-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathui.py
366 lines (303 loc) · 12.2 KB
/
ui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import json
import base64
import uuid
import hmac
import requests
import streamlit as st
from predictionguard import PredictionGuard
from langchain_community.document_loaders import PyPDFLoader
import lancedb
from langchain.text_splitter import CharacterTextSplitter
import pyarrow as pa
import pandas as pd
#-------------------#
# Authentication #
#-------------------#
def check_password():
"""Returns `True` if the user had the correct password."""
def password_entered():
"""Checks whether a password entered by the user is correct."""
if hmac.compare_digest(st.session_state["password"], st.secrets["password"]):
st.session_state["password_correct"] = True
del st.session_state["password"] # Don't store the password.
else:
st.session_state["password_correct"] = False
# Return True if the password is validated.
if st.session_state.get("password_correct", False):
return True
# Show input for password.
st.text_input(
"Password", type="password", on_change=password_entered, key="password"
)
if "password_correct" in st.session_state:
st.error("😕 Password incorrect")
return False
if not check_password():
st.stop()
#-------------------#
# PG setup #
#-------------------#
# Create PredictionGuard client
client = PredictionGuard()
def stream_tokens(model, messages, system, temperature, max_new_tokens):
for sse in client.chat.completions.create(
model=model,
messages=[
{
"role": "system",
"content": system
}
] + messages,
temperature=temperature,
max_tokens=max_new_tokens,
stream=True
):
yield sse["data"]["choices"][0]["delta"]["content"]
def gen_tokens(model, messages, system, temperature, max_new_tokens):
result = client.chat.completions.create(
model=model,
messages=[
{
"role": "system",
"content": system
}
] + messages,
temperature=temperature,
max_tokens=max_new_tokens
)
return result['choices'][0]['message']['content']
def embed(text):
response = client.embeddings.create(
model="multilingual-e5-large-instruct",
input=text
)
return response['data'][0]['embedding']
def call_lvm(image, query, max_new_tokens):
with open('/tmp/' + image.name, "wb") as f:
f.write(image.read())
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": query
},
{
"type": "image_url",
"image_url": {
"url": '/tmp/' + image.name,
}
}
]
},
]
result = client.chat.completions.create(
model="llava-1.5-7b-hf",
messages=messages,
max_tokens=max_new_tokens
)
result['choices'][0]['message']['content']
models = [
"Hermes-3-Llama-3.1-8B",
"Hermes-3-Llama-3.1-70B",
"Neural-Chat-7B",
"deepseek-coder-6.7b-instruct",
]
#--------------------------#
# Prompt templates, utils #
#--------------------------#
default_system = "You are a helpful assistant that generally gives concise (1 to 2 sentence) responses unless asked to give longer or differently formatted responses."
qa_template = """Read the context below and respond with an answer to the question. If the question cannot be answered based on the context alone or the context does not explicitly say the answer to the question, write "Sorry I had trouble answering this question, based on the information I found."
Context: "{context}"
Question: "{query}"
"""
@st.cache_resource
def process_pdf(pdf_upload, chunk_size, chunk_overlap):
# convert the pdf file in memory to path
with st.spinner("Loading and parsing PDF..."):
with open('/tmp/' +pdf_upload.name, "wb") as f:
f.write(pdf_upload.read())
loader = PyPDFLoader('/tmp/' + pdf_upload.name)
pages = loader.load_and_split()
text_out = ""
for p in pages:
text_out += p.page_content
# process the document
text_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap, separator=' ')
docs = text_splitter.split_text(text_out)
# Get a unique id for the database
uuid_raw = uuid.uuid4()
# LanceDB setup
uri = "/tmp/.lancedb-" + str(uuid_raw)
db = lancedb.connect(uri)
# Create a dataframe with the chunk ids, chunks, and embeddings
with st.spinner("Embedding documents..."):
data = []
for i in range(len(docs)):
if docs[i].strip() != "":
data.append({
"chunk": i,
"text": docs[i],
"vector": embed(docs[i])
})
# Embed the documents
schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 1024)),
pa.field("text", pa.utf8()),
pa.field("chunk", pa.int16()),
])
table = db.create_table("docs", schema=schema)
table.add(data)
return table
#-----------------------#
# Streamlit UI #
#-----------------------#
def home():
st.title("Modaxo workshop, AI playground")
st.image("pg_opea_components.jpg")
st.markdown("""- `llm`: Generate text using Large Language Models (LLMs) like Hermes-2-Pro-Llama-3-8B, Hermes-2-Pro-Mistral-7B, Neural-Chat-7B, deepseek-coder-6.7b-instruct, etc.)
- `lvm`: Reason over images using Vision Models (LVMs) like LLaVA
- `embedding`: Generate embeddings for us in RAG workflows or semantic search applications
- `chat`: Chat with LLMs
- `rag q&a`: Answer questions with an LLM augmented by external data""")
# - Guardrails:
# - `PII`: Detect and sanitize PII in text inputs
# - `prompt injection`: Detect prompt injection attacks
# - `factual consistency`: Score the factual consistency between a text (e.g., an LLM output) and reference data (e.g., in a RAG workflow)
# - `toxicity`: Score the level of toxicity in a text (e.g., an LLM output)
def llm():
st.title("Large Language Model (LLM)")
temperature = st.slider("Temperature", 0.0, 2.0, 0.1)
max_new_tokens = st.slider("Max new tokens", 1, 2000, 1000)
model = st.selectbox("Model", models)
query = st.text_area("User message", height=100)
if query:
with st.spinner("Calling LLM..."):
st.write_stream(stream_tokens(
model, [{"role": "user", "content": query}],
default_system, temperature, max_new_tokens
))
def lvm():
st.title("Vision Model (LVM)")
max_new_tokens = st.slider("Max new tokens", 1, 2000, 200)
image = st.file_uploader("Image", type=["jpg", "jpeg", "png"])
query = st.text_area("Query", height=100)
if st.button("Submit/ Generate"):
with st.spinner("Calling LVM..."):
answer = call_lvm(image, query, max_new_tokens)
st.write(answer)
def embedding():
st.title("Embedding")
text2embed = st.text_area("Text to embed", height=200)
if text2embed:
with st.spinner("Embedding..."):
st.write(embed(text2embed))
def guardrails():
st.title("Guardrails (aka safeguards)")
with st.expander("PII"):
piitext = st.text_area("Text", height=200)
replace = st.checkbox("Replace PII")
replace_method = st.selectbox("Replace method", ["random", "fake", "category", "mask"])
if st.button("Identify and sanitize PII"):
with st.spinner("Checking for PII..."):
st.write("PII output:", call_pii(piitext, replace, replace_method))
with st.expander("Prompt Injection"):
pitext = st.text_area("Prompt", height=200)
if st.button("Check for injection"):
with st.spinner("Checking for injection..."):
st.write("Injection probability:", call_pi(pitext))
with st.expander("Factual consistency"):
text1 = st.text_area("Text to check (e.g., output of an LLM)", height=200)
text2 = st.text_area("Reference text", height=200)
if st.button("Check"):
with st.spinner("Checking factual consistency..."):
st.write("Factuality score:", call_factuality(text1, text2))
with st.expander("Toxicity"):
toxtext = st.text_area("Text to inspect (e.g., output of an LLM)", height=200)
if st.button("Check for toxicity"):
with st.spinner("Checking toxicity..."):
st.write("Toxicity score:", call_toxicity(toxtext))
def chat():
st.title("LLM chatbot")
with st.expander("Settings"):
temperature = st.slider("Temperature", 0.0, 2.0, 0.1)
max_new_tokens = st.slider("Max new tokens", 1, 2000, 1000)
model = st.selectbox("Model", models)
st.session_state["pg_model"] = model
system = st.text_area("System prompt", height=100, value=default_system)
if st.button("Reset chat"):
st.session_state.messages = []
st.divider()
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("What is up?"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Display assistant response in chat message container
with st.chat_message("assistant"):
# generate response
st.session_state['full_response'] = ""
if len(st.session_state.messages) > 6:
messages_to_use = st.session_state.messages[-5:].copy()
else:
messages_to_use = st.session_state.messages.copy()
completion = st.write_stream(stream_tokens(
st.session_state["pg_model"],
messages_to_use,
system,
temperature,
max_new_tokens))
st.session_state.messages.append({"role": "assistant", "content": completion})
def rag_chat():
st.title("RAG Q&A")
# Process a file.
with st.expander("Upload, process, and embed a file"):
pdf_upload = st.file_uploader("Upload file", type=["pdf"])
chunk_size = st.slider("Chunk size", 10, 3000, 1000)
chunk_overlap = st.slider("Chunk overlap (number of chars)", 0, 1000, 100)
with st.expander("Q&A Settings"):
temperature = st.slider("Temperature", 0.0, 2.0, 0.1)
max_new_tokens = st.slider("Max new tokens", 1, 2000, 1000)
model = st.selectbox("Model", models)
st.session_state["pg_model"] = model
if pdf_upload:
# Process the file
table = process_pdf(pdf_upload, chunk_size, chunk_overlap)
# Query the documents
query_text = st.text_input("Enter your question")
if st.button("Query"):
query = embed(query_text)
st.markdown("## Retrieved results:")
results = table.search(query).limit(5).to_pandas()
st.write(results[['text', 'chunk', '_distance']])
st.markdown("## Answer:")
answer = gen_tokens(
st.session_state["pg_model"],
[{"role": "user", "content": qa_template.format(
context=results["text"].tolist()[0],
query=query_text)}],
"You are a helpful assistant that answers questions based on given context.",
temperature,
max_new_tokens
)
st.write(answer)
pg = st.navigation([
st.Page(home, title="Home", icon="🏠"),
st.Page(llm, title="LLM", icon="🤖"),
st.Page(lvm, title="LVM", icon="🖼️"),
st.Page(embedding, title="Embedding", icon="🗜️"),
#st.Page(guardrails, title="Guardrails", icon="🛡️"),
st.Page(chat, title="Chat", icon="💬"),
st.Page(rag_chat, title="RAG Q&A", icon="📄"),
])
pg.run()