-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcategorised_scalar.py
34 lines (25 loc) · 1.12 KB
/
categorised_scalar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import tensorflow as tf
eps = 0.01
N = 600
offset = -300
basis = tf.transpose([tf.cast(tf.range(offset,offset+N),tf.float32)])
def normalise_scalars(x: tf.Tensor, eps: float = 0.01):
#return tf.sign(x)*(tf.sqrt(tf.abs(x)+1) - 1 + eps*x)
return tf.sign(x)*(tf.sqrt(tf.abs(x)+1) - 1)
def inverse_normalisation(x: tf.Tensor, eps: float = 0.01):
# full inverse is y = (tf.sqrt(1 + 4*eps*(tf.abs(x)+1+eps))-1)/2/eps
# return tf.sign(x)*(tf.pow(y,2.)-1)
return tf.sign(x)*(tf.pow(tf.abs(x)+1,2.) - 1)
def categorise(x: tf.Tensor):
x = tf.cast(normalise_scalars(x) - offset, tf.float32)
ind = tf.cast(x,tf.int32)
x = x-tf.cast(ind,tf.float32)
tmp = tf.scatter_nd(tf.transpose([tf.range(0,len(ind)),ind]),1-x,[len(ind),N]) + \
tf.scatter_nd(tf.transpose([tf.range(0,len(ind)),ind+1]),x,[len(ind),N])
return tmp
def decategorise(x: tf.Tensor):
x=tf.cast(x,tf.float32)
return inverse_normalisation(tf.matmul(x,basis))
def categorised_initialiser(shape, dtype=tf.float32):
d0 = shape.shape[0]
return tf.scatter_nd(tf.transpose([tf.range(0,d0),N/2.]),tf.cast(1.,dtype),[d0,shape.shape[1]])