-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cnndm.py
457 lines (379 loc) · 17.7 KB
/
train_cnndm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import os
import sys
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import pickle
import random
from datetime import datetime
from collections import OrderedDict
from data.meeting import TopicSegment, Utterance, bert_tokenizer, DA_MAPPING
from data import cnndm
from data.cnndm import ProcessedDocument, ProcessedSummary
from models.hierarchical_rnn import EncoderDecoder
from models.neural import LabelSmoothingLoss
from train_ami import diverisity_loss
CNNDM_DATA_PATH = "lib/model_data/cnndm-191216.{}.pk.bin"
def train_cnndm():
print("Start training hierarchical RNN model")
# ---------------------------------------------------------------------------------- #
args = {}
args['use_gpu'] = True
args['num_utterances'] = 50 # max no. utterance in a meeting
args['num_words'] = 32 # max no. words in an utterance
args['summary_length'] = 144 # max no. words in a summary
args['summary_type'] = 'long' # long or short summary
args['vocab_size'] = 30522 # BERT tokenizer
args['embedding_dim'] = 256 # word embeeding dimension
args['rnn_hidden_size'] = 512 # RNN hidden size
args['dropout'] = 0.1
args['num_layers_enc'] = 2 # in total it's num_layers_enc*2 (word/utt)
args['num_layers_dec'] = 1
args['batch_size'] = 32
args['update_nbatches'] = 1
args['num_epochs'] = 20
args['random_seed'] = 78
args['best_val_loss'] = 1e+10
args['val_batch_size'] = 32 # 1 for now --- evaluate ROUGE
args['val_stop_training'] = 10
args['adjust_lr'] = True # if True overwrite the learning rate above
args['initial_lr'] = 5e-3 # lr = lr_0*step^(-decay_rate)
args['decay_rate'] = 0.25
args['label_smoothing'] = 0.1
args['a_div'] = 1.0
args['memory_utt'] = False
args['model_save_dir'] = "lib/trained_models/"
# args['load_model'] = "lib/trained_models/MODEL_CNNDM0.pt"
args['load_model'] = None
args['model_name'] = 'MODEL_CNNDM1'
# ---------------------------------------------------------------------------------- #
print_config(args)
if args['use_gpu']:
if 'X_SGE_CUDA_DEVICE' in os.environ: # to run on CUED stack machine
print('running on the stack... 1 GPU')
cuda_device = os.environ['X_SGE_CUDA_DEVICE']
print('X_SGE_CUDA_DEVICE is set to {}'.format(cuda_device))
os.environ['CUDA_VISIBLE_DEVICES'] = cuda_device
else:
print('running locally...')
os.environ["CUDA_VISIBLE_DEVICES"] = '1' # choose the device (GPU) here
device = 'cuda'
else:
device = 'cpu'
print("device = {}".format(device))
# random seed
random.seed(args['random_seed'])
torch.manual_seed(args['random_seed'])
np.random.seed(args['random_seed'])
args['model_data_dir'] = "/home/alta/summary/pm574/summariser0/lib/model_data/"
args['max_pos_embed'] = 512
args['max_num_sentences'] = 32
args['max_summary_length'] = args['summary_length']
train_data = load_cnndm_data(args, 'trainx', dump=False)
# train_data = load_cnndm_data(args, 'test', dump=False)
# print("loaded TEST data")
valid_data = load_cnndm_data(args, 'valid', dump=False)
model = EncoderDecoder(args, device=device)
print(model)
# Load model if specified (path to pytorch .pt)
if args['load_model'] != None:
model_path = args['load_model']
try:
model.load_state_dict(torch.load(model_path))
except RuntimeError: # need to remove module
# Main model
model_state_dict = torch.load(model_path)
new_model_state_dict = OrderedDict()
for key in model_state_dict.keys():
new_model_state_dict[key.replace("module.","")] = model_state_dict[key]
model.load_state_dict(new_model_state_dict)
model.train()
print("Loaded model from {}".format(args['load_model']))
else:
print("Train a new model")
# to use multiple GPUs
if torch.cuda.device_count() > 1:
print("Multiple GPUs: {}".format(torch.cuda.device_count()))
model = nn.DataParallel(model)
print("Train a new model")
# Hyperparameters
BATCH_SIZE = args['batch_size']
NUM_EPOCHS = args['num_epochs']
VAL_BATCH_SIZE = args['val_batch_size']
VAL_STOP_TRAINING = args['val_stop_training']
if args['label_smoothing'] > 0.0:
criterion = LabelSmoothingLoss(num_classes=args['vocab_size'],
smoothing=args['label_smoothing'], reduction='none')
else:
criterion = nn.NLLLoss(reduction='none')
# we use two separate optimisers (encoder & decoder)
optimizer = optim.Adam(model.parameters(),lr=0.77,betas=(0.9,0.999),eps=1e-08,weight_decay=0)
optimizer.zero_grad()
# validation losses
best_val_loss = args['best_val_loss']
best_epoch = 0
stop_counter = 0
training_step = 0
for epoch in range(NUM_EPOCHS):
print("======================= Training epoch {} =======================".format(epoch))
num_train_data = len(train_data)
# num_batches = int(num_train_data/BATCH_SIZE) + 1
num_batches = int(num_train_data/BATCH_SIZE)
print("num_batches = {}".format(num_batches))
print("shuffle train data")
random.shuffle(train_data)
idx = 0
for bn in range(num_batches):
input, u_len, w_len, target, tgt_len = get_a_batch(
train_data, idx, BATCH_SIZE,
args['num_utterances'], args['num_words'],
args['summary_length'], args['summary_type'], device)
# decoder target
decoder_target, decoder_mask = shift_decoder_target(target, tgt_len, device, mask_offset=True)
decoder_target = decoder_target.view(-1)
decoder_mask = decoder_mask.view(-1)
try:
# decoder_output = model(input, u_len, w_len, target)
decoder_output, _, attn_scores, _, u_attn_scores = model(input, u_len, w_len, target)
except IndexError:
print("there is an IndexError --- likely from if segment_indices[bn][-1] == u_len[bn]-1:")
print("for now just skip this batch!")
idx += BATCH_SIZE # previously I forget to add this line!!!
continue
loss = criterion(decoder_output.view(-1, args['vocab_size']), decoder_target)
loss = (loss * decoder_mask).sum() / decoder_mask.sum()
# loss.backward()
# Diversity Loss:
if BATCH_SIZE == 1:
intra_div, inter_div = diverisity_loss(u_attn_scores, decoder_target, u_len, tgt_len)
if inter_div == 0:
loss_div = 0
else:
loss_div = intra_div/inter_div
else:
dec_target_i = 0
loss_div = 0
for bi in range(BATCH_SIZE):
one_u_attn_scores = u_attn_scores[bi:bi+1,:,:]
one_decoder_target = decoder_target[dec_target_i:dec_target_i+args['summary_length']]
one_u_len = u_len[bi:bi+1]
one_tgt_len = tgt_len[bi:bi+1]
intra_div, inter_div = diverisity_loss(one_u_attn_scores, one_decoder_target, one_u_len, one_tgt_len)
if inter_div == 0:
loss_div += 0
else:
loss_div += intra_div/inter_div
dec_target_i += args['summary_length']
loss_div /= BATCH_SIZE
total_loss = loss + args['a_div']*loss_div
total_loss.backward()
idx += BATCH_SIZE
if bn % args['update_nbatches'] == 0:
# gradient_clipping
max_norm = 0.5
nn.utils.clip_grad_norm_(model.parameters(), max_norm)
# update the gradients
if args['adjust_lr']:
adjust_lr(optimizer, args['initial_lr'], args['decay_rate'], training_step)
optimizer.step()
optimizer.zero_grad()
training_step += args['batch_size']*args['update_nbatches']
if bn % 2 == 0:
print("[{}] batch {}/{}: loss = {:.5f} | loss_div = {:.5f}".
format(str(datetime.now()), bn, num_batches, loss, loss_div))
sys.stdout.flush()
if bn % 100 == 0:
print("======================== GENERATED SUMMARY ========================")
print(bert_tokenizer.decode(torch.argmax(decoder_output[0], dim=-1).cpu().numpy()[:tgt_len[0]]))
print("======================== REFERENCE SUMMARY ========================")
print(bert_tokenizer.decode(decoder_target.view(BATCH_SIZE,args['summary_length'])[0,:tgt_len[0]].cpu().numpy()))
if bn % 1000 == 0 and epoch > 0:
# ---------------- Evaluate the model on validation data ---------------- #
print("Evaluating the model at epoch {} step {}".format(epoch, bn))
print("learning_rate = {}".format(optimizer.param_groups[0]['lr']))
# switch to evaluation mode
model.eval()
with torch.no_grad():
avg_val_loss = evaluate(model, valid_data, VAL_BATCH_SIZE, args, device)
print("avg_val_loss_per_token = {}".format(avg_val_loss))
# switch to training mode
model.train()
# ------------------- Save the model OR Stop training ------------------- #
if avg_val_loss < best_val_loss:
stop_counter = 0
best_val_loss = avg_val_loss
best_epoch = epoch
state = {
'epoch': epoch, 'bn': bn,
'training_step': training_step,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'best_val_loss': best_val_loss
}
savepath = args['model_save_dir']+"model-{}-ep{}.pt".format(args['model_name'],epoch)
# torch.save(model.state_dict(), savepath)
torch.save(state, savepath)
print("Model improved & saved at {}".format(savepath))
else:
print("Model not improved #{}".format(stop_counter))
if stop_counter < VAL_STOP_TRAINING:
print("Just continue training ---- no loading old weights")
stop_counter += 1
else:
print("Model has not improved for {} times! Stop training.".format(VAL_STOP_TRAINING))
return
print("End of training hierarchical RNN model")
def evaluate(model, eval_data, eval_batch_size, args, device):
# num_eval_epochs = int(eval_data['num_data']/eval_batch_size) + 1
num_eval_epochs = int(len(eval_data)/eval_batch_size)
print("num_eval_epochs = {}".format(num_eval_epochs))
eval_idx = 0
eval_total_loss = 0.0
eval_total_tokens = 0
criterion = nn.NLLLoss(reduction='none')
for bn in range(num_eval_epochs):
input, u_len, w_len, target, tgt_len = get_a_batch(
eval_data, eval_idx, eval_batch_size,
args['num_utterances'], args['num_words'],
args['summary_length'], args['summary_type'], device)
# decoder target
decoder_target, decoder_mask = shift_decoder_target(target, tgt_len, device)
decoder_target = decoder_target.view(-1)
decoder_mask = decoder_mask.view(-1)
# decoder_output = model(input, u_len, w_len, target)
decoder_output, _, _, _, _ = model(input, u_len, w_len, target)
loss = criterion(decoder_output.view(-1, args['vocab_size']), decoder_target)
eval_total_loss += (loss * decoder_mask).sum().item()
eval_total_tokens += decoder_mask.sum().item()
eval_idx += eval_batch_size
print("#", end="")
sys.stdout.flush()
print()
avg_eval_loss = eval_total_loss / eval_total_tokens
return avg_eval_loss
def adjust_lr(optimizer, lr0, decay_rate, step):
"""to adjust the learning rate for both encoder & decoder --- DECAY"""
step = step + 1 # plus 1 to avoid ZeroDivisionError
# lr = lr0*step**(-decay_rate)
warmup = 287000 # about one epoch!!
lr = lr0 * min(step**(-decay_rate), step*(warmup**(-(1+decay_rate))))
for param_group in optimizer.param_groups: param_group['lr'] = lr
return
def shift_decoder_target(target, tgt_len, device, mask_offset=False):
# MASK_TOKEN_ID = 103
batch_size = target.size(0)
max_len = target.size(1)
dtype0 = target.dtype
decoder_target = torch.zeros((batch_size, max_len), dtype=dtype0, device=device)
decoder_target[:,:-1] = target.clone().detach()[:,1:]
# decoder_target[:,-1:] = 103 # MASK_TOKEN_ID = 103
# decoder_target[:,-1:] = 0 # add padding id instead of MASK
# mask for shifted decoder target
decoder_mask = torch.zeros((batch_size, max_len), dtype=torch.float, device=device)
if mask_offset:
offset = 10
for bn, l in enumerate(tgt_len):
# decoder_mask[bn,:l-1].fill_(1.0)
# to accommodate like 10 more [MASK] [MASK] [MASK] [MASK],...
if l-1+offset < max_len: decoder_mask[bn,:l-1+offset].fill_(1.0)
else: decoder_mask[bn,:].fill_(1.0)
else:
for bn, l in enumerate(tgt_len):
decoder_mask[bn,:l-1].fill_(1.0)
return decoder_target, decoder_mask
def get_a_batch(ami_data, idx, batch_size, num_utterances, num_words, summary_length, sum_type, device):
if sum_type not in ['long', 'short']:
raise Exception("summary type long/short only")
input = torch.zeros((batch_size, num_utterances, num_words), dtype=torch.long)
summary = torch.zeros((batch_size, summary_length), dtype=torch.long)
summary.fill_(103)
utt_lengths = np.zeros((batch_size), dtype=np.int)
word_lengths = np.zeros((batch_size, num_utterances), dtype=np.int)
# summary lengths
summary_lengths = np.zeros((batch_size), dtype=np.int)
for bn in range(batch_size):
topic_segments = ami_data[idx+bn][0]
if sum_type == 'long':
encoded_summary = ami_data[idx+bn][1]
elif sum_type == 'short':
encoded_summary = ami_data[idx+bn][2]
# input
utt_id = 0
for segment in topic_segments:
utterances = segment.utterances
for utterance in utterances:
encoded_words = utterance.encoded_words
l = len(encoded_words)
if l > num_words:
encoded_words = encoded_words[:num_words]
l = num_words
input[bn,utt_id,:l] = torch.tensor(encoded_words)
# word_lengths[bn,utt_id] = torch.tensor(l)
word_lengths[bn,utt_id] = l
utt_id += 1
if utt_id == num_utterances: break
if utt_id == num_utterances: break
# utt_lengths[bn] = torch.tensor(utt_id)
utt_lengths[bn] = utt_id
# summary
l = len(encoded_summary)
if l > summary_length:
encoded_summary = encoded_summary[:summary_length]
l = summary_length
summary_lengths[bn] = l
summary[bn, :l] = torch.tensor(encoded_summary)
input = input.to(device)
summary = summary.to(device)
# covert numpy to torch tensor (for multiple GPUs purpose)
utt_lengths = torch.from_numpy(utt_lengths)
word_lengths = torch.from_numpy(word_lengths)
summary_lengths = torch.from_numpy(summary_lengths)
return input, utt_lengths, word_lengths, summary, summary_lengths
def load_cnndm_data(args, data_type, dump=False):
if dump:
data = cnndm.load_data(args, data_type)
summary = cnndm.load_summary(args, data_type)
articles = []
for encoded_words in data['encoded_articles']:
# encoded_sentences = []
article = TopicSegment()
l = len(encoded_words) - 1
for i, x in enumerate(encoded_words):
if x == 101: # CLS
sentence = []
elif x == 102: # SEP
utt = Utterance(sentence, -1, -1, -1)
article.add_utterance(utt)
elif x == 100: # UNK
break
else:
sentence.append(x)
if i == l:
utt = Utterance(sentence, -1, -1, -1)
article.add_utterance(utt)
articles.append([article])
abstracts = []
for encoded_abstract in summary['encoded_abstracts']:
if 103 in encoded_abstract:
last_idx = encoded_abstract.index(103)
encoded_abstract = encoded_abstract[:last_idx]
encoded_abstract.append(102)
encoded_abstract.append(103)
abstracts.append(encoded_abstract)
cnndm_data = []
for x, y in zip(articles, abstracts):
cnndm_data.append((x,y,y))
else:
with open(CNNDM_DATA_PATH.format(data_type), 'rb') as f:
import pdb; pdb.set_trace()
cnndm_data = pickle.load(f, encoding="bytes")
return cnndm_data
def print_config(args):
print("============================= CONFIGURATION =============================")
for x in args:
print('{}={}'.format(x, args[x]))
print("=========================================================================")
if __name__ == "__main__":
# ------ TRAINING ------ #
train_cnndm()