Skip to content

Latest commit

 

History

History
97 lines (72 loc) · 2.85 KB

pandas.rst

File metadata and controls

97 lines (72 loc) · 2.85 KB

Using BigQuery with Pandas

Retrieve BigQuery data as a Pandas DataFrame

As of version 0.29.0, you can use the :func:`~google.cloud.bigquery.table.RowIterator.to_dataframe` function to retrieve query results or table rows as a :class:`pandas.DataFrame`.

First, ensure that the :mod:`pandas` library is installed by running:

pip install --upgrade pandas

Alternatively, you can install the BigQuery Python client library with :mod:`pandas` by running:

pip install --upgrade 'google-cloud-bigquery[pandas]'

To retrieve query results as a :class:`pandas.DataFrame`:

.. literalinclude:: ../snippets.py
   :language: python
   :dedent: 4
   :start-after: [START bigquery_query_results_dataframe]
   :end-before: [END bigquery_query_results_dataframe]

To retrieve table rows as a :class:`pandas.DataFrame`:

.. literalinclude:: ../snippets.py
   :language: python
   :dedent: 4
   :start-after: [START bigquery_list_rows_dataframe]
   :end-before: [END bigquery_list_rows_dataframe]

The following data types are used when creating a pandas DataFrame.

Pandas Data Type Mapping
BigQuery pandas Notes
BOOL boolean  
DATETIME datetime64[ns], object object is used when there are values not representable in pandas
FLOAT64 float64  
INT64 Int64  

Retrieve BigQuery GEOGRAPHY data as a GeoPandas GeoDataFrame

GeoPandas adds geospatial analytics capabilities to Pandas. To retrieve query results containing GEOGRAPHY data as a :class:`geopandas.GeoDataFrame`:

.. literalinclude:: ../samples/geography/to_geodataframe.py
   :language: python
   :dedent: 4
   :start-after: [START bigquery_query_results_geodataframe]
   :end-before: [END bigquery_query_results_geodataframe]


Load a Pandas DataFrame to a BigQuery Table

As of version 1.3.0, you can use the :func:`~google.cloud.bigquery.client.Client.load_table_from_dataframe` function to load data from a :class:`pandas.DataFrame` to a :class:`~google.cloud.bigquery.table.Table`. To use this function, in addition to :mod:`pandas`, you will need to install the :mod:`pyarrow` library. You can install the BigQuery Python client library with :mod:`pandas` and :mod:`pyarrow` by running:

pip install --upgrade google-cloud-bigquery[pandas,pyarrow]

The following example demonstrates how to create a :class:`pandas.DataFrame` and load it into a new table:

.. literalinclude:: ../samples/load_table_dataframe.py
   :language: python
   :dedent: 4
   :start-after: [START bigquery_load_table_dataframe]
   :end-before: [END bigquery_load_table_dataframe]