-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathevaluate_RealBlur_R.py
101 lines (83 loc) · 3.43 KB
/
evaluate_RealBlur_R.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
from skimage import io
import cv2
import numpy as np
from skimage.metrics import structural_similarity
import concurrent.futures
def image_align(deblurred, gt):
# this function is based on kohler evaluation code
z = deblurred
c = np.ones_like(z)
x = gt
zs = (np.sum(x * z) / np.sum(z * z)) * z # simple intensity matching
warp_mode = cv2.MOTION_HOMOGRAPHY
warp_matrix = np.eye(3, 3, dtype=np.float32)
# Specify the number of iterations.
number_of_iterations = 100
termination_eps = 0
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT,
number_of_iterations, termination_eps)
# Run the ECC algorithm. The results are stored in warp_matrix.
(cc, warp_matrix) = cv2.findTransformECC(cv2.cvtColor(x, cv2.COLOR_RGB2GRAY), cv2.cvtColor(zs, cv2.COLOR_RGB2GRAY),
warp_matrix, warp_mode, criteria, inputMask=None, gaussFiltSize=5)
target_shape = x.shape
shift = warp_matrix
zr = cv2.warpPerspective(
zs,
warp_matrix,
(target_shape[1], target_shape[0]),
flags=cv2.INTER_CUBIC + cv2.WARP_INVERSE_MAP,
borderMode=cv2.BORDER_REFLECT)
cr = cv2.warpPerspective(
np.ones_like(zs, dtype='float32'),
warp_matrix,
(target_shape[1], target_shape[0]),
flags=cv2.INTER_NEAREST + cv2.WARP_INVERSE_MAP,
borderMode=cv2.BORDER_CONSTANT,
borderValue=0)
zr = zr * cr
xr = x * cr
return zr, xr, cr, shift
def compute_psnr(image_true, image_test, image_mask, data_range=None):
# this function is based on skimage.metrics.peak_signal_noise_ratio
err = np.sum((image_true - image_test) ** 2, dtype=np.float64) / np.sum(image_mask)
return 10 * np.log10((data_range ** 2) / err)
def compute_ssim(tar_img, prd_img, cr1):
ssim_pre, ssim_map = structural_similarity(tar_img, prd_img, multichannel=True, gaussian_weights=True,
use_sample_covariance=False, data_range=1.0, full=True)
ssim_map = ssim_map * cr1
r = int(3.5 * 1.5 + 0.5) # radius as in ndimage
win_size = 2 * r + 1
pad = (win_size - 1) // 2
ssim = ssim_map[pad:-pad, pad:-pad, :]
crop_cr1 = cr1[pad:-pad, pad:-pad, :]
ssim = ssim.sum(axis=0).sum(axis=0) / crop_cr1.sum(axis=0).sum(axis=0)
ssim = np.mean(ssim)
return ssim
total_psnr = 0.
total_ssim = 0.
count = 0
img_path = './out/Stripformer_realblur_R_results'
gt_path = './datasets/Realblur_R/test/sharp'
print(img_path)
for file in os.listdir(img_path):
for img_name in os.listdir(img_path + '/' + file):
count += 1
number = img_name.split('_')[1]
gt_name = 'gt_' + number
img_dir = img_path + '/' + file + '/' + img_name
gt_dir = gt_path + '/' + file + '/' + gt_name
with concurrent.futures.ProcessPoolExecutor(max_workers=10) as executor:
tar_img = io.imread(gt_dir)
prd_img = io.imread(img_dir)
tar_img = tar_img.astype(np.float32) / 255.0
prd_img = prd_img.astype(np.float32) / 255.0
prd_img, tar_img, cr1, shift = image_align(prd_img, tar_img)
PSNR = compute_psnr(tar_img, prd_img, cr1, data_range=1)
SSIM = compute_ssim(tar_img, prd_img, cr1)
total_psnr += PSNR
total_ssim += SSIM
print(count, PSNR)
print('PSNR:', total_psnr / count)
print('SSIM:', total_ssim / count)
print(img_path)