Skip to content

Latest commit

 

History

History
 
 

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

StarCoder

In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on StarCoder models on Intel GPUs. For illustration purposes, we utilize the bigcode/starcoder as a reference StarCoder model.

0. Requirements

To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to here for more information.

Example: Predict Tokens using generate() API

In the example generate.py, we show a basic use case for an StarCoder model to predict the next N tokens using generate() API, with BigDL-LLM INT4 optimizations on Intel GPUs.

1. Install

1.1 Installation on Linux

We suggest using conda to manage environment:

conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu

1.2 Installation on Windows

We suggest using conda to manage environment:

conda create -n llm python=3.9 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu

2. Configures OneAPI environment variables

2.1 Configurations for Linux

source /opt/intel/oneapi/setvars.sh

2.2 Configurations for Windows

call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"

Note: Please make sure you are using CMD (Anaconda Prompt if using conda) to run the command as PowerShell is not supported.

3. Runtime Configurations

For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.

3.1 Configurations for Linux

For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
For Intel Data Center GPU Max Series
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export ENABLE_SDP_FUSION=1

Note: Please note that libtcmalloc.so can be installed by conda install -c conda-forge -y gperftools=2.10.

3.2 Configurations for Windows

For Intel iGPU
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
For Intel Arc™ A300-Series or Pro A60
set SYCL_CACHE_PERSISTENT=1
For other Intel dGPU Series

There is no need to set further environment variables.

Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.

4. Running examples

python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT

Arguments info:

  • --repo-id-or-model-path REPO_ID_OR_MODEL_PATH: argument defining the huggingface repo id for the StarCoder model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be 'bigcode/starcoder'.
  • --prompt PROMPT: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be 'def print_hello_world():'.
  • --n-predict N_PREDICT: argument defining the max number of tokens to predict. It is default to be 32.

Sample Output

Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [02:07<00:00, 18.23s/it]
The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.
Setting `pad_token_id` to `eos_token_id`:0 for open-end generation.
The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.
Setting `pad_token_id` to `eos_token_id`:0 for open-end generation.
Inference time: xxxx s
-------------------- Prompt --------------------
def print_hello_world():
-------------------- Output --------------------
def print_hello_world():
    print("Hello World!")


def print_hello_name(name):
    print(f"Hello {name}!")


def print_