-
Notifications
You must be signed in to change notification settings - Fork 54
/
main_local.py
96 lines (74 loc) · 3.7 KB
/
main_local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python version: 3.6
import copy
import os
import pickle
import pandas as pd
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader
from utils.options import args_parser
from utils.train_utils import get_data, get_model
from models.Update import DatasetSplit
from models.test import test_img_local, test_img_local_all, test_img_avg_all, test_img_ensemble_all
import pdb
if __name__ == '__main__':
# parse args
args = args_parser()
args.device = torch.device('cuda:{}'.format(args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu')
base_dir = './save/{}/{}_iid{}_num{}_C{}_le{}/shard{}/{}/'.format(
args.dataset, args.model, args.iid, args.num_users, args.frac, args.local_ep, args.shard_per_user, args.results_save)
if not os.path.exists(os.path.join(base_dir, 'local')):
os.makedirs(os.path.join(base_dir, 'local'), exist_ok=True)
dataset_train, dataset_test, dict_users_train, dict_users_test = get_data(args)
dict_save_path = os.path.join(base_dir, 'dict_users.pkl')
with open(dict_save_path, 'rb') as handle:
dict_users_train, dict_users_test = pickle.load(handle)
# build model
net_glob = get_model(args)
net_glob.train()
net_local_list = []
for user_ix in range(args.num_users):
net_local_list.append(copy.deepcopy(net_glob))
# training
results_save_path = os.path.join(base_dir, 'local/results.csv')
loss_train = []
net_best = None
best_loss = None
best_acc = None
best_epoch = None
lr = args.lr
results = []
criterion = nn.CrossEntropyLoss()
for user, net_local in enumerate(net_local_list):
model_save_path = os.path.join(base_dir, 'local/model_user{}.pt'.format(user))
net_best = None
best_acc = None
ldr_train = DataLoader(DatasetSplit(dataset_train, dict_users_train[user]), batch_size=args.local_bs, shuffle=True)
optimizer = torch.optim.SGD(net_local.parameters(), lr=lr, momentum=0.5)
for iter in range(args.epochs):
for batch_idx, (images, labels) in enumerate(ldr_train):
images, labels = images.to(args.device), labels.to(args.device)
net_local.zero_grad()
log_probs = net_local(images)
loss = criterion(log_probs, labels)
loss.backward()
optimizer.step()
acc_test, loss_test = test_img_local(net_local, dataset_test, args, user_idx=user, idxs=dict_users_test[user])
if best_acc is None or acc_test > best_acc:
best_acc = acc_test
net_best = copy.deepcopy(net_local)
# torch.save(net_local_list[user].state_dict(), model_save_path)
print('User {}, Epoch {}, Acc {:.2f}'.format(user, iter, acc_test))
if iter > 50 and acc_test >= 99:
break
net_local_list[user] = net_best
acc_test_local, loss_test_local = test_img_local_all(net_local_list, args, dataset_test, dict_users_test)
acc_test_avg, loss_test_avg = test_img_avg_all(net_glob, net_local_list, args, dataset_test)
acc_test_ens_avg, loss_test, acc_test_ens_maj = test_img_ensemble_all(net_local_list, args, dataset_test)
print('Final: acc: {:.2f}, acc (avg): {:.2f}, acc (ens,avg): {:.2f}, acc (ens,maj): {:.2f}'.format(acc_test_local, acc_test_avg, acc_test_ens_avg, acc_test_ens_maj))
final_results = np.array([[acc_test_local, acc_test_avg, acc_test_ens_avg, acc_test_ens_maj]])
final_results = pd.DataFrame(final_results, columns=['acc_test_local', 'acc_test_avg', 'acc_test_ens_avg', 'acc_test_ens_maj'])
final_results.to_csv(results_save_path, index=False)