forked from run-llama/chat-llamaindex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathroute.ts
206 lines (192 loc) · 5.27 KB
/
route.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import {
ChatHistory,
ChatMessage,
ContextChatEngine,
OpenAI,
ServiceContext,
SimpleChatEngine,
SimpleChatHistory,
SummaryChatHistory,
TextNode,
serviceContextFromDefaults,
Response,
VectorStoreIndex,
} from "llamaindex";
import { IndexDict } from "llamaindex/indices/json-to-index-struct";
import { NextRequest, NextResponse } from "next/server";
import { LLMConfig, MessageContent } from "@/app/client/platforms/llm";
import { getDataSource } from "./datasource";
import {
DATASOURCES_CHUNK_OVERLAP,
DATASOURCES_CHUNK_SIZE,
} from "@/scripts/constants.mjs";
import { Embedding } from "@/app/client/fetch/url";
import Locale from "@/app/locales";
async function createChatEngine(
serviceContext: ServiceContext,
datasource?: string,
embeddings?: Embedding[],
) {
if (datasource || embeddings) {
let index;
if (embeddings) {
// TODO: merge indexes, currently we prefer own embeddings
index = await createIndex(serviceContext, embeddings);
} else if (datasource) {
index = await getDataSource(serviceContext, datasource);
}
const retriever = index!.asRetriever();
retriever.similarityTopK = 5;
return new ContextChatEngine({
chatModel: serviceContext.llm,
retriever,
});
}
return new SimpleChatEngine({
llm: serviceContext.llm,
});
}
async function createIndex(
serviceContext: ServiceContext,
embeddings: Embedding[],
) {
const embeddingResults = embeddings.map((config) => {
return new TextNode({ text: config.text, embedding: config.embedding });
});
const indexDict = new IndexDict();
for (const node of embeddingResults) {
indexDict.addNode(node);
}
const index = await VectorStoreIndex.init({
indexStruct: indexDict,
serviceContext: serviceContext,
});
index.vectorStore.add(embeddingResults);
if (!index.vectorStore.storesText) {
await index.docStore.addDocuments(embeddingResults, true);
}
await index.indexStore?.addIndexStruct(indexDict);
index.indexStruct = indexDict;
return index;
}
function createReadableStream(
stream: AsyncIterable<Response>,
chatHistory: ChatHistory,
) {
const it = stream[Symbol.asyncIterator]();
let responseStream = new TransformStream();
const writer = responseStream.writable.getWriter();
let aborted = false;
writer.closed.catch(() => {
// reader aborted the stream
aborted = true;
});
const encoder = new TextEncoder();
const onNext = async () => {
try {
const { value, done } = await it.next();
if (aborted) return;
if (!done) {
writer.write(
encoder.encode(`data: ${JSON.stringify(value.response)}\n\n`),
);
onNext();
} else {
writer.write(
`data: ${JSON.stringify({
done: true,
// get the optional message containing the chat summary
memoryMessage: chatHistory
.newMessages()
.filter((m) => m.role === "memory")
.at(0),
})}\n\n`,
);
writer.close();
}
} catch (error) {
console.error("[LlamaIndex]", error);
writer.write(
`data: ${JSON.stringify({
error: Locale.Chat.LLMError,
})}\n\n`,
);
writer.close();
}
};
onNext();
return responseStream.readable;
}
export async function POST(request: NextRequest) {
try {
const body = await request.json();
const {
message,
chatHistory: messages,
datasource,
config,
embeddings,
}: {
message: MessageContent;
chatHistory: ChatMessage[];
datasource: string | undefined;
config: LLMConfig;
embeddings: Embedding[] | undefined;
} = body;
if (!message || !messages || !config) {
return NextResponse.json(
{
error:
"message, chatHistory and config are required in the request body",
},
{ status: 400 },
);
}
const llm = new OpenAI({
model: config.model,
temperature: config.temperature,
topP: config.topP,
maxTokens: config.maxTokens,
});
const serviceContext = serviceContextFromDefaults({
llm,
chunkSize: DATASOURCES_CHUNK_SIZE,
chunkOverlap: DATASOURCES_CHUNK_OVERLAP,
});
const chatEngine = await createChatEngine(
serviceContext,
datasource,
embeddings,
);
const chatHistory = config.sendMemory
? new SummaryChatHistory({ llm, messages })
: new SimpleChatHistory({ messages });
const stream = await chatEngine.chat({
message,
chatHistory,
stream: true,
});
const readableStream = createReadableStream(stream, chatHistory);
return new NextResponse(readableStream, {
headers: {
"Content-Type": "text/event-stream",
Connection: "keep-alive",
"Cache-Control": "no-cache, no-transform",
},
});
} catch (error) {
console.error("[LlamaIndex]", error);
return NextResponse.json(
{
error: Locale.Chat.LLMError,
},
{
status: 500,
},
);
}
}
export const runtime = "nodejs";
export const dynamic = "force-dynamic";
// Set max running time of function, for Vercel Hobby use 10 seconds, see https://vercel.com/docs/functions/serverless-functions/runtimes#maxduration
export const maxDuration = 120;