forked from tensorflow/minigo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatch_exporter.py
158 lines (129 loc) · 5.8 KB
/
batch_exporter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Copy Minigo training sets from table to GCS..
"""
import bisect
import math
import multiprocessing
import os
import tensorflow as tf
from absl import flags
from absl import app
from tqdm import tqdm
import bigtable_input
import utils
flags.DEFINE_bool('dry_run', False,
'If true, generate and print the windows, rather than export.')
flags.DEFINE_integer('starting_game', None,
'Export beginning with the window that follows this regular game')
flags.DEFINE_integer('training_games', 500000,
'Number of games to include in training window')
flags.DEFINE_integer('training_moves', 2**21,
'Number of moves to select from training window')
flags.DEFINE_float('training_fresh', 0.05,
'Fraction of fresh games in each new training window')
flags.DEFINE_integer('batch_size', 1024,
'How many TFRecords to pull through tf.Session at a time')
flags.DEFINE_string('output_prefix', None,
'Name of output file to receive TFRecords')
flags.mark_flag_as_required('output_prefix')
flags.DEFINE_integer('concurrency', 4,
'Number of parallel subprocesses')
flags.DEFINE_integer('max_trainings', None,
'Process no more than this many training brackets')
FLAGS = flags.FLAGS
def training_series(cursor_r, cursor_c, mix, increment_fraction=0.05):
"""Given two end-cursors and a mix of games, produce a series of bounds.
"""
while (cursor_r - mix.games_r) >= 0 and (cursor_c - mix.games_c) >= 0:
yield (cursor_r - mix.games_r), cursor_r, (cursor_c - mix.games_c), cursor_c
cursor_r -= math.ceil(mix.games_r * increment_fraction)
cursor_c -= math.ceil(mix.games_c * increment_fraction)
def _export_training_set(args):
spec, start_r, start_c, mix, batch_size, output_url = args
gq_r = bigtable_input.GameQueue(spec.project, spec.instance, spec.table)
gq_c = bigtable_input.GameQueue(spec.project, spec.instance, spec.table + '-nr')
total_moves = mix.moves_r + mix.moves_c
with tf.Session() as sess:
ds = bigtable_input.get_unparsed_moves_from_games(gq_r, gq_c,
start_r, start_c,
mix)
ds = ds.batch(batch_size)
iterator = ds.make_initializable_iterator()
sess.run(iterator.initializer)
get_next = iterator.get_next()
writes = 0
print('Writing to', output_url)
with tf.io.TFRecordWriter(
output_url,
options=tf.io.TFRecordCompressionType.ZLIB) as wr:
log_filename = '/tmp/{}_{}.log'.format(start_r, start_c)
with open(log_filename, 'w') as progress_file:
with tqdm(desc='Records', unit_scale=2, total=total_moves,
file=progress_file) as pbar:
while True:
try:
batch = sess.run(get_next)
pbar.update(len(batch))
for b in batch:
wr.write(b)
writes += 1
if (writes % 10000) == 0:
wr.flush()
except tf.errors.OutOfRangeError:
break
os.unlink(log_filename)
def main(argv):
"""Main program.
"""
del argv # Unused
total_games = FLAGS.training_games
total_moves = FLAGS.training_moves
fresh = FLAGS.training_fresh
batch_size = FLAGS.batch_size
output_prefix = FLAGS.output_prefix
spec = bigtable_input.BigtableSpec(
FLAGS.cbt_project,
FLAGS.cbt_instance,
FLAGS.cbt_table)
gq_r = bigtable_input.GameQueue(spec.project, spec.instance, spec.table)
gq_c = bigtable_input.GameQueue(spec.project, spec.instance, spec.table + '-nr')
mix = bigtable_input.mix_by_decile(total_games, total_moves, 9)
trainings = [(spec, start_r, start_c,
mix, batch_size,
'{}{:0>10}_{:0>10}.tfrecord.zz'.format(output_prefix, start_r, start_c))
for start_r, finish_r, start_c, finish_c
in reversed(list(training_series(gq_r.latest_game_number,
gq_c.latest_game_number,
mix,
fresh)))]
if FLAGS.starting_game:
game = FLAGS.starting_game
starts = [t[1] for t in trainings]
where = bisect.bisect_left(starts, game)
trainings = trainings[where:]
if FLAGS.max_trainings:
trainings = trainings[:FLAGS.max_trainings]
if FLAGS.dry_run:
for t in trainings:
print(t)
raise SystemExit
concurrency = min(FLAGS.concurrency, multiprocessing.cpu_count() * 2)
with tqdm(desc='Training Sets', unit_scale=2, total=len(trainings)) as pbar:
for b in utils.iter_chunks(concurrency, trainings):
with multiprocessing.Pool(processes=concurrency) as pool:
pool.map(_export_training_set, b)
pbar.update(len(b))
if __name__ == '__main__':
app.run(main)