-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUNet.py
61 lines (46 loc) · 3.27 KB
/
UNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from keras.models import Model
from keras.layers import Input, concatenate, Conv2D, MaxPooling2D, UpSampling2D, Dropout, Cropping2D, Reshape
from keras.layers import Activation
from keras.optimizers import *
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as keras
def model(input_shape=(64,64,3), classes=3, kernel_size = 3, filter_depth = (64,128,256,512,1024)):
img_input = Input(shape=input_shape)
#Encoder
conv1 = Conv2D(filter_depth[0], (kernel_size,kernel_size), activation = 'relu', padding = 'same')(img_input)
conv1 = Conv2D(filter_depth[0], (kernel_size,kernel_size), activation = 'relu', padding = 'same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(filter_depth[1], (kernel_size,kernel_size), activation = 'relu', padding = 'same')(pool1)
conv2 = Conv2D(filter_depth[1], (kernel_size,kernel_size), activation = 'relu', padding = 'same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(filter_depth[2], (kernel_size,kernel_size), activation = 'relu', padding = 'same')(pool2)
conv3 = Conv2D(filter_depth[2], (kernel_size,kernel_size), activation = 'relu', padding = 'same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(filter_depth[3], (kernel_size,kernel_size), activation = 'relu', padding = 'same')(pool3)
conv4 = Conv2D(filter_depth[3], (kernel_size,kernel_size), activation = 'relu', padding = 'same')(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Conv2D(filter_depth[4], (kernel_size,kernel_size), activation = 'relu', padding = 'same')(drop4)
conv5 = Conv2D(filter_depth[4], (kernel_size,kernel_size), activation = 'relu', padding = 'same')(conv5)
drop5 = Dropout(0.5)(conv5)
#Decoder
up6 = UpSampling2D(size=(2, 2))(pool4)
conv6 = Conv2D(filter_depth[3], (kernel_size,kernel_size), activation = 'relu', padding = 'same')(drop5)
conv6 = Conv2D(filter_depth[3], (kernel_size,kernel_size), activation = 'relu', padding = 'same')(conv6)
up7 = UpSampling2D(size=(2, 2))(conv6)
conv7 = Conv2D(filter_depth[2], (kernel_size,kernel_size), activation = 'relu', padding = 'same')(up7)
conv7 = Conv2D(filter_depth[2], (kernel_size,kernel_size), activation = 'relu', padding = 'same')(conv7)
up8 = UpSampling2D(size=(2, 2))(conv7)
conv8 = Conv2D(filter_depth[1], (kernel_size,kernel_size), activation = 'relu', padding = 'same')(up8)
conv8 = Conv2D(filter_depth[1], (kernel_size,kernel_size), activation = 'relu', padding = 'same')(conv8)
up9 = UpSampling2D(size=(2, 2))(conv8)
copy9 = Concatenate()
conv9 = Conv2D(filter_depth[0], (kernel_size,kernel_size), activation = 'relu', padding = 'same')(up9)
conv9 = Conv2D(filter_depth[0], (kernel_size,kernel_size), activation = 'relu', padding = 'same')(conv9)
conv9 = Conv2D(2, (kernel_size,kernel_size), activation = 'relu', padding = 'same')(conv9)
x = Conv2D(classes, (1,1), padding="valid")(conv9)
x = Reshape((input_shape[0]*input_shape[1],classes))(x)
x = Activation("softmax")(x)
model = Model(img_input, x)
return model