-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathpredict_HIDE_results.py
64 lines (58 loc) · 2.19 KB
/
predict_HIDE_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from __future__ import print_function
import numpy as np
import torch
import cv2
import yaml
import os
from torch.autograd import Variable
from models.networks import get_generator
import torchvision
import time
import argparse
def get_args():
parser = argparse.ArgumentParser('Test an image')
parser.add_argument('--weights_path', required=True, help='Weights path')
return parser.parse_args()
if __name__ == '__main__':
args = get_args()
with open('config/config_Stripformer_gopro.yaml') as cfg:
config = yaml.safe_load(cfg)
blur_path = './datasets/HIDE/blur/'
out_path = './out/Stripformer_HIDE_results'
if not os.path.isdir(out_path):
os.mkdir(out_path)
model = get_generator(config['model'])
model.load_state_dict(torch.load(args.weights_path))
model = model.cuda()
test_time = 0
iteration = 0
total_image_number = 2025
# warm up
warm_up = 0
print('Hardware warm-up')
for img_name in os.listdir(blur_path):
warm_up += 1
img = cv2.imread(blur_path + '/' + img_name)
img_tensor = torch.from_numpy(np.transpose(img / 255, (2, 0, 1)).astype('float32')) - 0.5
with torch.no_grad():
img_tensor = Variable(img_tensor.unsqueeze(0)).cuda()
result_image = model(img_tensor)
if warm_up == 20:
break
break
for img_name in os.listdir(blur_path):
img = cv2.imread(blur_path + '/' + img_name)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_tensor = torch.from_numpy(np.transpose(img / 255, (2, 0, 1)).astype('float32')) - 0.5
with torch.no_grad():
iteration += 1
img_tensor = Variable(img_tensor.unsqueeze(0)).cuda()
start = time.time()
result_image = model(img_tensor)
stop = time.time()
print('Image:{}/{}, CNN Runtime:{:.4f}'.format(iteration, total_image_number, (stop - start)))
test_time += stop - start
print('Average Runtime:{:.4f}'.format(test_time / float(iteration)))
result_image = result_image + 0.5
out_file_name = out_path + '/' + img_name
torchvision.utils.save_image(result_image, out_file_name)