forked from Minor-lazer/Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0-1 Knapsack Problem - DP.cpp
44 lines (39 loc) · 1.06 KB
/
0-1 Knapsack Problem - DP.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
// A Dynamic Programming based
// solution for 0-1 Knapsack problem
#include <stdio.h>
// A utility function that returns
// maximum of two integers
int max(int a, int b)
{
return (a > b) ? a : b;
}
// Returns the maximum value that
// can be put in a knapsack of capacity W
int knapSack(int W, int wt[], int val[], int n)
{
int i, w;
int K[n + 1][W + 1];
// Build table K[][] in bottom up manner
for (i = 0; i <= n; i++) {
for (w = 0; w <= W; w++) {
if (i == 0 || w == 0)
K[i][w] = 0;
else if (wt[i - 1] <= w)
K[i][w] = max(
val[i - 1] + K[i - 1][w - wt[i - 1]],
K[i - 1][w]);
else
K[i][w] = K[i - 1][w];
}
}
return K[n][W];
}
int main()
{
int val[] = { 60, 100, 120 };
int wt[] = { 10, 20, 30 };
int W = 50;
int n = sizeof(val) / sizeof(val[0]);
printf("%d", knapSack(W, wt, val, n));
return 0;
}