2(x, y);
}
Vector3 operator-() const
{
return Vector3(-x, -y, -z);
}
void operator+=(const Vector3 &v)
{
x += v.x;
y += v.y;
z += v.z;
}
void operator-=(const Vector3 &v)
{
x -= v.x;
y -= v.y;
z -= v.z;
}
void operator*=(float s)
{
x *= s;
y *= s;
z *= s;
}
void operator/=(float s)
{
float is = 1.0f / s;
x *= is;
y *= is;
z *= is;
}
void operator*=(const Vector3 &v)
{
x *= v.x;
y *= v.y;
z *= v.z;
}
void operator/=(const Vector3 &v)
{
x /= v.x;
y /= v.y;
z /= v.z;
}
float x, y, z;
};
static bool operator==(const Vector3 &a, const Vector3 &b)
{
return a.x == b.x && a.y == b.y && a.z == b.z;
}
static bool operator!=(const Vector3 &a, const Vector3 &b)
{
return a.x != b.x || a.y != b.y || a.z != b.z;
}
static Vector3 add(const Vector3 &a, const Vector3 &b)
{
return Vector3(a.x + b.x, a.y + b.y, a.z + b.z);
}
static Vector3 operator+(const Vector3 &a, const Vector3 &b)
{
return add(a, b);
}
static Vector3 sub(const Vector3 &a, const Vector3 &b)
{
return Vector3(a.x - b.x, a.y - b.y, a.z - b.z);
}
static Vector3 operator-(const Vector3 &a, const Vector3 &b)
{
return sub(a, b);
}
static Vector3 cross(const Vector3 &a, const Vector3 &b)
{
return Vector3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
}
static Vector3 operator*(const Vector3 &v, float s)
{
return Vector3(v.x * s, v.y * s, v.z * s);
}
static Vector3 operator*(float s, const Vector3 &v)
{
return Vector3(v.x * s, v.y * s, v.z * s);
}
static Vector3 operator/(const Vector3 &v, float s)
{
return v * (1.0f / s);
}
static Vector3 lerp(const Vector3 &v1, const Vector3 &v2, float t)
{
const float s = 1.0f - t;
return Vector3(v1.x * s + t * v2.x, v1.y * s + t * v2.y, v1.z * s + t * v2.z);
}
static float dot(const Vector3 &a, const Vector3 &b)
{
return a.x * b.x + a.y * b.y + a.z * b.z;
}
static float lengthSquared(const Vector3 &v)
{
return v.x * v.x + v.y * v.y + v.z * v.z;
}
static float length(const Vector3 &v)
{
return sqrtf(lengthSquared(v));
}
static bool isNormalized(const Vector3 &v, float epsilon = XA_NORMAL_EPSILON)
{
return equal(length(v), 1, epsilon);
}
static Vector3 normalize(const Vector3 &v, float epsilon = XA_EPSILON)
{
float l = length(v);
XA_DEBUG_ASSERT(!isZero(l, epsilon));
XA_UNUSED(epsilon);
Vector3 n = v * (1.0f / l);
XA_DEBUG_ASSERT(isNormalized(n));
return n;
}
static Vector3 normalizeSafe(const Vector3 &v, const Vector3 &fallback, float epsilon = XA_EPSILON)
{
float l = length(v);
if (isZero(l, epsilon)) {
return fallback;
}
return v * (1.0f / l);
}
static bool equal(const Vector3 &v0, const Vector3 &v1, float epsilon = XA_EPSILON)
{
return fabs(v0.x - v1.x) <= epsilon && fabs(v0.y - v1.y) <= epsilon && fabs(v0.z - v1.z) <= epsilon;
}
static Vector3 min(const Vector3 &a, const Vector3 &b)
{
return Vector3(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z));
}
static Vector3 max(const Vector3 &a, const Vector3 &b)
{
return Vector3(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z));
}
#ifdef _DEBUG
bool isFinite(const Vector3 &v)
{
return isFinite(v.x) && isFinite(v.y) && isFinite(v.z);
}
#endif
struct Vector3Hash
{
uint32_t operator()(const Vector3 &v) const
{
int32_t data[3];
data[0] = (int32_t)(v.x * 100.0f);
data[1] = (int32_t)(v.y * 100.0f);
data[2] = (int32_t)(v.z * 100.0f);
return sdbmHash(data, sizeof(data));
}
};
struct Vector3Equal
{
bool operator()(const Vector3 &v0, const Vector3 &v1) const
{
return equal(v0, v1);
}
};
template <typename T>
static void construct_range(T * ptr, uint32_t new_size, uint32_t old_size) {
for (uint32_t i = old_size; i < new_size; i++) {
new(ptr+i) T; // placement new
}
}
template <typename T>
static void construct_range(T * ptr, uint32_t new_size, uint32_t old_size, const T & elem) {
for (uint32_t i = old_size; i < new_size; i++) {
new(ptr+i) T(elem); // placement new
}
}
template <typename T>
static void construct_range(T * ptr, uint32_t new_size, uint32_t old_size, const T * src) {
for (uint32_t i = old_size; i < new_size; i++) {
new(ptr+i) T(src[i]); // placement new
}
}
template <typename T>
static void destroy_range(T * ptr, uint32_t new_size, uint32_t old_size) {
for (uint32_t i = new_size; i < old_size; i++) {
(ptr+i)->~T(); // Explicit call to the destructor
}
}
/**
* Replacement for std::vector that is easier to debug and provides
* some nice foreach enumerators.
*/
template<typename T>
class Array {
public:
typedef uint32_t size_type;
Array() : m_buffer(NULL), m_capacity(0), m_size(0) {}
Array(const Array & a) : m_buffer(NULL), m_capacity(0), m_size(0)
{
copy(a.m_buffer, a.m_size);
}
Array(const T * ptr, uint32_t num) : m_buffer(NULL), m_capacity(0), m_size(0)
{
copy(ptr, num);
}
explicit Array(uint32_t capacity) : m_buffer(NULL), m_capacity(0), m_size(0)
{
setArrayCapacity(capacity);
}
~Array()
{
destroy();
}
const Array<T> &operator=(const Array<T> &other)
{
m_buffer = other.m_buffer;
m_capacity = other.m_capacity;
m_size = other.m_size;
return *this;
}
const T & operator[]( uint32_t index ) const
{
XA_DEBUG_ASSERT(index < m_size);
return m_buffer[index];
}
T & operator[] ( uint32_t index )
{
XA_DEBUG_ASSERT(index < m_size);
return m_buffer[index];
}
uint32_t size() const { return m_size; }
const T * data() const { return m_buffer; }
T * data() { return m_buffer; }
T * begin() { return m_buffer; }
T * end() { return m_buffer + m_size; }
const T * begin() const { return m_buffer; }
const T * end() const { return m_buffer + m_size; }
bool isEmpty() const { return m_size == 0; }
void push_back( const T & val )
{
XA_DEBUG_ASSERT(&val < m_buffer || &val >= m_buffer+m_size);
uint32_t old_size = m_size;
uint32_t new_size = m_size + 1;
setArraySize(new_size);
construct_range(m_buffer, new_size, old_size, val);
}
void pop_back()
{
XA_DEBUG_ASSERT( m_size > 0 );
resize( m_size - 1 );
}
const T & back() const
{
XA_DEBUG_ASSERT( m_size > 0 );
return m_buffer[m_size-1];
}
T & back()
{
XA_DEBUG_ASSERT( m_size > 0 );
return m_buffer[m_size-1];
}
const T & front() const
{
XA_DEBUG_ASSERT( m_size > 0 );
return m_buffer[0];
}
T & front()
{
XA_DEBUG_ASSERT( m_size > 0 );
return m_buffer[0];
}
// Remove the element at the given index. This is an expensive operation!
void removeAt(uint32_t index)
{
XA_DEBUG_ASSERT(index >= 0 && index < m_size);
if (m_size == 1) {
clear();
}
else {
m_buffer[index].~T();
memmove(m_buffer+index, m_buffer+index+1, sizeof(T) * (m_size - 1 - index));
m_size--;
}
}
// Insert the given element at the given index shifting all the elements up.
void insertAt(uint32_t index, const T & val = T())
{
XA_DEBUG_ASSERT( index >= 0 && index <= m_size );
setArraySize(m_size + 1);
if (index < m_size - 1) {
memmove(m_buffer+index+1, m_buffer+index, sizeof(T) * (m_size - 1 - index));
}
// Copy-construct into the newly opened slot.
new(m_buffer+index) T(val);
}
void append(const Array<T> & other)
{
append(other.m_buffer, other.m_size);
}
void resize(uint32_t new_size)
{
uint32_t old_size = m_size;
// Destruct old elements (if we're shrinking).
destroy_range(m_buffer, new_size, old_size);
setArraySize(new_size);
// Call default constructors
construct_range(m_buffer, new_size, old_size);
}
void resize(uint32_t new_size, const T & elem)
{
XA_DEBUG_ASSERT(&elem < m_buffer || &elem > m_buffer+m_size);
uint32_t old_size = m_size;
// Destruct old elements (if we're shrinking).
destroy_range(m_buffer, new_size, old_size);
setArraySize(new_size);
// Call copy constructors
construct_range(m_buffer, new_size, old_size, elem);
}
void clear()
{
// Destruct old elements
destroy_range(m_buffer, 0, m_size);
m_size = 0;
}
void destroy()
{
clear();
XA_FREE(m_buffer);
m_buffer = NULL;
m_capacity = 0;
m_size = 0;
}
void reserve(uint32_t desired_size)
{
if (desired_size > m_capacity) {
setArrayCapacity(desired_size);
}
}
void copy(const T * data, uint32_t count)
{
destroy_range(m_buffer, 0, m_size);
setArraySize(count);
construct_range(m_buffer, count, 0, data);
}
void moveTo(Array<T> &other)
{
other.destroy();
swap(m_buffer, other.m_buffer);
swap(m_capacity, other.m_capacity);
swap(m_size, other.m_size);
}
protected:
void setArraySize(uint32_t new_size)
{
m_size = new_size;
if (new_size > m_capacity) {
uint32_t new_buffer_size;
if (m_capacity == 0) {
// first allocation is exact
new_buffer_size = new_size;
}
else {
// following allocations grow array by 25%
new_buffer_size = new_size + (new_size >> 2);
}
setArrayCapacity( new_buffer_size );
}
}
void setArrayCapacity(uint32_t new_capacity)
{
XA_DEBUG_ASSERT(new_capacity >= m_size);
if (new_capacity == 0) {
// free the buffer.
if (m_buffer != NULL) {
XA_FREE(m_buffer);
m_buffer = NULL;
}
}
else {
// realloc the buffer
m_buffer = XA_REALLOC(m_buffer, T, new_capacity);
}
m_capacity = new_capacity;
}
T * m_buffer;
uint32_t m_capacity;
uint32_t m_size;
};
/// Basis class to compute tangent space basis, ortogonalizations and to
/// transform vectors from one space to another.
class Basis
{
public:
/// Create a null basis.
Basis() : tangent(0, 0, 0), bitangent(0, 0, 0), normal(0, 0, 0) {}
void buildFrameForDirection(const Vector3 &d, float angle = 0)
{
XA_ASSERT(isNormalized(d));
normal = d;
// Choose minimum axis.
if (fabsf(normal.x) < fabsf(normal.y) && fabsf(normal.x) < fabsf(normal.z)) {
tangent = Vector3(1, 0, 0);
} else if (fabsf(normal.y) < fabsf(normal.z)) {
tangent = Vector3(0, 1, 0);
} else {
tangent = Vector3(0, 0, 1);
}
// Ortogonalize
tangent -= normal * dot(normal, tangent);
tangent = normalize(tangent);
bitangent = cross(normal, tangent);
// Rotate frame around normal according to angle.
if (angle != 0.0f) {
float c = cosf(angle);
float s = sinf(angle);
Vector3 tmp = c * tangent - s * bitangent;
bitangent = s * tangent + c * bitangent;
tangent = tmp;
}
}
Vector3 tangent;
Vector3 bitangent;
Vector3 normal;
};
// Simple bit array.