-
-
Notifications
You must be signed in to change notification settings - Fork 193
/
Copy path_clustergram.py
934 lines (816 loc) · 35 KB
/
_clustergram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import scipy
import scipy.cluster.hierarchy as sch
import scipy.spatial as scs
from sklearn.impute import SimpleImputer
import plotly.graph_objects as go
from plotly import subplots
import plotly.figure_factory as ff
# pylint: disable=assignment-from-no-return, no-self-use
def Clustergram(
data,
generate_curves_dict=False,
return_computed_traces=False,
computed_traces=None,
row_labels=None,
column_labels=None,
hidden_labels=None,
standardize="none",
cluster="all",
row_dist="euclidean",
col_dist="euclidean",
dist_fun=scs.distance.pdist,
link_fun=lambda x, **kwargs: sch.linkage(x, "complete", **kwargs),
color_threshold=None,
optimal_leaf_order=False,
color_map=None,
color_list=None,
display_range=3,
center_values=True,
log_transform=False,
display_ratio=0.2,
imputer_parameters=None,
row_group_marker=None, # group number, annotation, color
col_group_marker=None, # same as above
tick_font=None,
annotation_font=None,
line_width=0.5,
paper_bg_color="rgba(0,0,0,0)",
plot_bg_color="rgba(0,0,0,0)",
height=500,
width=500,
):
"""Return a Dash Bio Clustergram object.
Keyword arguments:
- data (2D array-like; required): Matrix or table of observations (dropping
columns of non-numeric dtype).
- generate_curves_dict (bool; default False): Whether or not to return a
dictionary containing information about the cluster number
associated with each curve number in the graph. (May be useful
for capturing the cluster number that is clicked.)
- return_computed_traces (bool; default False): Whether or not to return
the precomputed dendrogram traces. (May be useful if one wishes
to add, e.g., group markers to the figure without recalculating
the clustering in the entire figure.)
- computed_traces (dict; optional): The dendrogram traces from another
(precomputed) Clustergram component.
- row_labels (list; optional): List of row category labels
(observation labels).
- column_labels (list; optional): List of column category labels
(observation labels).
- hidden_labels (list; optional): List containing strings 'row' and/or 'col'
if row and/or column labels should be hidden on the final plot.
- standardize (string; default 'none'): The dimension for standardizing
values, so that the mean is 0 and the standard deviation is 1,
along the specified dimension: 'row', 'column', or 'none'.
- cluster (string; default 'all'): The dimension along which the data will
be clustered: 'row', 'column', or 'all'; 'all' means data will be
clustered along columns, then clustered along rows of
column-clustered data.
- row_dist (string; default 'euclidean'): Distance metric for rows.
Passed as argument `metric` to the function specified in `dist_fun`
when called for clustering along rows.
- col_dist (string; default 'euclidean'): Distance metric for columns.
Passed as argument `metric` to the function specified in `dist_fun`
when called for clustering along columns.
- dist_fun (function; default scipy.spatial.distance.pdist): Function
to compute the pairwise distance from the observations (see docs for
scipy.spatial.distance.pdist).
- link_fun (function; default scipy.cluster.hierarchy.linkage): Function to
compute the linkage matrix from the pairwise distances (see docs for
scipy.cluster.hierarchy.linkage).
- color_threshold (dict; default {'row': 0, 'col': 0}): Maximum
linkage value for which unique colors are assigned to clusters;
'row' for rows, and 'col' for columns.
- optimal_leaf_order (bool; default False): Whether to enable (True) or
disable (False) the option to determine leaf order that maximizes
similarity between neighboring leaves.
- color_map (list; default [[0.0, 'rgb(255,0,0)'], [0.5,
'rgb(0,0,0)'], [1.0, 'rgb(0,255,0)']]): Colorscale for the heatmap.
Top-level elements contain two elements, the first of which refers to
the percentile rank, and the second to the applied color. For instance,
[[0.0, 'white'], [0.5, 'gray'], [1.0, 'black']] means that cells in the
49th percentile would be white; cells at the 50th or higher percentiles,
excluding the 100th percentile, would be gray; and the cell(s) at the
100th percentile would be black.
- color_list (dict; optional): The list of colors to use for different
clusters in the dendrogram that have a root under the threshold for
each dimension. If there are fewer colors than there are clusters
along a specific dimension, the colors of the clusters will cycle
through the colors specified in the list. The keys are: 'row' (for
row clusters), 'col' (for column clusters), and 'bg' (for all
traces above the clustering threshold for both row and column).
- display_range (double; default 3.0): In the heatmap, standardized
values from the dataset that are below the negative of this value
will be colored with one shade, and the values that are above this
value will be colored with another.
- center_values (bool; default True): Whether or not to center the
values of the heatmap about zero.
- log_transform (bool; default False): Whether or not to transform
the data by taking the base-two logarithm of all values in the
dataset.
- display_ratio (list | number; default 0.2): The dendrograms' heights with
respect to the size of the heatmap; with one element, both the row
and column dendrograms have the same ratio; with two, the row
dendrogram ratio corresponds to the first element of the list and
the column dendrogram ratio corresponds to the second element of
the list.
- imputer_parameters (dict; optional): Specifies the parameters
'missing_values' and 'strategy' of the SimpleImputer class from
scikit-learn 0.20.1 (both of these parameters must be keys in the
dictionary). An additional parameter, 'axis', is used to specify
the direction along which to impute (a parameter of Imputer, which
was deprecated in scikit-learn 0.20.0): 'axis=0' indicates that
imputing should happen along columns, while 'axis=1' indicates
that it should happen along rows (see: https://scikit
-learn.org/stable/modules/generated/sklearn.preprocessing.Imputer.html).
- row_group_marker (list; optional): A list containing the annotations
for row clusters in the dendrogram. Each annotation is a
dictionary with the keys 'group_number' (the cluster number to
highlight), 'annotation' (a string containing the text of the
annotation), and 'color' (a string representation of the color of
the annotation).
- col_group_marker (list; optional): A list containing the annotations for
column clusters in the dendrogram. Each annotation is a dictionary
with the keys 'group_number' (the cluster number to highlight),
'annotation' (a string containing the text of the annotation), and
'color' (a string representation of the color of the
annotation).
- tick_font (dict; optional): The font options for ticks, as specified
in the Plotly graph_objects documentation (see:
https://plotly.com/python/reference/#bar-marker-colorbar-tickfont).
- annotation_font (dict; optional): The font options for annotations,
as specified in the Plotly graph_objects documentation (see:
https://plotly.cp,/python/reference/#layout-scene-annotations-items-annotation-font).
- line_width (list | number; default 0.5): The line width for the
dendrograms. If in list format, the first element corresponds to
the width of the row dendrogram traces, and the second corresponds
to the width of the column dendrogram traces.
- paper_bg_color (string; default 'rgba(0,0,0,0)'): The background
color of the paper on the graph.
- plot_bg_color (string; default 'rgba(0,0,0,0)'): The background
color of the subplots on the graph.
- height (number; default 500): The height of the graph, in px.
- width (number; default 500): The width of the graph, in px.
"""
if color_threshold is None:
color_threshold = dict(row=0, col=0)
# get rid of arguments that are not used by _Clustergram
kwargs = locals()
kwargs.pop("return_computed_traces")
kwargs.pop("computed_traces")
kwargs.pop("generate_curves_dict")
(fig, ct, curves_dict) = _Clustergram(**kwargs).figure(
computed_traces=computed_traces
)
return_values = [go.Figure(fig)]
if generate_curves_dict:
return_values.append(curves_dict)
if return_computed_traces:
return_values.append(ct)
# return only the figure by default
if len(return_values) == 1:
return return_values[0]
# otherwise, return all requested values
return tuple(return_values)
class _Clustergram:
"""A Dash Bio Clustergram class.
Methods:
- figure(computed_traces=None): Return a figure object compatible with plotly.graph_objects.
"""
def __init__(
self,
data,
row_labels=None,
column_labels=None,
hidden_labels=None,
standardize="none",
cluster="all",
row_dist="euclidean",
col_dist="euclidean",
dist_fun=scs.distance.pdist,
link_fun=lambda x, **kwargs: sch.linkage(x, "complete", **kwargs),
color_threshold=None,
optimal_leaf_order=False,
color_map=None,
color_list=None,
display_range=3,
center_values=True,
log_transform=False,
display_ratio=0.2,
imputer_parameters=None,
row_group_marker=None, # group number, annotation, color
col_group_marker=None, # same as above
tick_font=None,
annotation_font=None,
line_width=0.5,
paper_bg_color="rgba(0,0,0,0)",
plot_bg_color="rgba(0,0,0,0)",
height=500,
width=500,
):
"""Construct a Dash Bio Clustergram object.
See docstring of the `Clustergram` function, where the same keyword arguments (and a couple
of other ones) are documented.
"""
if isinstance(data, pd.DataFrame):
data = data.select_dtypes("number")
data = data.values
if hidden_labels is None:
hidden_labels = []
if color_threshold is None:
color_threshold = dict(row=0, col=0)
# Always keep unique identifiers for rows
row_ids = list(range(data.shape[0]))
# Always keep unique identifiers for columns
column_ids = list(range(data.shape[1]))
self._data = data
self._row_labels = row_labels
self._row_ids = row_ids
self._column_labels = column_labels
self._column_ids = column_ids
self._cluster = cluster
self._row_dist = row_dist
self._col_dist = col_dist
self._dist_fun = dist_fun
self._link_fun = link_fun
self._color_threshold = color_threshold
self._optimal_leaf_order = optimal_leaf_order
if color_map is None:
self._color_map = [
[0.0, "rgb(255,0,0)"],
[0.5, "rgb(0,0,0)"],
[1.0, "rgb(0,255,0)"],
]
else:
self._color_map = color_map
self._color_list = color_list
self._display_range = display_range
self._center_values = center_values
self._display_ratio = display_ratio
self._imputer_parameters = imputer_parameters
if row_group_marker is None:
self._row_group_marker = []
else:
self._row_group_marker = row_group_marker
if col_group_marker is None:
self._col_group_marker = []
else:
self._col_group_marker = col_group_marker
if tick_font is None:
self._tick_font = {}
else:
self._tick_font = tick_font
if annotation_font is None:
self._annotation_font = {}
else:
self._annotation_font = annotation_font
self._paper_bg_color = paper_bg_color
self._plot_bg_color = plot_bg_color
self._height = height
self._width = width
# convert line width to list if necessary
if isinstance(line_width, list):
if len(line_width) == 2:
self._line_width = line_width
elif len(line_width) == 1:
self._line_width = [line_width[0], line_width[0]]
else:
raise ValueError("line_width cannot have more than 2 elements")
else:
self._line_width = [line_width, line_width]
# convert display ratio to list if necessary
if not isinstance(display_ratio, list):
self._display_ratio = [display_ratio, display_ratio]
if self._cluster == "row":
self._display_ratio = [self._display_ratio[0], 0]
elif self._cluster == "col":
self._display_ratio = [0, self._display_ratio[1]]
self._hidden_labels = []
if "row" in hidden_labels:
self._hidden_labels.append("yaxis5")
if "col" in hidden_labels:
self._hidden_labels.append("xaxis5")
# preprocessing data
if self._imputer_parameters is not None:
# numpy NaN values are not serializable and turn into
# 'None' by the time they get here; passing a string
# means that it can be converted in the clustergram
# component itself
if self._imputer_parameters["missing_values"].lower() == "nan":
self._imputer_parameters.update(missing_values=np.nan)
imp = SimpleImputer(
missing_values=self._imputer_parameters["missing_values"],
strategy=self._imputer_parameters["strategy"],
)
if self._imputer_parameters["axis"] == 0:
self._data = imp.fit_transform(self._data.T).T
else:
self._data = imp.fit_transform(self._data)
if log_transform:
self._data = np.log2(self._data)
if standardize in ["row", "column"]:
self._data = self._scale(standardize)
def figure(self, computed_traces=None):
"""Return a figure object compatible with plotly.graph_objects.
Parameters:
- computed_traces (dict; optional): The dendrogram traces from another
(precomputed) Clustergram component.
"""
dt, heatmap = None, None
if computed_traces is None:
(
dt,
self._data,
self._row_ids,
self._column_ids,
) = self._compute_clustered_data()
else:
# use, if available, the precomputed dendrogram and heatmap
# traces (as well as the row and column labels)
dt = computed_traces["dendro_traces"]
heatmap = computed_traces["heatmap"]
self._row_ids = computed_traces["row_ids"]
self._column_ids = computed_traces["column_ids"]
# Match reordered rows and columns with their respective labels
if self._row_labels:
self._row_labels = [self._row_labels[r] for r in self._row_ids]
if self._column_labels:
self._column_labels = [self._column_labels[r] for r in self._column_ids]
# this dictionary relates curve numbers (accessible from the
# hoverData/clickData props) to cluster numbers
cluster_curve_numbers = {}
# initialize plot; GM is for group markers
# [empty] [col. dendro] [col. dendro] [empty]
# [row dendro] [heatmap] [heatmap] [row GM]
# [row dendro] [heatmap] [heatmap] [row GM]
# [empty] [col. GM] [col. GM] [empty]
fig = subplots.make_subplots(
rows=4,
cols=4,
specs=[
[{}, {"colspan": 2}, None, {}],
[{"rowspan": 2}, {"colspan": 2, "rowspan": 2}, None, {"rowspan": 2}],
[None, None, None, None],
[{}, {"colspan": 2}, None, {}],
],
vertical_spacing=0,
horizontal_spacing=0,
print_grid=False,
)
fig["layout"].update(hovermode="closest")
# get the tick values; these will be at the leaves of the
# dendrogram
tickvals_col = []
tickvals_row = []
# for column dendrogram, leaves are at bottom (y=0)
for i in range(len(dt["col"])):
xs = dt["col"][i]["x"]
ys = dt["col"][i]["y"]
# during serialization (e.g., in a dcc.Store, the NaN
# values become None and the arrays get turned into lists;
# they must be converted back
if isinstance(xs, list):
xs = np.array(xs, dtype=np.float)
dt["col"][i].update(x=xs)
if isinstance(ys, list):
ys = np.array(ys, dtype=np.float)
dt["col"][i].update(y=ys)
tickvals_col += [
xs.flatten()[j]
for j in range(len(xs.flatten()))
if ys.flatten()[j] == 0.0 and xs.flatten()[j] % 10 == 5
]
tickvals_col = list(set(tickvals_col))
# for row dendrogram, leaves are at right(x=0, since we
# horizontally flipped it)
for i in range(len(dt["row"])):
xs = dt["row"][i]["x"]
ys = dt["row"][i]["y"]
if isinstance(xs, list):
xs = np.array(xs, dtype=np.float)
dt["row"][i].update(x=xs)
if isinstance(ys, list):
ys = np.array(ys, dtype=np.float)
dt["row"][i].update(y=ys)
tickvals_row += [
ys.flatten()[j]
for j in range(len(ys.flatten()))
if xs.flatten()[j] == 0.0 and ys.flatten()[j] % 10 == 5
]
tickvals_row = list(set(tickvals_row))
# sort so they are in the right order (lowest to highest)
tickvals_col.sort()
tickvals_row.sort()
# update axis settings for dendrograms and heatmap
axes = [
"xaxis1",
"xaxis2",
"xaxis4",
"xaxis5",
"yaxis1",
"yaxis2",
"yaxis4",
"yaxis5",
]
for a in axes:
fig["layout"][a].update(
type="linear",
showline=False,
showgrid=False,
zeroline=False,
mirror=False,
fixedrange=False,
showticklabels=False,
)
(row_dendro_traces, col_dendro_traces) = self._sort_traces(dt["row"], dt["col"])
for i in range(len(col_dendro_traces)):
cdt = col_dendro_traces[i]
cdt["name"] = "Col Cluster %d" % i
cdt["line"] = dict(width=self._line_width[1])
cdt["hoverinfo"] = "y+name"
cluster_curve_numbers[len(fig.data)] = ["col", i]
fig.append_trace(cdt, 1, 2)
# row dendrogram (displays on left side)
for i in range(len(row_dendro_traces)):
rdt = row_dendro_traces[i]
rdt["name"] = "Row Cluster %d" % i
rdt["line"] = dict(width=self._line_width[0])
rdt["hoverinfo"] = "x+name"
cluster_curve_numbers[len(fig.data)] = ["row", i]
fig.append_trace(rdt, 2, 1)
col_dendro_traces_y = [r["y"] for r in col_dendro_traces]
# arbitrary extrema if col_dendro_traces_y is empty
col_dendro_traces_min_y = 0
col_dendro_traces_max_y = 1
if len(col_dendro_traces_y):
col_dendro_traces_min_y = np.concatenate(col_dendro_traces_y).min()
col_dendro_traces_max_y = np.concatenate(col_dendro_traces_y).max()
# ensure that everything is aligned properly
# with the heatmap
yaxis4 = fig["layout"]["yaxis4"] # pylint: disable=invalid-sequence-index
yaxis4.update(scaleanchor="y5")
xaxis2 = fig["layout"]["xaxis2"] # pylint: disable=invalid-sequence-index
xaxis2.update(scaleanchor="x5")
if len(tickvals_col) == 0:
tickvals_col = [10 * i + 5 for i in range(len(self._column_ids))]
# add in all of the labels
fig["layout"]["xaxis5"].update( # pylint: disable=invalid-sequence-index
tickmode="array",
tickvals=tickvals_col,
ticktext=self._column_labels,
tickfont=self._tick_font,
showticklabels=True,
side="bottom",
showline=False,
range=[min(tickvals_col) - 5, max(tickvals_col) + 5]
# workaround for autoscale issues above; otherwise
# the graph cuts off and must be scaled manually
)
if len(tickvals_row) == 0:
tickvals_row = [10 * i + 5 for i in range(len(self._row_ids))]
fig["layout"]["yaxis5"].update( # pylint: disable=invalid-sequence-index
tickmode="array",
tickvals=tickvals_row,
ticktext=self._row_labels,
tickfont=self._tick_font,
showticklabels=True,
side="right",
showline=False,
)
# hide labels, if necessary
for label in self._hidden_labels:
fig["layout"][label].update(ticks="", showticklabels=False)
# recalculate the heatmap, if necessary
if heatmap is None:
# heatmap
heat_data = self._data
# symmetrize the heatmap about zero, if necessary
if self._center_values:
heat_data = np.subtract(heat_data, np.mean(heat_data))
heatmap = go.Heatmap(
x=tickvals_col,
y=tickvals_row,
z=heat_data,
colorscale=self._color_map,
# TODO: This should be based on the text width of the labels, or
# at least passable by the user, so they can adjust it
colorbar={"xpad": 100},
)
fig.append_trace(heatmap, 2, 2)
# it seems the range must be set after heatmap is appended to the
# traces, otherwise the range gets overwritten
fig["layout"]["yaxis4"].update( # pylint: disable=invalid-sequence-index
range=[min(tickvals_row), max(tickvals_row)],
)
# hide all legends
fig["layout"].update(showlegend=False,)
# apply the display ratio
row_ratio = 0
col_ratio = 0
# the argument can be either in list form or float form
# first is ratio for row; second is ratio for column
if self._display_ratio[0] != 0:
row_ratio = 0.95 / float(1 + int(1 / self._display_ratio[0]))
if self._display_ratio[1] != 0:
col_ratio = 0.95 / float(1 + int(1 / self._display_ratio[1]))
# the row/column labels take up 0.05 of the graph, and the rest
# is taken up by the heatmap and dendrogram for each dimension
# row: dendrogram, heatmap, row labels (left-to-right)
# column: dendrogram, column labels, heatmap (top-to-bottom)
# width adjustment for row dendrogram
fig["layout"]["xaxis1"].update( # pylint: disable=invalid-sequence-index
domain=[0, 0.95]
)
fig["layout"]["xaxis2"].update( # pylint: disable=invalid-sequence-index
domain=[row_ratio, 0.95], anchor="y4"
)
fig["layout"]["xaxis4"].update( # pylint: disable=invalid-sequence-index
domain=[0, row_ratio]
)
fig["layout"]["xaxis5"].update( # pylint: disable=invalid-sequence-index
domain=[row_ratio, 0.95]
)
# height adjustment for column dendrogram
fig["layout"]["yaxis1"].update( # pylint: disable=invalid-sequence-index
domain=[1 - col_ratio, 1]
)
fig["layout"]["yaxis2"].update( # pylint: disable=invalid-sequence-index
domain=[1 - col_ratio, 1],
range=[col_dendro_traces_min_y, col_dendro_traces_max_y],
)
fig["layout"]["yaxis4"].update( # pylint: disable=invalid-sequence-index
domain=[0, 1 - col_ratio]
)
fig["layout"]["yaxis5"].update( # pylint: disable=invalid-sequence-index
domain=[0, 1 - col_ratio]
)
fig["layout"][
"legend"
] = dict( # pylint: disable=unsupported-assignment-operation
x=0.7, y=0.7
)
# annotations
# axis settings for subplots that will display group labels
axes = ["xaxis6", "yaxis6", "xaxis8", "yaxis8"]
for a in axes:
fig["layout"][a].update(
type="linear",
showline=False,
showgrid=False,
zeroline=False,
mirror=False,
fixedrange=False,
showticklabels=False,
)
# group labels for row dendrogram
fig["layout"]["yaxis6"].update( # pylint: disable=invalid-sequence-index
domain=[0, 0.95 - col_ratio], scaleanchor="y5", scaleratio=1
)
if len(tickvals_row) > 0:
fig["layout"]["yaxis6"].update( # pylint: disable=invalid-sequence-index
range=[min(tickvals_row), max(tickvals_row)]
)
# padding between group label line and dendrogram
fig["layout"]["xaxis6"].update( # pylint: disable=invalid-sequence-index
domain=[0.95, 1], range=[-5, 1]
)
# group labels for column dendrogram
fig["layout"]["xaxis8"].update( # pylint: disable=invalid-sequence-index
domain=[row_ratio, 0.95], scaleanchor="x5", scaleratio=1
)
if len(tickvals_col) > 0:
fig["layout"]["xaxis8"].update( # pylint: disable=invalid-sequence-index
range=[min(tickvals_col), max(tickvals_col)]
)
fig["layout"]["yaxis8"].update( # pylint: disable=invalid-sequence-index
domain=[0.95 - col_ratio, 1 - col_ratio], range=[-0.5, 0.5]
)
# get group label annotations and label traces
(
row_group_labels,
col_group_labels,
row_annotations,
col_annotations,
) = self._group_label_traces(row_dendro_traces, col_dendro_traces)
# add annotations to graph
fig["layout"].update(annotations=row_annotations + col_annotations)
# add label traces to graph
for rgl in row_group_labels:
fig.append_trace(rgl, 2, 4)
for cgl in col_group_labels:
fig.append_trace(cgl, 4, 2)
# set background colors
fig["layout"].update(
paper_bgcolor=self._paper_bg_color, plot_bgcolor=self._plot_bg_color
)
# finally add height and width
fig["layout"].update(height=self._height, width=self._width)
computed_traces = {
"dendro_traces": dt,
"heatmap": heatmap,
"row_ids": self._row_ids,
"column_ids": self._column_ids,
}
return (fig, computed_traces, cluster_curve_numbers)
def _scale(self, dim):
"""Return standardized data based on user parameters.
Parameters:
- dim (string): The dimension, row or column, to standardize across.
Returns:
- ndarray: An array containing the standardized data.
"""
std = np.zeros(self._data.shape)
if dim == "row":
std = scipy.stats.zscore(self._data, axis=1)
elif dim == "column":
std = scipy.stats.zscore(self._data, axis=0)
return std
def _get_clusters(self):
"""Cluster the data according to the specified dimensions.
Returns:
- tuple: The linkage matrices for the columns and/or rows.
"""
Zcol = None
Zrow = None
# cluster along columns
if self._cluster in ["col", "all"]:
tmp = np.transpose(self._data)
dcol = self._dist_fun(tmp, metric=self._col_dist)
Zcol = self._link_fun(dcol, optimal_ordering=self._optimal_leaf_order)
# cluster along rows only if 'all' is selected
if self._cluster in ["row", "all"]:
drow = self._dist_fun(self._data, metric=self._row_dist)
Zrow = self._link_fun(drow, optimal_ordering=self._optimal_leaf_order)
return (Zcol, Zrow)
def _compute_clustered_data(self):
"""Get the traces that need to be plotted for the row and column
dendrograms, and update the ordering of the 2D data array,
row labels, and column labels to match the reordered
dendrogram leaves.
Returns:
- dict: A dictionary containing entries for the row and column
dendrogram traces.
- ndarray: The original 2D data array that has been reordered to
match the ordering of the row and column dendrogram leaves.
- list: A list of the row labels that have been reordered to match
the ordering of the row dendrogram leaves.
- list: a list of the column labels that have been reordered to match
the ordering of the column dendrogram leaves.
"""
# initialize return dict
trace_list = {"col": [], "row": []}
clustered_column_ids = self._column_ids
clustered_row_ids = self._row_ids
# cluster the data and calculate dendrogram
# allow referring to protected member
# pylint: disable=W0212
# columns
if self._cluster in ["col", "all"]:
cols_dendro = ff._dendrogram._Dendrogram(
np.transpose(self._data),
orientation="bottom",
labels=self._column_ids,
# TODO: How does colormap work?
# colorscale=self._color_map["cols"],
distfun=lambda X: self._dist_fun(X, metric=self._col_dist),
linkagefun=lambda d: self._link_fun(
d, optimal_ordering=self._optimal_leaf_order
),
color_threshold=self._color_threshold["col"],
)
clustered_column_ids = cols_dendro.labels
trace_list["col"] = cols_dendro.data
# rows
if self._cluster in ["row", "all"]:
rows_dendro = ff._dendrogram._Dendrogram(
self._data,
orientation="right",
labels=self._row_ids,
# TODO: How does colormap work?
# colorscale=self._color_map,
distfun=lambda X: self._dist_fun(X, metric=self._row_dist),
linkagefun=lambda d: self._link_fun(
d, optimal_ordering=self._optimal_leaf_order
),
color_threshold=self._color_threshold["row"],
)
clustered_row_ids = rows_dendro.labels
trace_list["row"] = rows_dendro.data
# pylint: enable=W0212
# now, we need to rearrange the data array to fit the labels
# first get reordered indices
rl_indices = [self._row_ids.index(r) for r in clustered_row_ids]
cl_indices = [self._column_ids.index(c) for c in clustered_column_ids]
# modify the data here; first shuffle rows,
# then transpose and shuffle columns,
# then transpose again
clustered_data = self._data[rl_indices].T[cl_indices].T
return trace_list, clustered_data, clustered_row_ids, clustered_column_ids
def _sort_traces(self, rdt, cdt):
"""Sort row dendrogram clusters and column dendrogram clusters
so that the background trace (above threshold) is trace 0
and all other traces are ordered top-to-bottom (row dendrogram)
or left-to-right (column dendrogram).
Parameters:
- rdt (list[dict]): The row dendrogram cluster traces.
- cdt (list[dict]): The column dendrogram cluster traces.
Returns:
- tuple: The sorted row dendrogram clusters and column
dendrogram clusters.
"""
tmp_rdt = []
tmp_cdt = []
if len(rdt) > 0:
# first, find background trace: (max 'x')
rdt.sort(key=lambda t: -1 * max(list(t["x"])))
tmp_rdt.append(rdt[0])
# then, sort top-to-bottom
r = rdt[1:]
r.sort(key=lambda t: -1 * min(list(t["y"])))
tmp_rdt += r
if len(cdt) > 0:
# background trace has max 'y'
cdt.sort(key=lambda t: -1 * max(list(t["y"])))
tmp_cdt.append(cdt[0])
# sort left to right
c = cdt[1:]
c.sort(key=lambda t: min(list(t["x"])))
tmp_cdt += c
return (tmp_rdt, tmp_cdt)
def _group_label_traces(self, row_clusters, col_clusters):
"""Calculate the traces and annotations that correspond to group
labels.
Parameters:
- row_clusters (list[dict]): List of all row traces (each
trace corresponds to a cluster)
- col_clusters (list[dict]): List of all column traces (each
trace corresponds to a cluster)
Returns:
- tuple: The row label traces, column label traces, row group
annotations, and column group annotations.
"""
row_group_labels = []
col_group_labels = []
row_annotations = []
col_annotations = []
for rgm in self._row_group_marker:
if len(row_clusters) == 0:
break
if rgm["group"] >= len(row_clusters):
continue
# get upper and lower bounds of group
ymin = min(row_clusters[rgm["group"]]["y"])
ymax = max(row_clusters[rgm["group"]]["y"])
trace = go.Scatter(
x=[0, 0],
y=[ymin, ymax],
mode="lines",
line=dict(width=6, color=rgm["color"]),
marker=dict(size=0),
hoverinfo="none",
)
row_group_labels.append(trace)
row_annotations.append(
dict(
x=0.5,
y=1 / 2 * (ymin + ymax),
xref="x6",
yref="y6",
text=rgm["annotation"],
font=self._annotation_font,
showarrow=False,
xanchor="left",
)
)
for cgm in self._col_group_marker:
if len(col_clusters) == 0:
break
if cgm["group"] >= len(col_clusters):
continue
# get leftmost and rightmost bounds of group
xmin = min(col_clusters[cgm["group"]]["x"])
xmax = max(col_clusters[cgm["group"]]["x"])
trace = go.Scatter(
x=[xmin, xmax],
y=[0, 0],
mode="lines",
line=dict(width=6, color=cgm["color"]),
marker=dict(size=0),
hoverinfo="none",
)
col_group_labels.append(trace)
col_annotations.append(
dict(
x=1 / 2 * (xmin + xmax),
y=-0.5,
xref="x8",
yref="y8",
text=cgm["annotation"],
font=self._annotation_font,
showarrow=False,
)
)
return (row_group_labels, col_group_labels, row_annotations, col_annotations)