-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathssim.cpp
46 lines (35 loc) · 2.14 KB
/
ssim.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
// Ported from https://github.com/Po-Hsun-Su/pytorch-ssim
// MIT
#include "ssim.hpp"
using namespace torch::indexing;
torch::Tensor SSIM::eval(const torch::Tensor& rendered, const torch::Tensor& gt) {
torch::Tensor img1 = gt.permute({2, 0, 1}).index({None, "..."});
torch::Tensor img2 = rendered.permute({2, 0, 1}).index({None, "..."});
if (img1.device() != window.device()){
window = window.to(img1.device());
}
torch::Tensor mu1 = torch::nn::functional::conv2d(img1, window, torch::nn::functional::Conv2dFuncOptions().padding(windowSize / 2).groups(channel));
torch::Tensor mu2 = torch::nn::functional::conv2d(img2, window, torch::nn::functional::Conv2dFuncOptions().padding(windowSize / 2).groups(channel));
torch::Tensor mu1Sq = mu1.pow(2);
torch::Tensor mu2Sq = mu2.pow(2);
torch::Tensor mu1mu2 = mu1 * mu2;
torch::Tensor sigma1Sq = torch::nn::functional::conv2d(img1 * img1, window, torch::nn::functional::Conv2dFuncOptions().padding(windowSize / 2).groups(channel)) - mu1Sq;
torch::Tensor sigma2Sq = torch::nn::functional::conv2d(img2 * img2, window, torch::nn::functional::Conv2dFuncOptions().padding(windowSize / 2).groups(channel)) - mu2Sq;
torch::Tensor sigma12 = torch::nn::functional::conv2d(img1 * img2, window, torch::nn::functional::Conv2dFuncOptions().padding(windowSize / 2).groups(channel)) - mu1mu2;
const float C1 = 0.01 * 0.01;
const float C2 = 0.03 * 0.03;
torch::Tensor ssimMap = ((2.0f * mu1mu2 + C1) * (2.0f * sigma12 + C2)) / ((mu1Sq + mu2Sq + C1) * (sigma1Sq + sigma2Sq + C2));
return ssimMap.mean();
}
torch::Tensor SSIM::createWindow(){
torch::Tensor _1DWindow = gaussian(1.5f).unsqueeze(1);
torch::Tensor _2DWindow = _1DWindow.mm(_1DWindow.t()).unsqueeze(0).unsqueeze(0);
return _2DWindow.expand({channel, 1, windowSize, windowSize}).contiguous();
}
torch::Tensor SSIM::gaussian(float sigma) {
torch::Tensor gauss = torch::zeros(windowSize);
for (int i = 0; i < windowSize; i++) {
gauss[i] = std::exp(-(std::pow(std::floor(static_cast<float>(i - windowSize) / 2.0f), 2.0f)) / (2.0f * sigma * sigma));
}
return gauss / gauss.sum();
}