Skip to content

Latest commit

 

History

History
33 lines (32 loc) · 1.55 KB

readme.md

File metadata and controls

33 lines (32 loc) · 1.55 KB

Installation

Please refer to BEVDet to prepare environment for training autoencoder and install open_clip:

pip install open_clip_torch

Usage

First, please count all the words in the entire dataset and generate text embeddings.

python count_words.py --data_root data/occ3d --ovo_root data/occ3d/san_gts_qwen_scene --embedding_file data/occ3d/text_embedding/overall_embedding.json

Then the autoencoder can be trained using the follow script:

python train.py --text_embedding_file data/occ3d/text_embedding/overall_embedding.json --log_dir qwen --num_epochs 300 --encoder_dims 256 256 128 128 --decoder_dims 128 256 256 512

Similarlly, please generate the query text embedding:

python generate_query_embedding --embedding_file data/occ3d/text_embedding/query.json

The text embedding for query words and scene vocabulary can be obtained by

# query embedding
python generate_embedding.py --data_root data/occ3d --query --query_embedding_file data/occ3d/text_embedding/query.json
# gt embedding
python generate_embedding.py --data_root data/occ3d --ovo_root data/occ3d/san_gts_qwen_scene

To map the query embedding or gt embedding to low-dimensional space, please use

# query embedding
python map_embedding.py --data_root data/occ3d --query --query_embedding_file data/occ3d/text_embedding/query.json --low_dimension_query_embedding_file data/occ3d/text_embedding/query_128.json
# gt embedding
python map_embedding.py --data_root data/occ3d --ovo_root data/occ3d/san_gts_qwen_scene