forked from BloodAxe/OpenCV-Features-Comparison
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImageTransformation.cpp
398 lines (324 loc) · 12.1 KB
/
ImageTransformation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
#include "ImageTransformation.hpp"
#pragma mark - ImageTransformation default implementation
bool ImageTransformation::canTransformKeypoints() const
{
return false;
}
void ImageTransformation::transform(float t, const Keypoints& source, Keypoints& result) const
{
}
cv::Mat ImageTransformation::getHomography(float t, const cv::Mat& source) const
{
return cv::Mat::eye(3, 3, CV_64FC1);
}
ImageTransformation::~ImageTransformation()
{
}
bool ImageTransformation::findHomography( const Keypoints& source, const Keypoints& result, const Matches& input, Matches& inliers, cv::Mat& homography)
{
if (input.size() < 4)
return false;
const int pointsCount = input.size();
const float reprojectionThreshold = 2;
//Prepare src and dst points
std::vector<cv::Point2f> srcPoints, dstPoints;
for (int i = 0; i < pointsCount; i++)
{
srcPoints.push_back(source[input[i].trainIdx].pt);
dstPoints.push_back(result[input[i].queryIdx].pt);
}
// Find homography using RANSAC algorithm
std::vector<unsigned char> status;
homography = cv::findHomography(srcPoints, dstPoints, CV_FM_RANSAC, reprojectionThreshold, status);
// Warp dstPoints to srcPoints domain using inverted homography transformation
std::vector<cv::Point2f> srcReprojected;
cv::perspectiveTransform(dstPoints, srcReprojected, homography.inv());
// Pass only matches with low reprojection error (less than reprojectionThreshold value in pixels)
inliers.clear();
for (int i = 0; i < pointsCount; i++)
{
cv::Point2f actual = srcPoints[i];
cv::Point2f expect = srcReprojected[i];
cv::Point2f v = actual - expect;
float distanceSquared = v.dot(v);
if (/*status[i] && */distanceSquared <= reprojectionThreshold * reprojectionThreshold)
{
inliers.push_back(input[i]);
}
}
// Test for bad case
if (inliers.size() < 4)
return false;
// Now use only good points to find refined homography:
std::vector<cv::Point2f> refinedSrc, refinedDst;
for (int i = 0; i < inliers.size(); i++)
{
refinedSrc.push_back(source[inliers[i].trainIdx].pt);
refinedDst.push_back(result[inliers[i].queryIdx].pt);
}
// Use least squares method to find precise homography
cv::Mat homography2 = cv::findHomography(refinedSrc, refinedDst, 0, reprojectionThreshold);
// Reproject again:
cv::perspectiveTransform(dstPoints, srcReprojected, homography2.inv());
inliers.clear();
for (int i = 0; i < pointsCount; i++)
{
cv::Point2f actual = srcPoints[i];
cv::Point2f expect = srcReprojected[i];
cv::Point2f v = actual - expect;
float distanceSquared = v.dot(v);
if (distanceSquared <= reprojectionThreshold * reprojectionThreshold)
{
inliers.push_back(input[i]);
}
}
homography = homography2;
return inliers.size() >= 4;
}
#pragma mark - ImageRotationTransformation implementation
ImageRotationTransformation::ImageRotationTransformation(float startAngleInDeg, float endAngleInDeg, float step, cv::Point2f rotationCenterInUnitSpace)
: ImageTransformation("Rotation")
, m_startAngleInDeg(startAngleInDeg)
, m_endAngleInDeg(endAngleInDeg)
, m_step(step)
, m_rotationCenterInUnitSpace(rotationCenterInUnitSpace)
{
// Fill the arguments
for (float arg = startAngleInDeg; arg <= endAngleInDeg; arg += step)
m_args.push_back(arg);
}
std::vector<float> ImageRotationTransformation::getX() const
{
return m_args;
}
void ImageRotationTransformation::transform(float t, const cv::Mat& source, cv::Mat& result) const
{
cv::Point2f center(source.cols * m_rotationCenterInUnitSpace.x, source.rows * m_rotationCenterInUnitSpace.y);
cv::Mat rotationMat = cv::getRotationMatrix2D(center, t, 1);
cv::warpAffine(source, result, rotationMat, source.size(), cv::INTER_CUBIC);
}
cv::Mat ImageRotationTransformation::getHomography(float t, const cv::Mat& source) const
{
cv::Point2f center(source.cols * m_rotationCenterInUnitSpace.x, source.rows * m_rotationCenterInUnitSpace.y);
cv::Mat rotationMat = cv::getRotationMatrix2D(center, t, 1);
cv::Mat h = cv::Mat::eye(3,3, CV_64FC1);
rotationMat.copyTo(h(cv::Range(0,2), cv::Range(0,3)));
return h;
}
#pragma mark - ImageScalingTransformation implementation
ImageScalingTransformation::ImageScalingTransformation(float minScale, float maxScale, float step)
: ImageTransformation("Scaling")
, m_minScale(minScale)
, m_maxScale(maxScale)
, m_step(step)
{
// Fill the arguments
for (float arg = minScale; arg <= maxScale; arg += step)
m_args.push_back(arg);
}
std::vector<float> ImageScalingTransformation::getX() const
{
return m_args;
}
void ImageScalingTransformation::transform(float t, const cv::Mat& source, cv::Mat& result)const
{
cv::Size dstSize(static_cast<int>(source.cols * t + 0.5f), static_cast<int>(source.rows * t + 0.5f));
cv::resize(source, result, dstSize, CV_INTER_AREA);
}
cv::Mat ImageScalingTransformation::getHomography(float t, const cv::Mat& source) const
{
cv::Mat h = cv::Mat::eye(3,3, CV_64FC1);
h.at<double>(0,0) = h.at<double>(1,1) = t;
return h;
}
#pragma mark - GaussianBlurTransform implementation
GaussianBlurTransform::GaussianBlurTransform(int maxKernelSize)
: ImageTransformation("Gaussian blur")
, m_maxKernelSize(maxKernelSize)
{
for (int arg = 1; arg <= maxKernelSize; arg++)
m_args.push_back(static_cast<float>(arg));
}
std::vector<float> GaussianBlurTransform::getX() const
{
return m_args;
}
void GaussianBlurTransform::transform(float t, const cv::Mat& source, cv::Mat& result)const
{
int kernelSize = static_cast<int>(t) * 2 + 1;
cv::GaussianBlur(source, result, cv::Size(kernelSize,kernelSize), 0);
}
#pragma mark - BrightnessImageTransform implementation
BrightnessImageTransform::BrightnessImageTransform(int min, int max, int step)
: ImageTransformation("Brightness change")
, m_min(min)
, m_max(max)
, m_step(step)
{
for (int arg = min; arg <= max; arg += step)
m_args.push_back(static_cast<float>(arg));
}
std::vector<float> BrightnessImageTransform::getX() const
{
return m_args;
}
void BrightnessImageTransform::transform(float t, const cv::Mat& source, cv::Mat& result)const
{
result = source + cv::Scalar(t,t,t,t);
}
#pragma mark - CombinedTransform implementation
CombinedTransform::CombinedTransform(cv::Ptr<ImageTransformation> first, cv::Ptr<ImageTransformation> second, ParamCombinationType type)
: ImageTransformation(first->name + "+" + second->name)
, m_first(first)
, m_second(second)
{
std::vector<float> x1 = first->getX();
std::vector<float> x2 = second->getX();
switch (type)
{
case Full:
{
int index = 0;
for (size_t i1 = 0; i1 < x1.size(); i1++)
{
for (size_t i2 = 0; i2 < x2.size(); i2++)
{
m_params.push_back(std::make_pair(x1[i1], x2[i2]));
m_x.push_back(index);
index++;
}
}
}
break;
case Interpolate:
{
if (x1.size() > x2.size())
{
int index = 0;
for (size_t i2 = 0; i2 < x2.size(); i2++)
{
size_t i1 = static_cast<size_t>((float)(x1.size() * i2) / (float)x2.size() + 0.5f);
m_params.push_back(std::make_pair(x1[i1], x2[i2]));
m_x.push_back(index);
index++;
}
}
else
{
int index = 0;
for (size_t i1 = 0; i1 < x1.size(); i1++)
{
size_t i2 = static_cast<size_t>((float)(x2.size() * i1) / (float)x1.size() + 0.5f);
m_params.push_back(std::make_pair(x1[i1], x2[i2]));
m_x.push_back(index);
index++;
}
}
}; break;
case Extrapolate:
{
if (x1.size() > x2.size())
{
int index = 0;
for (size_t i1 = 0; i1 < x1.size(); i1++)
{
size_t i2 = static_cast<size_t>((float)(x2.size() * i1) / (float)x1.size() );
m_params.push_back(std::make_pair(x1[i1], x2[i2]));
m_x.push_back(index);
index++;
}
}
else
{
int index = 0;
for (size_t i2 = 0; i2 < x2.size(); i2++)
{
size_t i1 = static_cast<size_t>((float)(x1.size() * i2) / (float)x2.size() );
m_params.push_back(std::make_pair(x1[i1], x2[i2]));
m_x.push_back(index);
index++;
}
}
}; break;
default:
break;
};
}
std::vector<float> CombinedTransform::getX() const
{
return m_x;
}
void CombinedTransform::transform(float t, const cv::Mat& source, cv::Mat& result) const
{
size_t index = static_cast<size_t>(t);
float t1 = m_params[index].first;
float t2 = m_params[index].second;
cv::Mat temp;
m_first->transform(t1, source, temp);
m_second->transform(t2, temp, result);
}
bool CombinedTransform::canTransformKeypoints() const
{
return m_first->canTransformKeypoints() && m_second->canTransformKeypoints();
}
void CombinedTransform::transform(float t, const Keypoints& source, Keypoints& result) const
{
size_t index = static_cast<size_t>(t);
float t1 = m_params[index].first;
float t2 = m_params[index].second;
Keypoints temp;
m_first->transform(t1, source, temp);
m_second->transform(t2, temp, result);
}
cv::Mat CombinedTransform::getHomography(float t, const cv::Mat& source) const
{
size_t index = static_cast<size_t>(t);
float t1 = m_params[index].first;
float t2 = m_params[index].second;
cv::Mat temp;
m_first->transform(t1, source, temp);
return m_second->getHomography(t2, temp) * m_first->getHomography(t1, source);
}
#pragma mark PerspectiveTransform implementation
PerspectiveTransform::PerspectiveTransform(int count)
: ImageTransformation("Perspective")
{
cv::RNG rng;
for (int i=0; i<count; i++)
{
m_args.push_back(i);
m_homographies.push_back(warpPerspectiveRand(rng));
}
}
cv::Mat PerspectiveTransform::warpPerspectiveRand( cv::RNG& rng )
{
cv::Mat H;
H.create(3, 3, CV_64FC1);
H.at<double>(0,0) = rng.uniform( 0.8f, 1.2f);
H.at<double>(0,1) = rng.uniform(-0.1f, 0.1f);
//H.at<double>(0,2) = rng.uniform(-0.1f, 0.1f)*src.cols;
H.at<double>(0,2) = rng.uniform(-0.1f, 0.1f);
H.at<double>(1,0) = rng.uniform(-0.1f, 0.1f);
H.at<double>(1,1) = rng.uniform( 0.8f, 1.2f);
//H.at<double>(1,2) = rng.uniform(-0.1f, 0.1f)*src.rows;
H.at<double>(1,2) = rng.uniform(-0.1f, 0.1f);
H.at<double>(2,0) = rng.uniform( -1e-4f, 1e-4f);
H.at<double>(2,1) = rng.uniform( -1e-4f, 1e-4f);
H.at<double>(2,2) = rng.uniform( 0.8f, 1.2f);
return H;
}
std::vector<float> PerspectiveTransform::getX() const
{
return m_args;
}
void PerspectiveTransform::transform(float t, const cv::Mat& source, cv::Mat& result) const
{
cv::warpPerspective(source, result, getHomography(t, source), source.size(), cv::INTER_CUBIC);
}
cv::Mat PerspectiveTransform::getHomography(float t, const cv::Mat& source) const
{
cv::Mat h = m_homographies[(int)t].clone();
h.at<double>(0,2) *= source.cols;
h.at<double>(1,2) *= source.rows;
return h;
}