Skip to content

Latest commit

 

History

History
351 lines (254 loc) · 11.2 KB

README.md

File metadata and controls

351 lines (254 loc) · 11.2 KB

LLM Microservice

This microservice, designed for Language Model Inference (LLM), processes input consisting of a query string and associated reranked documents. It constructs a prompt based on the query and documents, which is then used to perform inference with a large language model. The service delivers the inference results as output.

A prerequisite for using this microservice is that users must have a LLM text generation service (etc., TGI, vLLM, Prediction Guard and Ray) already running. Users need to set the LLM service's endpoint into an environment variable. The microservice utilizes this endpoint to create an LLM object, enabling it to communicate with the LLM service for executing language model operations.

Overall, this microservice offers a streamlined way to integrate large language model inference into applications, requiring minimal setup from the user beyond initiating a TGI/vLLM/Ray/PredictionGuard service and configuring the necessary environment variables. This allows for the seamless processing of queries and documents to generate intelligent, context-aware responses.

🚀1. Start Microservice with Python (Option 1)

To start the LLM microservice, you need to install python packages first.

1.1 Install Requirements

pip install -r requirements.txt

1.2 Start LLM Service

1.2.1 Start TGI Service

export HF_TOKEN=${your_hf_api_token}
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=${your_langchain_api_key}
export LANGCHAIN_PROJECT="opea/gen-ai-comps:llms"
docker run -p 8008:80 -v ./data:/data --name tgi_service --shm-size 1g ghcr.io/huggingface/text-generation-inference:1.4 --model-id ${your_hf_llm_model}

1.2.2 Start vLLM Service

export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
docker run -it --name vllm_service -p 8008:80 -e HF_TOKEN=${HUGGINGFACEHUB_API_TOKEN} -v ./data:/data vllm:cpu /bin/bash -c "cd / && export VLLM_CPU_KVCACHE_SPACE=40 && python3 -m vllm.entrypoints.openai.api_server --model ${your_hf_llm_model} --port 80"

1.2.3 Start Ray Service

export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export TRUST_REMOTE_CODE=True
docker run -it --runtime=habana --name ray_serve_service -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --ipc=host -p 8008:80 -e HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN -e TRUST_REMOTE_CODE=$TRUST_REMOTE_CODE ray_serve:habana /bin/bash -c "ray start --head && python api_server_openai.py --port_number 80 --model_id_or_path ${your_hf_llm_model} --chat_processor ${your_hf_chatprocessor}"

1.2.3 Start Prediction Guard Service

Not Applicable if using open access LLMs already hosted in Intel Tiber Developer Cloud on Gaudi (or your self-hosted version of Prediction Guard). You will only need your Prediction Guard API key, which will be referenced below.

1.3 Verify the LLM Service

1.3.1 Verify the TGI Service

curl http://${your_ip}:8008/generate \
  -X POST \
  -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":17, "do_sample": true}}' \
  -H 'Content-Type: application/json'

1.3.2 Verify the vLLM Service

curl http://${your_ip}:8008/v1/completions \
  -H "Content-Type: application/json" \
  -d '{
  "model": ${your_hf_llm_model},
  "prompt": "What is Deep Learning?",
  "max_tokens": 32,
  "temperature": 0
  }'

1.3.3 Verify the Ray Service

curl http://${your_ip}:8008/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
  "model": ${your_hf_llm_model},
  "messages": [
        {"role": "assistant", "content": "You are a helpful assistant."},
        {"role": "user", "content": "What is Deep Learning?"},
    ],
  "max_tokens": 32,
  "stream": True
  }'

1.3.3 Verify the Prediction Guard Service

curl -X POST https://api.predictionguard.com/chat/completions - Streaming Version \
     -H "x-api-key: <apiKey>" \
     -H "Content-Type: application/json" \
     -d '{
  "model": "Hermes-2-Pro-Llama-3-8B",
  "messages": [
    {
      "role": "user",
      "content": "How do you feel about the world in general?"
    }
  ],
  "max_tokens": 1000,
  "temperature": 1,
  "top_p": 1,
  "top_k": 50,
  "stream": true
}'

1.4 Start LLM Service with Python Script

1.4.1 Start the TGI Service

export TGI_LLM_ENDPOINT="http://${your_ip}:8008"
python text-generation/tgi/llm.py

1.4.2 Start the vLLM Service

export vLLM_LLM_ENDPOINT="http://${your_ip}:8008"
python text-generation/vllm/llm.py

1.4.3 Start the Ray Service

export RAY_Serve_ENDPOINT="http://${your_ip}:8008"
python text-generation/ray_serve/llm.py

1.4.3 Start the Prediction Guard OPEA compliant LLM Service

export PREDICTIONGUARD_API_KEY={your_pg_api_key}
python text-generation/predictionguard/llm_predictionguard.py

🚀2. Start Microservice with Docker (Option 2)

If you start an LLM microservice with docker, the docker_compose_llm.yaml file will automatically start a TGI/vLLM service with docker.

2.1 Setup Environment Variables

In order to start TGI and LLM services, you need to setup the following environment variables first.

export HF_TOKEN=${your_hf_api_token}
export TGI_LLM_ENDPOINT="http://${your_ip}:8008"
export LLM_MODEL_ID=${your_hf_llm_model}
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=${your_langchain_api_key}
export LANGCHAIN_PROJECT="opea/llms"

In order to start vLLM and LLM services, you need to setup the following environment variables first.

export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export vLLM_LLM_ENDPOINT="http://${your_ip}:8008"
export LLM_MODEL_ID=${your_hf_llm_model}
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_PROJECT="opea/llms"

In order to start Ray serve and LLM services, you need to setup the following environment variables first.

export HUGGINGFACEHUB_API_TOKEN=${your_hf_api_token}
export RAY_Serve_ENDPOINT="http://${your_ip}:8008"
export LLM_MODEL=${your_hf_llm_model}
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_PROJECT="opea/llms"
export CHAT_PROCESSOR="ChatModelLlama"

In order to start Prediction Guard and LLM services, you need to setup the following environment variables first.

export PREDICTIONGUARD_API_KEY={your_pg_api_key}

2.2 Build Docker Image

2.2.1 TGI

cd ../../
docker build -t opea/llm-tgi:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/tgi/Dockerfile .

2.2.2 vLLM

Build vllm docker.

bash build_docker_vllm.sh

Build microservice docker.

cd ../../../../
docker build -t opea/llm-vllm:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/vllm/docker/Dockerfile.microservice .

2.2.3 Ray Serve

Build Ray Serve docker.

bash build_docker_rayserve.sh

Build microservice docker.

cd ../../../../
docker build -t opea/llm-ray:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/text-generation/ray_serve/docker/Dockerfile.microservice .

2.2.4 Prediction Guard

cd ../../
docker build -t opea/llm-predictionguard:latest -f comps/llms/text-generation/predictionguard/Dockerfile .

2.3 Run the Docker image

To start a docker container, you have two options:

  • A. Run Docker with CLI
  • B. Run Docker with Docker Compose

You can choose one as needed.

2.3.1 Run Docker with CLI (Option A)

2.3.1.1 TGI

docker run -d --name="llm-tgi-server" -p 9000:9000 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e TGI_LLM_ENDPOINT=$TGI_LLM_ENDPOINT -e HF_TOKEN=$HF_TOKEN opea/llm-tgi:latest

2.3.1.2 vLLM

Start vllm endpoint.

bash launch_vllm_service.sh

Start vllm microservice.

docker run --name="llm-vllm-server" -p 9000:9000 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e no_proxy=${no_proxy} -e vLLM_LLM_ENDPOINT=$vLLM_LLM_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN -e LLM_MODEL_ID=$LLM_MODEL_ID opea/llm-vllm:latest

2.3.1.3 Ray Serve

Start Ray Serve endpoint.

bash launch_ray_service.sh

Start Ray Serve microservice.

docker run -d --name="llm-ray-server" -p 9000:9000 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e RAY_Serve_ENDPOINT=$RAY_Serve_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HUGGINGFACEHUB_API_TOKEN -e LLM_MODEL=$LLM_MODEL opea/llm-ray:latest

2.3.1.4 Prediction Guard

docker run -d -p 9000:9000 -e PREDICTIONGUARD_API_KEY=$PREDICTIONGUARD_API_KEY  --name llm-predictionguard opea/llm-predictionguard:latest

2.3.2 Run Docker with Docker Compose (Option B)

2.3.2.1 TGI

cd text-generation/tgi
docker compose -f docker_compose_llm.yaml up -d

2.3.2.2 vLLM

cd text-generation/vllm
docker compose -f docker_compose_llm.yaml up -d

2.3.2.3 Ray Serve

cd text-genetation/ray_serve
docker compose -f docker_compose_llm.yaml up -d

🚀3. Consume LLM Service

3.1 Check Service Status

curl http://${your_ip}:9000/v1/health_check\
  -X GET \
  -H 'Content-Type: application/json'

3.2 Consume LLM Service

You can set the following model parameters according to your actual needs, such as max_new_tokens, streaming.

The streaming parameter determines the format of the data returned by the API. It will return text string with streaming=false, return text streaming flow with streaming=true.

# non-streaming mode
curl http://${your_ip}:9000/v1/chat/completions \
  -X POST \
  -d '{"query":"What is Deep Learning?","max_new_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":false}' \
  -H 'Content-Type: application/json'

# streaming mode
curl http://${your_ip}:9000/v1/chat/completions \
  -X POST \
  -d '{"query":"What is Deep Learning?","max_new_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":true}' \
  -H 'Content-Type: application/json'

4. Validated Model

Model TGI-Gaudi vLLM-CPU vLLM-Gaudi Ray Prediction Guard
Intel/neural-chat-7b-v3-3
Llama-2-7b-chat-hf x
Llama-2-70b-chat-hf - x x
Meta-Llama-3-8B-Instruct x
Meta-Llama-3-70B-Instruct - x x
Phi-3 x Limit 4K Limit 4K x
Hermes-2-Pro-Llama-3-8B - - - -
Nous-Hermes-Llama2-13B - - - -
Hermes-2-Pro-Mistral-7B - - - -
llama-3-sqlcoder-8b - - - -
deepseek-coder-6.7b-instruct - - - -