-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathSensorData.lua
64 lines (56 loc) · 2.58 KB
/
SensorData.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
--[[
DeepTracking: Seeing Beyond Seeing Using Recurrent Neural Networks.
Copyright (C) 2016 Peter Ondruska, Mobile Robotics Group, University of Oxford
email: [email protected].
webpage: http://mrg.robots.ox.ac.uk/
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
--]]
cmd:option('-grid_minX', -25, 'occupancy grid bounds [m]')
cmd:option('-grid_maxX', 25, 'occupancy grid bounds [m]')
cmd:option('-grid_minY', -45, 'occupancy grid bounds [m]')
cmd:option('-grid_maxY', 5, 'occupancy grid bounds [m]')
cmd:option('-grid_step', 1, 'resolution of the occupancy grid [m]')
cmd:option('-sensor_start', -180, 'first depth measurement [degrees]')
cmd:option('-sensor_step', 0.5, 'resolution of depth measurements [degrees]')
SensorData = {}
function SensorData.__len(self)
return { self.data:size(1), 2, self.height, self.width }
end
function SensorData.__index(self, i)
local dist = self.data[i]:index(1, self.index):reshape(self.height, self.width)
local input = torch.FloatTensor(2, self.height, self.width)
input[1] = torch.lt(torch.abs(dist - self.dist), params.grid_step * 0.7071)
input[2] = torch.gt(dist + params.grid_step * 0.7071, self.dist)
return input
end
function LoadSensorData(file, params)
local self = {}
-- load raw 1D depth sensor data
self.data = torch.load(file)
self.width = (params.grid_maxX - params.grid_minX) / params.grid_step + 1
self.height = (params.grid_maxY - params.grid_minY) / params.grid_step + 1
-- pre-compute lookup arrays
self.dist = torch.FloatTensor(self.height, self.width)
self.index = torch.LongTensor(self.height, self.width)
for y = 1,self.height do
for x = 1,self.width do
local px = (x - 1) * params.grid_step + params.grid_minX
local py = (y - 1) * params.grid_step + params.grid_minY
local angle = math.deg(math.atan2(px, py))
self.dist[y][x] = math.sqrt(px * px + py * py)
self.index[y][x] = math.floor((angle - params.sensor_start) / params.sensor_step + 1.5)
end
end
self.index = self.index:reshape(self.width * self.height)
setmetatable(self, SensorData)
return self
end