diff --git a/.jupyter_cache/executed/0506ea7b660ec3b6337ab1a7421b745c/base.ipynb b/.jupyter_cache/executed/0506ea7b660ec3b6337ab1a7421b745c/base.ipynb new file mode 100644 index 0000000..fe62cdb --- /dev/null +++ b/.jupyter_cache/executed/0506ea7b660ec3b6337ab1a7421b745c/base.ipynb @@ -0,0 +1,1735 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "2177cf15", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/7b/nb0vyhy90mdf30_65xwqzl300000gn/T/ipykernel_72718/2448382509.py:24: DeprecationWarning: `set_matplotlib_formats` is deprecated since IPython 7.23, directly use `matplotlib_inline.backend_inline.set_matplotlib_formats()`\n", + " set_matplotlib_formats(fig_format)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{\"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/_bootstrap.py\": 1723142152.1025863, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/_bootstrap_external.py\": 1723142152.105364, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/zipimport.py\": 1723142149.988232, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/codecs.py\": 1723142149.4619129, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/encodings/aliases.py\": 1723142150.6373897, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/encodings/__init__.py\": 1723142150.63459, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/encodings/utf_8.py\": 1723142151.6562238, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/abc.py\": 1723142149.365057, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/io.py\": 1723142149.6587212, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/stat.py\": 1723142149.8691132, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/_collections_abc.py\": 1723142149.3275936, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/genericpath.py\": 1723142149.5941563, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/posixpath.py\": 1723142149.7617025, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/os.py\": 1723142149.7287207, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/_sitebuiltins.py\": 1723142149.3539696, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/encodings/utf_8_sig.py\": 1723142151.6597066, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/_distutils_hack/__init__.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site.py\": 1723142149.8387184, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/warnings.py\": 1723142149.96197, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/__init__.py\": 1723142152.0962827, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/machinery.py\": 1723142152.1138413, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/_abc.py\": 1723142152.0997949, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/types.py\": 1723142149.9448147, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/util.py\": 1723142152.1234136, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/runpy.py\": 1723142149.8091736, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/operator.py\": 1723142149.7223966, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/keyword.py\": 1723142149.6656804, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/reprlib.py\": 1723142149.8006337, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/collections/__init__.py\": 1723142150.1345572, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/functools.py\": 1723142149.5889168, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/enum.py\": 1723142149.5583434, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/re/_constants.py\": 1723142152.5344284, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/re/_parser.py\": 1723142152.5371513, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/re/_casefix.py\": 1723142152.5287378, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/re/_compiler.py\": 1723142152.5316339, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/copyreg.py\": 1723142149.508819, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/re/__init__.py\": 1723142152.525695, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/fnmatch.py\": 1723142149.5738504, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/ntpath.py\": 1723142149.7076457, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/urllib/__init__.py\": 1723142152.7765563, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/math.cpython-312-darwin.so\": 1723142191.0421727, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/ipaddress.py\": 1723142149.662234, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/urllib/parse.py\": 1723142152.7818625, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/pathlib.py\": 1723142149.7319317, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/collections/abc.py\": 1723142150.1371956, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/contextlib.py\": 1723142149.4925995, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/typing.py\": 1723142149.9494839, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipykernel/_version.py\": 1719845663.7244594, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/__future__.py\": 1723142149.3196132, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_json.cpython-312-darwin.so\": 1723142194.9957564, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/json/scanner.py\": 1723142152.1855352, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/json/decoder.py\": 1723142152.1796482, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/json/encoder.py\": 1723142152.1825643, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/json/__init__.py\": 1723142152.1771698, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/locale.py\": 1723142149.6767204, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/signal.py\": 1723142149.835342, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/_weakrefset.py\": 1723142149.3624282, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/threading.py\": 1723142149.9171238, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/fcntl.cpython-312-darwin.so\": 1723142172.2865927, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_posixsubprocess.cpython-312-darwin.so\": 1723142179.6874511, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/select.cpython-312-darwin.so\": 1723142174.3865385, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/selectors.py\": 1723142149.8211207, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/subprocess.py\": 1723142149.8851, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/_version.py\": 1716472311.2079606, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/platform.py\": 1723142149.751206, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/backend/select.py\": 1722971936.8766065, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/weakref.py\": 1723142149.9722064, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/constants.py\": 1722971936.877123, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/error.py\": 1722971936.8796368, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/backend/cython/_zmq.cpython-312-darwin.so\": 1722971941.010904, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/backend/cython/__init__.py\": 1722971936.870705, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/backend/__init__.py\": 1722971936.8648462, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/_typing.py\": 1722971936.8617954, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/utils/__init__.py\": 1722971936.899209, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/utils/interop.py\": 1722971936.9009664, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/sugar/attrsettr.py\": 1722971936.8937159, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_struct.cpython-312-darwin.so\": 1723142176.2570496, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/struct.py\": 1723142149.8815503, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/_compat_pickle.py\": 1723142149.3301165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_pickle.cpython-312-darwin.so\": 1723142180.639757, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/pickle.py\": 1723142149.738661, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_bisect.cpython-312-darwin.so\": 1723142171.919134, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/bisect.py\": 1723142149.4011557, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_random.cpython-312-darwin.so\": 1723142184.982195, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_sha2.cpython-312-darwin.so\": 1723142173.4169204, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/random.py\": 1723142149.7954633, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/utils/jsonapi.py\": 1722971936.901954, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/sugar/poll.py\": 1722971936.8955553, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/sugar/socket.py\": 1722971936.8962739, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/sugar/context.py\": 1722971936.8943448, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/sugar/frame.py\": 1722971936.8949566, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/sugar/tracker.py\": 1722971936.8975856, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/sugar/version.py\": 1722971936.898143, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/sugar/stopwatch.py\": 1722971936.8969991, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/sugar/__init__.py\": 1722971936.8926423, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/__init__.py\": 1722971936.86079, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/concurrent/__init__.py\": 1723142150.1442604, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/token.py\": 1723142149.9222703, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/tokenize.py\": 1723142149.9253926, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/linecache.py\": 1723142149.6700504, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/textwrap.py\": 1723142149.9110038, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/traceback.py\": 1723142149.931516, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/string.py\": 1723142149.875081, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/logging/__init__.py\": 1723142152.4281373, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/concurrent/futures/_base.py\": 1723142150.153846, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/concurrent/futures/__init__.py\": 1723142150.1509879, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_heapq.cpython-312-darwin.so\": 1723142181.0043492, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/heapq.py\": 1723142149.6344435, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_socket.cpython-312-darwin.so\": 1723142170.801591, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/array.cpython-312-darwin.so\": 1723142196.5356674, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/socket.py\": 1723142149.8494928, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_ssl.cpython-312-darwin.so\": 1723142196.1448426, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/binascii.cpython-312-darwin.so\": 1723142188.4153821, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/base64.py\": 1723142149.3830295, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/ssl.py\": 1723142149.8657131, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/constants.py\": 1723142150.0290875, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/ast.py\": 1723142149.37847, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_opcode.cpython-312-darwin.so\": 1723142193.352905, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/opcode.py\": 1723142149.7179317, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/dis.py\": 1723142149.5484803, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/inspect.py\": 1723142149.6543112, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/coroutines.py\": 1723142150.0332193, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_contextvars.cpython-312-darwin.so\": 1723142168.3464274, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/contextvars.py\": 1723142149.4985695, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/format_helpers.py\": 1723142150.045999, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/base_futures.py\": 1723142150.0186784, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/exceptions.py\": 1723142150.041617, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/base_tasks.py\": 1723142150.0260677, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_asyncio.cpython-312-darwin.so\": 1723142198.4347148, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/events.py\": 1723142150.0366626, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/futures.py\": 1723142150.049099, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/protocols.py\": 1723142150.0664976, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/transports.py\": 1723142150.1120372, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/log.py\": 1723142150.0565434, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/sslproto.py\": 1723142150.081769, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/mixins.py\": 1723142150.0601964, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/locks.py\": 1723142150.0525162, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/timeouts.py\": 1723142150.108301, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/tasks.py\": 1723142150.1008554, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/staggered.py\": 1723142150.0847955, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/trsock.py\": 1723142150.116383, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/base_events.py\": 1723142150.0151005, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/runners.py\": 1723142150.074279, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/queues.py\": 1723142150.0701766, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/streams.py\": 1723142150.0898225, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/subprocess.py\": 1723142150.0949097, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/taskgroups.py\": 1723142150.0977423, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/threads.py\": 1723142150.104686, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/base_subprocess.py\": 1723142150.0220547, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/selector_events.py\": 1723142150.0777106, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/unix_events.py\": 1723142150.1207063, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/asyncio/__init__.py\": 1723142150.0080252, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/_future.py\": 1722971936.8615153, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/asyncio.py\": 1722971936.8620815, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/traitlets/utils/__init__.py\": 1713535242.9220452, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/traitlets/utils/bunch.py\": 1713535242.9220452, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/traitlets/utils/descriptions.py\": 1713535242.9220452, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/traitlets/utils/getargspec.py\": 1713535242.9220452, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/traitlets/utils/importstring.py\": 1713535242.9260457, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/traitlets/utils/sentinel.py\": 1713535242.9260457, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/traitlets/utils/warnings.py\": 1713535242.9260457, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/traitlets/traitlets.py\": 1713535242.918045, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/traitlets/_version.py\": 1713535242.918045, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/copy.py\": 1723142149.5036714, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/traitlets/utils/decorators.py\": 1713535242.9220452, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/traitlets/__init__.py\": 1713535242.918045, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_queue.cpython-312-darwin.so\": 1723142175.140125, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/queue.py\": 1723142149.7887766, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_core/version.py\": 1710257912.0294964, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_core/__init__.py\": 1710257912.024957, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_core/utils/__init__.py\": 1710257912.0300627, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/channelsabc.py\": 1716472311.2079606, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_hashlib.cpython-312-darwin.so\": 1723142186.485973, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_blake2.cpython-312-darwin.so\": 1723142190.6655343, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/hashlib.py\": 1723142149.629507, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/hmac.py\": 1723142149.63935, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/dataclasses.py\": 1723142149.52483, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/pprint.py\": 1723142149.7650504, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_datetime.cpython-312-darwin.so\": 1723142183.7980585, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/datetime.py\": 1723142149.5311868, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/tornado/__init__.py\": 1717722935.1884604, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/numbers.py\": 1723142149.714717, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/logging/handlers.py\": 1723142152.4338007, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/html/entities.py\": 1723142151.7069495, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/html/__init__.py\": 1723142151.7023578, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/zlib.cpython-312-darwin.so\": 1723142183.4175503, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/tornado/speedups.abi3.so\": 1717722938.1545708, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/tornado/util.py\": 1717722935.1997392, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/tornado/escape.py\": 1717722935.1911297, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/colorama/ansi.py\": 1666700775.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_ctypes.cpython-312-darwin.so\": 1723142184.6063738, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/ctypes/_endian.py\": 1723142150.1747293, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/ctypes/__init__.py\": 1723142150.1695166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/colorama/win32.py\": 1666700775.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/colorama/winterm.py\": 1666700775.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/colorama/ansitowin32.py\": 1666700775.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/colorama/initialise.py\": 1666700775.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/colorama/__init__.py\": 1666700775.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_curses.cpython-312-darwin.so\": 1723142186.9382725, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/curses/__init__.py\": 1723142150.2259245, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/tornado/log.py\": 1717722935.195049, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/tornado/concurrent.py\": 1717722935.1903932, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/tornado/ioloop.py\": 1717722935.193536, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/socketserver.py\": 1723142149.8527176, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/logging/config.py\": 1723142152.431046, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/traitlets/utils/text.py\": 1713535242.9260457, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/gettext.py\": 1723142149.609851, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/argparse.py\": 1723142149.374177, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/traitlets/config/loader.py\": 1713535242.9220452, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/traitlets/config/configurable.py\": 1713535242.9220452, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/traitlets/utils/nested_update.py\": 1713535242.9260457, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/traitlets/config/application.py\": 1713535242.9220452, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/traitlets/config/__init__.py\": 1713535242.918045, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/traitlets/log.py\": 1713535242.918045, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/eventloop/__init__.py\": 1722971936.8800368, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/eventloop/zmqstream.py\": 1722971936.8827794, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/adapter.py\": 1716472311.2079606, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/dateutil/_version.py\": 1709299919.2872345, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/dateutil/__init__.py\": 1709299919.2872345, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/calendar.py\": 1723142149.427572, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/six.py\": 1620240337.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_decimal.cpython-312-darwin.so\": 1723142195.7675781, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/decimal.py\": 1723142149.5364969, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/dateutil/_common.py\": 1709299919.2872345, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/dateutil/relativedelta.py\": 1709299919.2872345, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/dateutil/tz/_common.py\": 1709299919.2912347, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/dateutil/tz/_factories.py\": 1709299919.2912347, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/dateutil/tz/tz.py\": 1709299919.2912347, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/dateutil/tz/__init__.py\": 1709299919.2912347, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/dateutil/parser/_parser.py\": 1709299919.2912347, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/dateutil/parser/isoparser.py\": 1709299919.2912347, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/dateutil/parser/__init__.py\": 1709299919.2872345, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/_strptime.py\": 1723142149.356655, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/jsonutil.py\": 1716472311.2079606, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/session.py\": 1716472311.2119606, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/channels.py\": 1716472311.2079606, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/termios.cpython-312-darwin.so\": 1723142192.3122802, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/getpass.py\": 1723142149.6047707, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/clientabc.py\": 1716472311.2079606, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/glob.py\": 1723142149.6149163, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/_compression.py\": 1723142149.3327484, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_bz2.cpython-312-darwin.so\": 1723142189.1714003, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/bz2.py\": 1723142149.4159427, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_lzma.cpython-312-darwin.so\": 1723142167.9629798, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lzma.py\": 1723142149.6815834, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/shutil.py\": 1723142149.8319256, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/tempfile.py\": 1723142149.9078155, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/platformdirs/api.py\": 1715777737.6950846, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/platformdirs/version.py\": 1715777737.6950846, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/platformdirs/macos.py\": 1715777737.6950846, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/platformdirs/__init__.py\": 1715777737.6950846, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_core/paths.py\": 1710257912.0278635, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/localinterfaces.py\": 1716472311.2119606, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/utils.py\": 1716472311.2119606, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/connect.py\": 1716472311.2079606, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/client.py\": 1716472311.2079606, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/asynchronous/client.py\": 1716472311.2119606, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/asynchronous/__init__.py\": 1716472311.2119606, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/blocking/client.py\": 1716472311.2159607, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/blocking/__init__.py\": 1716472311.2159607, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/launcher.py\": 1716472311.2119606, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_uuid.cpython-312-darwin.so\": 1723142194.1044269, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/uuid.py\": 1723142149.957236, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_csv.cpython-312-darwin.so\": 1723142176.629677, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/csv.py\": 1723142149.5196388, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/email/__init__.py\": 1723142150.27496, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/zipfile/_path/glob.py\": 1723142152.974589, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/zipfile/_path/__init__.py\": 1723142152.9711955, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/zipfile/__init__.py\": 1723142152.9586284, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/quopri.py\": 1723142149.7915733, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/email/_parseaddr.py\": 1723142150.283816, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/email/base64mime.py\": 1723142150.3124948, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/email/quoprimime.py\": 1723142150.5031564, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/email/errors.py\": 1723142150.3865235, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/email/encoders.py\": 1723142150.3744767, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/email/charset.py\": 1723142150.3323884, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/email/utils.py\": 1723142150.5210757, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/email/header.py\": 1723142150.424343, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/email/_policybase.py\": 1723142150.2942421, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/email/_encoded_words.py\": 1723142150.278188, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/email/iterators.py\": 1723142150.4525528, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/email/message.py\": 1723142150.4649768, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/metadata/_functools.py\": 1723142152.1627119, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/metadata/_text.py\": 1723142152.1707847, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/metadata/_adapters.py\": 1723142152.157745, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/metadata/_meta.py\": 1723142152.1680312, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/metadata/_collections.py\": 1723142152.1603162, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/metadata/_itertools.py\": 1723142152.165304, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/resources/abc.py\": 1723142152.143448, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/resources/_adapters.py\": 1723142152.1324868, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/resources/_common.py\": 1723142152.1353474, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/resources/_legacy.py\": 1723142152.1409676, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/resources/__init__.py\": 1723142152.1296856, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/abc.py\": 1723142152.110422, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/metadata/__init__.py\": 1723142152.154989, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/provisioning/provisioner_base.py\": 1716472311.2159607, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/provisioning/factory.py\": 1716472311.2159607, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/provisioning/local_provisioner.py\": 1716472311.2159607, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/provisioning/__init__.py\": 1716472311.2159607, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/kernelspec.py\": 1716472311.2079606, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/managerabc.py\": 1716472311.2119606, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/manager.py\": 1716472311.2119606, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/multikernelmanager.py\": 1716472311.2119606, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jupyter_client/__init__.py\": 1716472311.2079606, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipykernel/connect.py\": 1719845663.7251453, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipykernel/__init__.py\": 1719845663.7234063, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/__init__.py\": 1719582623.4857578, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/getipython.py\": 1719582623.489758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/release.py\": 1719582623.497758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/pkgutil.py\": 1723142149.7479484, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/sysconfig.py\": 1723142149.8933856, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/_sysconfigdata__darwin_darwin.py\": 1723938028.5916107, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/_osx_support.py\": 1723142149.3377032, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/pydoc.py\": 1723142149.784795, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/executing/_exceptions.py\": 1698580071.529311, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/executing/_position_node_finder.py\": 1698580071.529311, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/executing/executing.py\": 1698580071.529311, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/executing/version.py\": 1698580071.529311, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/executing/__init__.py\": 1698580071.529311, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/asttokens/line_numbers.py\": 1698341256.9011524, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/asttokens/util.py\": 1698341256.9011524, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/asttokens/asttokens.py\": 1698341256.9011524, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/asttokens/__init__.py\": 1698341256.9011524, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/fractions.py\": 1723142149.579207, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pure_eval/utils.py\": 1721585804.1540272, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pure_eval/my_getattr_static.py\": 1721585804.1540272, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pure_eval/core.py\": 1721585804.1540272, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pure_eval/version.py\": 1721585804.1540272, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pure_eval/__init__.py\": 1721585804.1540272, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/stack_data/utils.py\": 1669632201.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/stack_data/core.py\": 1669632201.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/stack_data/formatting.py\": 1669632201.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/stack_data/serializing.py\": 1669632201.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/stack_data/version.py\": 1669632201.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/stack_data/__init__.py\": 1669632201.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/__init__.py\": 1714846879.4864717, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/formatters/_mapping.py\": 1714846879.4904716, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/plugin.py\": 1714846879.4904716, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/util.py\": 1714846879.4904716, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/formatters/__init__.py\": 1714846879.4904716, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/styles/_mapping.py\": 1714846879.5624723, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/styles/__init__.py\": 1714846879.5624723, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/formatter.py\": 1714846879.4904716, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/console.py\": 1714846879.4904716, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/token.py\": 1714846879.4904716, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/style.py\": 1714846879.4904716, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/formatters/terminal256.py\": 1714846879.4944715, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/__init__.py\": 1719582623.5337584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/colorable.py\": 1719582623.5337584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/ipstruct.py\": 1719582623.5377584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/coloransi.py\": 1719582623.5337584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/excolors.py\": 1719582623.489758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/PyColorize.py\": 1719582623.5337584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/encoding.py\": 1719582623.5337584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/py3compat.py\": 1719582623.5377584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/cmd.py\": 1723142149.451144, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/bdb.py\": 1723142149.3892422, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/codeop.py\": 1723142149.4699295, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/code.py\": 1723142149.4563885, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/pdb.py\": 1723142149.7353177, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/debugger.py\": 1719582623.489758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/display_trap.py\": 1719582623.489758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/shlex.py\": 1723142149.82834, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/_process_common.py\": 1719582623.5337584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/_process_posix.py\": 1719582623.5337584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/process.py\": 1719582623.5377584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/path.py\": 1719582623.5377584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/terminal.py\": 1719582623.5377584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/ultratb.py\": 1719582623.497758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/_sysinfo.py\": 1719582623.5337584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/sysinfo.py\": 1719582623.5377584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/crashhandler.py\": 1719582623.489758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/importstring.py\": 1719582623.5337584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/paths.py\": 1719582623.4857578, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/profiledir.py\": 1719582623.497758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/application.py\": 1719582623.4857578, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/terminal/__init__.py\": 1719582623.5217583, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/compilerop.py\": 1719582623.4857578, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/error.py\": 1719582623.489758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/docs.py\": 1719582623.5337584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/decorators.py\": 1719582623.5337584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/text.py\": 1719582623.5377584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/magic_arguments.py\": 1719582623.493758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/getopt.py\": 1723142149.5991902, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/display_functions.py\": 1719582623.489758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/mimetypes.py\": 1723142149.6932921, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/testing/__init__.py\": 1719582623.5257583, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/testing/skipdoctest.py\": 1719582623.5297582, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/display.py\": 1719582623.489758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/lib/__init__.py\": 1719582623.5137582, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/lib/display.py\": 1719582623.5177581, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/display.py\": 1719582623.4857578, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/data.py\": 1719582623.5337584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/page.py\": 1719582623.497758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/lib/pretty.py\": 1719582623.5177581, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/openpy.py\": 1719582623.5377584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/dir2.py\": 1719582623.5337584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/wildcard.py\": 1719582623.5417583, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/lexers/_mapping.py\": 1714846879.5024717, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/modeline.py\": 1714846879.4904716, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/lexers/__init__.py\": 1714846879.4944715, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/filter.py\": 1714846879.4904716, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/filters/__init__.py\": 1714846879.4904716, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/regexopt.py\": 1714846879.4904716, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/lexer.py\": 1714846879.4904716, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/unistring.py\": 1714846879.4904716, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/lexers/python.py\": 1714846879.5464723, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/formatters/html.py\": 1714846879.4944715, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/oinspect.py\": 1719582623.493758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/tokenutil.py\": 1719582623.5377584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/inputtransformer2.py\": 1719582623.493758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/magic.py\": 1719582623.493758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pickleshare.py\": 1602536311.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/hooks.py\": 1719582623.493758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/autocall.py\": 1719582623.4857578, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/macro.py\": 1719582623.493758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/splitinput.py\": 1719582623.497758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/prefilter.py\": 1719582623.497758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/alias.py\": 1719582623.4857578, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/builtin_trap.py\": 1719582623.4857578, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/displayhook.py\": 1719582623.489758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/displaypub.py\": 1719582623.489758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/events.py\": 1719582623.489758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/extensions.py\": 1719582623.489758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/decorator.py\": 1641555713.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/sentinel.py\": 1719582623.5377584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/formatters.py\": 1719582623.489758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_sqlite3.cpython-312-darwin.so\": 1723142190.296048, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/sqlite3/dbapi2.py\": 1723142152.556452, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/sqlite3/__init__.py\": 1723142152.5509179, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/history.py\": 1719582623.489758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/logger.py\": 1719582623.493758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/payload.py\": 1719582623.497758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/usage.py\": 1719582623.497758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/capture.py\": 1719582623.5337584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/io.py\": 1719582623.5377584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/strdispatch.py\": 1719582623.5377584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/syspathcontext.py\": 1719582623.5377584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/async_helpers.py\": 1719582623.4857578, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/interactiveshell.py\": 1719582623.493758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/application/current.py\": 1718048094.3164852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/eventloop/utils.py\": 1718048094.3284853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/eventloop/async_generator.py\": 1718048094.3284853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/eventloop/inputhook.py\": 1718048094.3284853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/eventloop/__init__.py\": 1718048094.3284853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/application/run_in_terminal.py\": 1718048094.320485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/selection.py\": 1718048094.3164852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/clipboard/base.py\": 1718048094.320485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/clipboard/in_memory.py\": 1718048094.320485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/clipboard/__init__.py\": 1718048094.320485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/cache.py\": 1718048094.312485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/enums.py\": 1718048094.312485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/filters/base.py\": 1718048094.3284853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/filters/app.py\": 1718048094.3284853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/filters/cli.py\": 1718048094.3284853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/filters/utils.py\": 1718048094.3284853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/filters/__init__.py\": 1718048094.3284853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/document.py\": 1718048094.312485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/auto_suggest.py\": 1718048094.312485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/keys.py\": 1718048094.312485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/key_binding/key_bindings.py\": 1718048094.3364854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/wcwidth/table_vs16.py\": 1704731372.903879, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/wcwidth/table_wide.py\": 1704731372.903879, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/wcwidth/table_zero.py\": 1704731372.903879, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/wcwidth/unicode_versions.py\": 1704731372.903879, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/wcwidth/wcwidth.py\": 1704731372.903879, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/wcwidth/__init__.py\": 1704731372.903879, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/utils.py\": 1718048094.3164852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/key_binding/key_processor.py\": 1718048094.3364854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/key_binding/__init__.py\": 1718048094.3324852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/key_binding/vi_state.py\": 1718048094.3364854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/cursor_shapes.py\": 1718048094.312485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/data_structures.py\": 1718048094.312485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/styles/base.py\": 1718048094.3524854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/styles/named_colors.py\": 1718048094.3524854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/styles/style.py\": 1718048094.3524854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/styles/defaults.py\": 1718048094.3524854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/styles/pygments.py\": 1718048094.3524854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/colorsys.py\": 1723142149.4761214, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/styles/style_transformation.py\": 1718048094.3524854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/styles/__init__.py\": 1718048094.3524854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/output/color_depth.py\": 1718048094.3484855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/output/base.py\": 1718048094.3484855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/output/flush_stdout.py\": 1718048094.3484855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/output/plain_text.py\": 1718048094.3484855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/output/defaults.py\": 1718048094.3484855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/output/__init__.py\": 1718048094.3444855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/output/vt100.py\": 1718048094.3484855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/mouse_events.py\": 1718048094.312485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/formatted_text/base.py\": 1718048094.3284853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/formatted_text/ansi.py\": 1718048094.3284853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/xml/__init__.py\": 1723142152.8539762, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/xml/dom/domreg.py\": 1723142152.8729863, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/xml/dom/__init__.py\": 1723142152.8700142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/xml/dom/minicompat.py\": 1723142152.8787796, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/xml/dom/NodeFilter.py\": 1723142152.8671775, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/xml/dom/xmlbuilder.py\": 1723142152.8875465, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/xml/dom/minidom.py\": 1723142152.8817942, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/formatted_text/html.py\": 1718048094.3284853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/formatted_text/pygments.py\": 1718048094.3284853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/formatted_text/utils.py\": 1718048094.3324852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/formatted_text/__init__.py\": 1718048094.3284853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/completion/base.py\": 1718048094.320485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/completion/deduplicate.py\": 1718048094.320485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/completion/filesystem.py\": 1718048094.320485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/completion/word_completer.py\": 1718048094.320485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/completion/fuzzy_completer.py\": 1718048094.320485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/completion/nested.py\": 1718048094.320485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/completion/__init__.py\": 1718048094.320485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/history.py\": 1718048094.312485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/search.py\": 1718048094.3164852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/validation.py\": 1718048094.3164852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/buffer.py\": 1718048094.312485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/input/base.py\": 1718048094.3324852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/input/defaults.py\": 1718048094.3324852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/input/__init__.py\": 1718048094.3324852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/input/typeahead.py\": 1718048094.3324852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/key_binding/bindings/__init__.py\": 1718048094.3364854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/key_binding/bindings/scroll.py\": 1718048094.3404853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/key_binding/bindings/page_navigation.py\": 1718048094.3404853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/lexers/base.py\": 1718048094.3444855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/lexers/pygments.py\": 1718048094.3444855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/lexers/__init__.py\": 1718048094.3444855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/layout/utils.py\": 1718048094.3444855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/layout/processors.py\": 1718048094.3444855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/layout/controls.py\": 1718048094.3404853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/layout/dimension.py\": 1718048094.3404853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/layout/margins.py\": 1718048094.3444855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/layout/mouse_handlers.py\": 1718048094.3444855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/layout/screen.py\": 1718048094.3444855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/layout/containers.py\": 1718048094.3404853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/layout/layout.py\": 1718048094.3444855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/layout/menus.py\": 1718048094.3444855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/layout/scrollable_pane.py\": 1718048094.3444855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/layout/__init__.py\": 1718048094.3404853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/key_binding/bindings/completion.py\": 1718048094.3364854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/key_binding/bindings/named_commands.py\": 1718048094.3404853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/key_binding/bindings/basic.py\": 1718048094.3364854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/key_binding/bindings/cpr.py\": 1718048094.3364854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/key_binding/bindings/emacs.py\": 1718048094.3364854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/key_binding/bindings/mouse.py\": 1718048094.3364854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/input/ansi_escape_sequences.py\": 1718048094.3324852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/input/vt100_parser.py\": 1718048094.3324852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/key_binding/digraphs.py\": 1718048094.3364854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/key_binding/bindings/vi.py\": 1718048094.3404853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/key_binding/defaults.py\": 1718048094.3324852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/key_binding/emacs_state.py\": 1718048094.3364854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/layout/dummy.py\": 1718048094.3404853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/renderer.py\": 1718048094.3164852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/application/application.py\": 1718048094.3164852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/application/dummy.py\": 1718048094.320485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/application/__init__.py\": 1718048094.3164852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/key_binding/bindings/focus.py\": 1718048094.3364854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/widgets/toolbars.py\": 1718048094.3564856, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/widgets/base.py\": 1718048094.3524854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/widgets/dialogs.py\": 1718048094.3524854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/widgets/menus.py\": 1718048094.3564856, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/widgets/__init__.py\": 1718048094.3524854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/shortcuts/dialogs.py\": 1718048094.3484855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/xml/parsers/__init__.py\": 1723142152.9143095, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/pyexpat.cpython-312-darwin.so\": 1723142187.3090763, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/xml/parsers/expat.py\": 1723142152.9171205, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/xml/dom/expatbuilder.py\": 1723142152.8757923, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/shortcuts/progress_bar/formatters.py\": 1718048094.3524854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/shortcuts/progress_bar/base.py\": 1718048094.3524854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/shortcuts/progress_bar/__init__.py\": 1718048094.3524854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/key_binding/bindings/auto_suggest.py\": 1718048094.3364854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/key_binding/bindings/open_in_editor.py\": 1718048094.3404853, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/shortcuts/prompt.py\": 1718048094.3484855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/shortcuts/utils.py\": 1718048094.3484855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/shortcuts/__init__.py\": 1718048094.3484855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/__init__.py\": 1718048094.312485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/prompt_toolkit/patch_stdout.py\": 1718048094.3164852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/unicodedata.cpython-312-darwin.so\": 1723142177.8032687, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/guarded_eval.py\": 1719582623.489758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/latex_symbols.py\": 1719582623.493758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/generics.py\": 1719582623.5337584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/utils.py\": 1712320446.0071447, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/tree.py\": 1712320446.0071447, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/python/__init__.py\": 1712320446.0071447, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/python/token.py\": 1712320446.0111446, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/python/tokenize.py\": 1712320446.0111446, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/pgen2/grammar_parser.py\": 1712320446.0071447, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/pgen2/generator.py\": 1712320446.0071447, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/pgen2/__init__.py\": 1712320446.0071447, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/parser.py\": 1712320446.0071447, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/_compatibility.py\": 1712320446.0031447, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/difflib.py\": 1723142149.541549, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/python/prefix.py\": 1712320446.0111446, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/python/tree.py\": 1712320446.0111446, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/python/parser.py\": 1712320446.0111446, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/python/diff.py\": 1712320446.0071447, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/cache.py\": 1712320446.0071447, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/normalizer.py\": 1712320446.0071447, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/python/errors.py\": 1712320446.0071447, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/python/pep8.py\": 1712320446.0111446, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/file_io.py\": 1712320446.0071447, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/grammar.py\": 1712320446.0071447, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/parso/__init__.py\": 1712320446.0031447, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/parser_utils.py\": 1696326209.647327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/debug.py\": 1696326209.647327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/settings.py\": 1696326209.647327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/cache.py\": 1696326209.647327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/file_io.py\": 1696326209.647327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/cache.py\": 1696326209.651327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/helpers.py\": 1696326209.651327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/utils.py\": 1696326209.655327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/base_value.py\": 1696326209.651327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/sys_path.py\": 1696326209.655327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/recursion.py\": 1696326209.655327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/flow_analysis.py\": 1696326209.651327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/common.py\": 1696326209.647327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/lazy_value.py\": 1696326209.655327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/docstrings.py\": 1696326209.651327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/plugins/__init__.py\": 1696326209.6633272, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/names.py\": 1696326209.655327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/filters.py\": 1696326209.651327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/compiled/getattr_static.py\": 1696326209.655327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/compiled/access.py\": 1696326209.655327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/signature.py\": 1696326209.655327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/context.py\": 1696326209.651327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/compiled/value.py\": 1696326209.655327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/compiled/__init__.py\": 1696326209.655327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/analysis.py\": 1696326209.651327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/gradual/__init__.py\": 1696326209.659327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/value/module.py\": 1696326209.659327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/value/dynamic_arrays.py\": 1696326209.659327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/value/iterable.py\": 1696326209.659327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/arguments.py\": 1696326209.651327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/parser_cache.py\": 1696326209.655327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/gradual/generics.py\": 1696326209.659327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/value/function.py\": 1696326209.659327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/value/klass.py\": 1696326209.659327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/value/instance.py\": 1696326209.659327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/value/__init__.py\": 1696326209.659327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/gradual/base.py\": 1696326209.659327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/gradual/type_var.py\": 1696326209.659327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/gradual/typing.py\": 1696326209.659327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/gradual/stub_value.py\": 1696326209.659327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/gradual/typeshed.py\": 1696326209.659327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/_compatibility.py\": 1696326209.647327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/compiled/subprocess/functions.py\": 1696326209.659327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/api/exceptions.py\": 1696326209.647327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/compiled/subprocess/__init__.py\": 1696326209.655327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/imports.py\": 1696326209.655327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/param.py\": 1696326209.655327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/gradual/annotation.py\": 1696326209.659327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/value/decorator.py\": 1696326209.659327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/syntax_tree.py\": 1696326209.655327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/__init__.py\": 1696326209.651327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/gradual/conversion.py\": 1696326209.659327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/compiled/mixed.py\": 1696326209.655327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/pydoc_data/__init__.py\": 1723142152.5124023, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/pydoc_data/topics.py\": 1723142152.518198, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/api/keywords.py\": 1696326209.651327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/api/completion_cache.py\": 1696326209.647327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/api/helpers.py\": 1696326209.647327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/api/classes.py\": 1696326209.647327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/api/interpreter.py\": 1696326209.651327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/api/strings.py\": 1696326209.651327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/api/file_name.py\": 1696326209.647327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/docstring_utils.py\": 1696326209.651327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/api/completion.py\": 1696326209.647327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/filecmp.py\": 1723142149.5638506, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/api/environment.py\": 1696326209.647327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/references.py\": 1696326209.655327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/api/project.py\": 1696326209.651327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/api/errors.py\": 1696326209.647327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/value/namespace.py\": 1696326209.659327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/api/refactoring/__init__.py\": 1696326209.651327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/api/refactoring/extract.py\": 1696326209.651327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/inference/gradual/utils.py\": 1696326209.659327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/api/__init__.py\": 1696326209.647327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/plugins/stdlib.py\": 1696326209.6633272, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/plugins/flask.py\": 1696326209.6633272, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/plugins/pytest.py\": 1696326209.6633272, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/plugins/django.py\": 1696326209.6633272, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/plugins/registry.py\": 1696326209.6633272, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/jedi/__init__.py\": 1696326209.647327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/completer.py\": 1719582623.4857578, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/terminal/ptutils.py\": 1719582623.5217583, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/terminal/shortcuts/auto_match.py\": 1719582623.5257583, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/terminal/shortcuts/filters.py\": 1719582623.5257583, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/terminal/shortcuts/auto_suggest.py\": 1719582623.5257583, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/terminal/shortcuts/__init__.py\": 1719582623.5257583, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/concurrent/futures/thread.py\": 1723142150.1600568, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/terminal/debugger.py\": 1719582623.5217583, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/lib/clipboard.py\": 1719582623.5177581, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/terminal/magics.py\": 1719582623.5217583, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/terminal/pt_inputhooks/__init__.py\": 1719582623.5217583, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/terminal/prompts.py\": 1719582623.5217583, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/terminal/interactiveshell.py\": 1719582623.5217583, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/magics/auto.py\": 1719582623.497758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/magics/basic.py\": 1719582623.497758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/http/__init__.py\": 1723142151.7210155, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/email/feedparser.py\": 1723142150.4035692, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/email/parser.py\": 1723142150.4757545, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/http/client.py\": 1723142151.7241213, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/urllib/response.py\": 1723142152.7871003, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/urllib/error.py\": 1723142152.7791398, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_scproxy.cpython-312-darwin.so\": 1723142181.7377684, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/urllib/request.py\": 1723142152.7845738, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/contexts.py\": 1719582623.5337584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/magics/code.py\": 1719582623.501758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/magics/config.py\": 1719582623.501758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/magics/display.py\": 1719582623.501758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_lsprof.cpython-312-darwin.so\": 1723142195.3741846, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/profile.py\": 1723142149.7683423, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/cProfile.py\": 1723142149.421481, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/pstats.py\": 1723142149.7711408, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/timeit.py\": 1723142149.919792, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/module_paths.py\": 1719582623.5377584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/resource.cpython-312-darwin.so\": 1723142197.2929842, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/timing.py\": 1719582623.5377584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/magics/ast_mod.py\": 1719582623.497758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/magics/execution.py\": 1719582623.501758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/magics/extension.py\": 1719582623.501758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/magics/history.py\": 1719582623.501758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/magics/logging.py\": 1719582623.501758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/magics/namespace.py\": 1719582623.501758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/magics/osm.py\": 1719582623.501758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/magics/packaging.py\": 1719582623.501758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/magics/pylab.py\": 1719582623.501758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/magics/script.py\": 1719582623.501758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/magics/__init__.py\": 1719582623.497758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/shellapp.py\": 1719582623.497758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/extensions/__init__.py\": 1719582623.5137582, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/extensions/storemagic.py\": 1719582623.5137582, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/terminal/ipapp.py\": 1719582623.5217583, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/terminal/embed.py\": 1719582623.5217583, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/utils/frame.py\": 1719582623.5337584, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/__init__.py\": 1719582623.4857578, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipykernel/control.py\": 1719845663.7254791, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipykernel/heartbeat.py\": 1719845663.728065, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipykernel/iostream.py\": 1719845663.729041, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/comm/base_comm.py\": 1710320433.9174705, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/comm/__init__.py\": 1710320433.9174705, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipykernel/jsonutil.py\": 1719845663.7299163, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/psutil/_common.py\": 1719274783.7006705, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/psutil/_compat.py\": 1719274783.701024, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/psutil/_psutil_osx.abi3.so\": 1719274785.1849043, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/psutil/_psposix.py\": 1719274783.7031205, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/psutil/_psutil_posix.abi3.so\": 1719274785.407168, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/psutil/_psosx.py\": 1719274783.7028103, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/psutil/__init__.py\": 1719274783.699956, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/tornado/gen.py\": 1717722935.1915183, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/tornado/locks.py\": 1717722935.1947224, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/tornado/queues.py\": 1717722935.1968014, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipykernel/kernelbase.py\": 1719845663.7309456, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipykernel/comm/comm.py\": 1719845663.735561, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipykernel/comm/manager.py\": 1719845663.7359135, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipykernel/comm/__init__.py\": 1719845663.735171, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipykernel/compiler.py\": 1719845663.724794, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/packaging/__init__.py\": 1718189538.7036242, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/packaging/_structures.py\": 1718189538.7036242, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/packaging/version.py\": 1718189538.7076242, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipykernel/eventloops.py\": 1719845663.7277212, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/payloadpage.py\": 1719582623.497758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipykernel/displayhook.py\": 1719845663.7269359, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipykernel/zmqshell.py\": 1719845663.7342715, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipykernel/ipkernel.py\": 1719845663.7295537, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipykernel/parentpoller.py\": 1719845663.7319958, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipykernel/kernelapp.py\": 1719845663.730379, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/tornado/platform/__init__.py\": 1717722935.201633, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/tornado/platform/asyncio.py\": 1717722935.20202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_version.py\": 1722923969.1979864, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/public_api.py\": 1722923969.1983182, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/__init__.py\": 1722923969.1973393, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/_util.py\": 1722923969.1993601, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/__init__.py\": 1722923969.198711, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/__init__.py\": 1722923969.2143106, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/encodings/ascii.py\": 1723142150.6406891, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/encodings/latin_1.py\": 1723142151.4554, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/stringprep.py\": 1723142149.878952, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/encodings/idna.py\": 1723142151.1942122, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_vm_type.py\": 1722923969.2379925, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydev_bundle/__init__.py\": 1722923969.2037551, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/xmlrpc/__init__.py\": 1723142152.9455974, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/gzip.py\": 1723142149.6245732, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/xmlrpc/client.py\": 1723142152.9482703, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/http/server.py\": 1723142151.7366505, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/xmlrpc/server.py\": 1723142152.9509618, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydev_bundle/_pydev_saved_modules.py\": 1722923969.206356, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_constants.py\": 1722923969.219116, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydev_runfiles/__init__.py\": 1722923969.2116532, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_frame_eval/__init__.py\": 1722923969.2435095, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/pydev_ipython/__init__.py\": 1722923969.2551935, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/__init__.py\": 1722923969.3271081, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydev_bundle/pydev_log.py\": 1722923969.209486, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydev_bundle/_pydev_filesystem_encoding.py\": 1722923969.2048569, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_comm_constants.py\": 1722923969.2180622, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/pydevd_file_utils.py\": 1722923969.202829, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydev_bundle/_pydev_execfile.py\": 1722923969.204579, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_exec2.py\": 1722923969.2271667, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydev_bundle/pydev_imports.py\": 1722923969.2079878, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydev_bundle/pydev_is_thread_alive.py\": 1722923969.208895, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydev_bundle/pydev_override.py\": 1722923969.2104597, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/__init__.py\": 1722923969.3288434, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_extension_utils.py\": 1722923969.2277288, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_frame_utils.py\": 1722923969.2288597, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_filtering.py\": 1722923969.2280405, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_io.py\": 1722923969.229746, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_defaults.py\": 1722923969.2260041, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_utils.py\": 1722923969.2373495, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py\": 1722923969.233435, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydev_bundle/_pydev_tipper_common.py\": 1722923969.2070153, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydev_bundle/_pydev_imports_tipper.py\": 1722923969.2054586, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydev_bundle/_pydev_calltip_util.py\": 1722923969.203996, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_safe_repr.py\": 1722923969.233743, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_resolver.py\": 1722923969.2331104, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_extension_api.py\": 1722923969.2274575, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_xml.py\": 1722923969.238299, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_dont_trace.py\": 1722923969.2262533, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_frame_eval/vendored/__init__.py\": 1722923969.2490146, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_frame_eval/vendored/bytecode/flags.py\": 1722923969.2509034, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_frame_eval/vendored/bytecode/instr.py\": 1722923969.2512167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_frame_eval/vendored/bytecode/bytecode.py\": 1722923969.2499013, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_frame_eval/vendored/bytecode/concrete.py\": 1722923969.2505686, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_frame_eval/vendored/bytecode/cfg.py\": 1722923969.250214, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_frame_eval/vendored/bytecode/__init__.py\": 1722923969.2496064, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_bytecode_utils.py\": 1722923969.2164707, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_frame.py\": 1722923969.2284963, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_additional_thread_info_regular.py\": 1722923969.2153287, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_additional_thread_info.py\": 1722923969.215021, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_thread_lifecycle.py\": 1722923969.2355294, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_save_locals.py\": 1722923969.2340267, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydev_bundle/pydev_monkey.py\": 1722923969.2098897, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/pydevd_tracing.py\": 1722923969.203194, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_collect_bytecode_info.py\": 1722923969.2171955, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_daemon_thread.py\": 1722923969.2257183, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_timeout.py\": 1722923969.2358205, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_vars.py\": 1722923969.237705, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydev_bundle/pydev_console_utils.py\": 1722923969.2074068, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_import_class.py\": 1722923969.2294524, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_breakpoints.py\": 1722923969.2161074, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_custom_frames.py\": 1722923969.2194161, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_dont_trace_files.py\": 1722923969.226886, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_net_command.py\": 1722923969.2303095, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevconsole_code.py\": 1722923969.2146404, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydev_bundle/pydev_umd.py\": 1722923969.2107522, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/pydevconsole.py\": 1722923969.2013803, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydev_bundle/_pydev_completer.py\": 1722923969.2042964, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_net_command_factory_xml.py\": 1722923969.231006, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_trace_dispatch_regular.py\": 1722923969.2366788, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_trace_dispatch.py\": 1722923969.2363474, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_frame_eval/pydevd_frame_eval_main.py\": 1722923969.2441459, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_source_mapping.py\": 1722923969.2346153, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_concurrency_analyser/__init__.py\": 1722923969.2424572, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_concurrency_analyser/pydevd_thread_wrappers.py\": 1722923969.2430155, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_concurrency_analyser/pydevd_concurrency_logger.py\": 1722923969.2427282, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/_debug_adapter/__init__.py\": 1722923969.2385368, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/_debug_adapter/pydevd_schema_log.py\": 1722923969.242211, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/_debug_adapter/pydevd_base_schema.py\": 1722923969.2402813, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/_debug_adapter/pydevd_schema.py\": 1722923969.2418613, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_reload.py\": 1722923969.2327518, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydev_bundle/fsnotify/__init__.py\": 1722923969.211422, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_console.py\": 1722923969.2187254, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_comm.py\": 1722923969.2177522, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_net_command_factory_json.py\": 1722923969.2306695, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_api.py\": 1722923969.2157638, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_json_debug_options.py\": 1722923969.2300267, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_process_net_command_json.py\": 1722923969.232132, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_traceproperty.py\": 1722923969.2370281, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_process_net_command.py\": 1722923969.2316895, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_suspended_frames.py\": 1722923969.2352433, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_trace_api.py\": 1722923969.2360806, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/pydevd_line_validation.py\": 1722923969.3281696, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/django_debug.py\": 1722923969.3274682, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/jinja2_debug.py\": 1722923969.3278406, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_plugin_utils.py\": 1722923969.2312849, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/types/__init__.py\": 1722923969.3291972, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/types/pydevd_helpers.py\": 1722923969.3296688, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/types/pydevd_plugin_numpy_types.py\": 1722923969.3299565, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/types/pydevd_plugin_pandas_types.py\": 1722923969.330252, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/pydevd_plugins/extensions/types/pydevd_plugins_django_form_str.py\": 1722923969.3305304, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/pydevd/pydevd.py\": 1722923969.202228, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/_vendored/force_pydevd.py\": 1722923969.199689, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/server/__init__.py\": 1722923969.3376975, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/adapter/__init__.py\": 1722923969.3308475, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/common/__init__.py\": 1722923969.3330734, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/common/json.py\": 1722923969.3333642, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/common/timestamp.py\": 1722923969.3353028, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/common/util.py\": 1722923969.3355658, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/plistlib.py\": 1723142149.7549875, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/common/log.py\": 1722923969.333665, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/common/sockets.py\": 1722923969.3347824, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/debugpy/server/api.py\": 1722923969.338021, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipykernel/debugger.py\": 1719845663.7265687, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/completerlib.py\": 1719582623.4857578, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/ctypes/macholib/__init__.py\": 1723142150.1965942, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/ctypes/macholib/framework.py\": 1723142150.2164721, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/ctypes/macholib/dylib.py\": 1723142150.2038767, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/ctypes/macholib/dyld.py\": 1723142150.200014, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/ctypes/util.py\": 1723142150.1778152, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/appnope/_nope.py\": 1707233194.6693535, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/appnope/__init__.py\": 1707233194.6653535, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_api/deprecation.py\": 1723759721.5867286, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_api/__init__.py\": 1723759721.5863967, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_version.py\": 1723759721.6684384, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/_utils/_convertions.py\": 1707226214.485518, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/_utils/__init__.py\": 1707226214.4848444, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/_globals.py\": 1707226214.3828382, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/exceptions.py\": 1707226214.3867888, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/version.py\": 1707226214.3901725, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/_distributor_init.py\": 1707226214.382313, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/_utils/_inspect.py\": 1707226214.4863038, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/_exceptions.py\": 1707226214.3959339, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/dtypes.py\": 1707226214.3879445, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/_multiarray_umath.cpython-312-darwin.so\": 1707226239.0381525, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/overrides.py\": 1707226214.4151952, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/multiarray.py\": 1707226214.4113994, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/umath.py\": 1707226214.4180918, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/_string_helpers.py\": 1707226214.398583, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/compat/py3k.py\": 1707226214.5070703, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/compat/__init__.py\": 1707226214.5065157, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/_dtype.py\": 1707226214.3948188, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/_type_aliases.py\": 1707226214.399111, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/numerictypes.py\": 1707226214.414172, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/_ufunc_config.py\": 1707226214.4002824, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/_methods.py\": 1707226214.3980985, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/fromnumeric.py\": 1707226214.406532, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/shape_base.py\": 1707226214.4169457, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/arrayprint.py\": 1707226214.4015045, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/_asarray.py\": 1707226214.3938203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/numeric.py\": 1707226214.4129188, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/defchararray.py\": 1707226214.4032514, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/records.py\": 1707226214.4158342, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/memmap.py\": 1707226214.4102137, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/function_base.py\": 1707226214.4079964, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/_machar.py\": 1707226214.3975842, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/getlimits.py\": 1707226214.4091737, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/einsumfunc.py\": 1707226214.404519, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/_multiarray_tests.cpython-312-darwin.so\": 1707226235.3551407, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/_add_newdocs.py\": 1707226214.3926322, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/_add_newdocs_scalars.py\": 1707226214.393254, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/_dtype_ctypes.py\": 1707226214.3954465, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/_internal.py\": 1707226214.3965437, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/_pytesttester.py\": 1707226214.3834357, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/core/__init__.py\": 1707226214.3907187, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/__config__.py\": 1723938029.3577924, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/mixins.py\": 1707226214.598585, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/ufunclike.py\": 1707226214.6102834, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/type_check.py\": 1707226214.6091251, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/scimath.py\": 1707226214.6041973, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/stride_tricks.py\": 1707226214.6067266, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/twodim_base.py\": 1707226214.6079044, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/linalg/_umath_linalg.cpython-312-darwin.so\": 1707226239.6491978, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/_typing/_nested_sequence.py\": 1707226214.482316, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/_typing/_nbit.py\": 1707226214.4817924, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/_typing/_char_codes.py\": 1707226214.4801052, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/_typing/_scalars.py\": 1707226214.4827669, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/_typing/_shape.py\": 1707226214.4832509, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/_typing/_dtype_like.py\": 1707226214.4806187, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/_typing/_array_like.py\": 1707226214.4790144, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/_typing/__init__.py\": 1707226214.4778867, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/linalg/linalg.py\": 1707226214.4418578, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/linalg/__init__.py\": 1707226214.440313, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/matrixlib/defmatrix.py\": 1707226214.64813, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/matrixlib/__init__.py\": 1707226214.646934, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/histograms.py\": 1707226214.5961812, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/function_base.py\": 1707226214.5948987, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/index_tricks.py\": 1707226214.5973825, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/nanfunctions.py\": 1707226214.5998702, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/shape_base.py\": 1707226214.605703, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/polynomial.py\": 1707226214.6024718, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/utils.py\": 1707226214.6119242, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/arraysetops.py\": 1707226214.5907347, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/format.py\": 1707226214.5930061, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/_datasource.py\": 1707226214.5874455, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/_iotools.py\": 1707226214.5880733, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/npyio.py\": 1707226214.6012585, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/arrayterator.py\": 1707226214.5917876, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/arraypad.py\": 1707226214.589638, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/_version.py\": 1707226214.5885725, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/lib/__init__.py\": 1707226214.5863008, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/fft/_pocketfft_internal.cpython-312-darwin.so\": 1707226238.6638849, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/fft/_pocketfft.py\": 1707226214.4362094, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/fft/helper.py\": 1707226214.4375477, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/fft/__init__.py\": 1707226214.4348743, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/polynomial/polyutils.py\": 1707226214.6628935, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/polynomial/_polybase.py\": 1707226214.6548848, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/polynomial/polynomial.py\": 1707226214.6618118, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/polynomial/chebyshev.py\": 1707226214.6560571, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/polynomial/legendre.py\": 1707226214.6606734, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/polynomial/hermite.py\": 1707226214.6571972, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/polynomial/hermite_e.py\": 1707226214.6584132, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/polynomial/laguerre.py\": 1707226214.659542, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/polynomial/__init__.py\": 1707226214.6538112, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/random/_common.cpython-312-darwin.so\": 1707226235.9529274, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/secrets.py\": 1723142149.817279, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/random/bit_generator.cpython-312-darwin.so\": 1707226235.0635226, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/random/_bounded_integers.cpython-312-darwin.so\": 1707226240.0257108, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/random/_mt19937.cpython-312-darwin.so\": 1707226236.2991807, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/random/mtrand.cpython-312-darwin.so\": 1707226234.1081939, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/random/_philox.cpython-312-darwin.so\": 1707226237.9009385, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/random/_pcg64.cpython-312-darwin.so\": 1707226236.9042776, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/random/_sfc64.cpython-312-darwin.so\": 1707226236.6014037, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/random/_generator.cpython-312-darwin.so\": 1707226238.3151789, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/random/_pickle.py\": 1707226214.4491494, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/random/__init__.py\": 1707226214.4457214, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/ctypeslib.py\": 1707226214.3856096, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/ma/core.py\": 1707226214.6358254, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/ma/extras.py\": 1707226214.6373158, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/ma/__init__.py\": 1707226214.6335192, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/__init__.py\": 1707226214.3807805, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_c_internal_utils.cpython-312-darwin.so\": 1723759728.2525015, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/cbook.py\": 1723759721.5487146, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_docstring.py\": 1723759721.5391529, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/backends/registry.py\": 1723759721.6037774, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/backends/__init__.py\": 1723759721.5919313, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/_version.py\": 1719903896.2134676, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/__init__.py\": 1719903896.1951425, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/ExifTags.py\": 1719903896.118627, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/_deprecate.py\": 1719903896.1981392, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/ImageMode.py\": 1719903896.146874, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/TiffTags.py\": 1719903896.1900415, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/_binary.py\": 1719903896.1968524, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/_typing/_add_docstring.py\": 1707226214.478489, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/typing/__init__.py\": 1707226214.683301, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/_typing.py\": 1719903896.212507, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/_util.py\": 1719903896.2130585, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/_imaging.cpython-312-darwin.so\": 1719903905.3811624, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/cffi/lock.py\": 1723018607.5818725, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/cffi/error.py\": 1723018607.5813396, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/cffi/model.py\": 1723018607.582184, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/cffi/api.py\": 1723018607.5795803, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/cffi/__init__.py\": 1723018607.5776126, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/Image.py\": 1719903896.1287754, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/ImageChops.py\": 1719903896.1293108, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/ImageFile.py\": 1719903896.1397512, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/GimpGradientFile.py\": 1719903896.123121, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/GimpPaletteFile.py\": 1719903896.1239097, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/ImageColor.py\": 1719903896.1317062, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/PaletteFile.py\": 1719903896.1739476, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/ImagePalette.py\": 1719903896.1501796, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/ImageSequence.py\": 1719903896.1544852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/PngImagePlugin.py\": 1719903896.1804268, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_cm.py\": 1723759721.537467, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/_core/__init__.py\": 1707226214.4877353, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_path.cpython-312-darwin.so\": 1723759727.90415, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/bezier.py\": 1723759721.5477295, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/path.py\": 1723759721.5601504, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/transforms.py\": 1723759721.566759, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/ticker.py\": 1723759721.5661373, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/scale.py\": 1723759721.562709, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_color_data.py\": 1723759721.5385022, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/colors.py\": 1723759721.5506563, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pyparsing/util.py\": 1709721145.8480852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pyparsing/unicode.py\": 1709721145.8480852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pyparsing/exceptions.py\": 1709721145.8440852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pyparsing/actions.py\": 1709721145.8440852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pyparsing/results.py\": 1709721145.8480852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pyparsing/core.py\": 1709721145.8440852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pyparsing/helpers.py\": 1709721145.8440852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pyparsing/testing.py\": 1709721145.8480852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pyparsing/common.py\": 1709721145.8440852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pyparsing/__init__.py\": 1709721145.8440852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_fontconfig_pattern.py\": 1723759721.539715, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_enums.py\": 1723759721.5394392, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/cycler/__init__.py\": 1696677887.7702208, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/rcsetup.py\": 1723759721.5619977, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/ft2font.cpython-312-darwin.so\": 1723759726.3867595, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/kiwisolver/exceptions.py\": 1695380517.1282227, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/kiwisolver/_cext.cpython-312-darwin.so\": 1695380520.865248, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/kiwisolver/__init__.py\": 1695380517.1252234, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_cm_listed.py\": 1723759721.5381067, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/cm.py\": 1723759721.5490894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/__init__.py\": 1723759721.535847, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/artist.py\": 1723759721.5440383, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/hatch.py\": 1723759721.5544875, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/markers.py\": 1723759721.5571663, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/lines.py\": 1723759721.556766, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/collections.py\": 1723759721.5496233, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_pylab_helpers.py\": 1723759721.5417352, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/backend_tools.py\": 1723759721.5471451, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_mathtext_data.py\": 1723759721.5414536, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_afm.py\": 1723759721.5361786, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/font_manager.py\": 1723759721.5537484, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/patches.py\": 1723759721.5591333, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_text_helpers.py\": 1723759721.5420096, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/dviread.py\": 1723759721.5523558, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_mathtext.py\": 1723759721.5410244, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/mathtext.py\": 1723759721.557502, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/texmanager.py\": 1723759721.56464, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/textpath.py\": 1723759721.5649948, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/text.py\": 1723759721.5655096, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_tight_bbox.py\": 1723759721.542278, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/widgets.py\": 1723759721.5681794, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/backend_managers.py\": 1723759721.5466287, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_layoutgrid.py\": 1723759721.5403068, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_constrained_layout.py\": 1723759721.5388658, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_tight_layout.py\": 1723759721.5425785, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/layout_engine.py\": 1723759721.5553625, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/backend_bases.py\": 1723759721.5460553, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/contour.py\": 1723759721.551453, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/spines.py\": 1723759721.563037, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/colorbar.py\": 1723759721.5500877, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_image.cpython-312-darwin.so\": 1723759726.7376966, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/image.py\": 1723759721.555014, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/style/core.py\": 1723759721.609359, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/style/__init__.py\": 1723759721.609058, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_blocking_input.py\": 1723759721.5368881, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/offsetbox.py\": 1723759721.5583632, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/units.py\": 1723759721.5675359, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/axis.py\": 1723759721.5449066, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/gridspec.py\": 1723759721.5541565, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/table.py\": 1723759721.5642726, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/axes/_base.py\": 1723759721.589613, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/category.py\": 1723759721.5480952, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/dateutil/rrule.py\": 1709299919.2872345, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/dates.py\": 1723759721.5519297, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/container.py\": 1723759721.5509448, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/legend_handler.py\": 1723759721.5557497, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/legend.py\": 1723759721.5562353, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/mlab.py\": 1723759721.557895, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/quiver.py\": 1723759721.5615482, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/stackplot.py\": 1723759721.5634677, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/streamplot.py\": 1723759721.5638762, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/tri/_triangulation.py\": 1723759721.6479964, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/tri/_tricontour.py\": 1723759721.648312, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/tri/_trifinder.py\": 1723759721.6487153, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/tri/_tritools.py\": 1723759721.6504037, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/tri/_triinterpolate.py\": 1723759721.6491697, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/tri/_tripcolor.py\": 1723759721.649501, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/tri/_triplot.py\": 1723759721.6498036, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/tri/_trirefine.py\": 1723759721.6501033, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/tri/__init__.py\": 1723759721.6476994, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/axes/_secondary_axes.py\": 1723759721.5901473, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/axes/_axes.py\": 1723759721.5887926, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/axes/__init__.py\": 1723759721.587608, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/projections/geo.py\": 1723759721.6060116, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/projections/polar.py\": 1723759721.6064332, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/mpl_toolkits/mplot3d/proj3d.py\": 1723759721.6665087, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/mpl_toolkits/mplot3d/art3d.py\": 1723759721.6649415, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/mpl_toolkits/mplot3d/axis3d.py\": 1723759721.6662233, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/mpl_toolkits/mplot3d/axes3d.py\": 1723759721.6658292, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/mpl_toolkits/mplot3d/__init__.py\": 1723759721.664508, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/projections/__init__.py\": 1723759721.605708, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/figure.py\": 1723759721.5532138, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/pyplot.py\": 1723759721.5610948, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/backends/_backend_agg.cpython-312-darwin.so\": 1723759728.984677, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/backends/backend_agg.py\": 1723759721.5922587, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/IPython/core/pylabtools.py\": 1719582623.497758, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib_inline/config.py\": 1713250612.6232414, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib_inline/backend_inline.py\": 1713250612.6232414, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib_inline/__init__.py\": 1713250612.6232414, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytz/exceptions.py\": 1706886940.7094421, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytz/lazy.py\": 1706886940.7094421, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytz/tzinfo.py\": 1706886940.7094421, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytz/tzfile.py\": 1706886940.7094421, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytz/__init__.py\": 1706886940.7094421, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/compat/_constants.py\": 1715898073.3962033, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/compat/compressors.py\": 1715898073.3967936, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/util/__init__.py\": 1715898073.81543, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/util/version/__init__.py\": 1715898073.8176572, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/compat/numpy/__init__.py\": 1715898073.397708, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/compat/pyarrow.py\": 1715898073.397408, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/compat/__init__.py\": 1715898073.395912, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_typing.py\": 1715898073.3888319, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/util/_exceptions.py\": 1715898073.8163006, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_config/config.py\": 1715898073.390433, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_config/dates.py\": 1715898073.3906984, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_config/display.py\": 1715898073.390946, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_config/__init__.py\": 1715898073.3901045, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/__init__.py\": 1715898073.3982534, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/config_init.py\": 1715898073.4006045, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/pandas_parser.cpython-312-darwin.so\": 1715898103.0135949, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/pandas_datetime.cpython-312-darwin.so\": 1715898104.6560493, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/tslibs/ccalendar.cpython-312-darwin.so\": 1715898112.3810005, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/tslibs/np_datetime.cpython-312-darwin.so\": 1715898105.3417356, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/tslibs/dtypes.cpython-312-darwin.so\": 1715898105.979806, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/tslibs/base.cpython-312-darwin.so\": 1715898106.3170297, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/tslibs/nattype.cpython-312-darwin.so\": 1715898110.0273576, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/compat/_optional.py\": 1715898073.3964999, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/zoneinfo/_tzpath.py\": 1723142152.9907494, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/zoneinfo/_common.py\": 1723142152.9866743, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_zoneinfo.cpython-312-darwin.so\": 1723142178.9392972, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/zoneinfo/__init__.py\": 1723142152.9836469, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/tslibs/timezones.cpython-312-darwin.so\": 1715898102.314907, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_config/localization.py\": 1715898073.391195, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/tslibs/fields.cpython-312-darwin.so\": 1715898106.6657536, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/tslibs/timedeltas.cpython-312-darwin.so\": 1715898108.9932764, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/tslibs/tzconversion.cpython-312-darwin.so\": 1715898107.3872302, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/tslibs/timestamps.cpython-312-darwin.so\": 1715898111.3811314, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/properties.cpython-312-darwin.so\": 1715898113.3853092, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/tslibs/offsets.cpython-312-darwin.so\": 1715898113.053433, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/tslibs/strptime.cpython-312-darwin.so\": 1715898109.3530142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/tslibs/parsing.cpython-312-darwin.so\": 1715898100.127168, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/tslibs/conversion.cpython-312-darwin.so\": 1715898099.386099, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/tslibs/period.cpython-312-darwin.so\": 1715898105.6685474, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/tslibs/vectorized.cpython-312-darwin.so\": 1715898112.714754, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/tslibs/__init__.py\": 1715898073.3757617, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/ops_dispatch.cpython-312-darwin.so\": 1715898108.6736794, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/missing.cpython-312-darwin.so\": 1715898101.9199781, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/hashtable.cpython-312-darwin.so\": 1715898101.5184383, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/algos.cpython-312-darwin.so\": 1715898110.7029204, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/interval.cpython-312-darwin.so\": 1715898099.7902544, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/__init__.py\": 1715898073.3802507, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/dtypes/__init__.py\": 1715898073.4296744, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/lib.cpython-312-darwin.so\": 1715898107.0376916, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/errors/__init__.py\": 1715898073.4642663, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/dtypes/generic.py\": 1715898073.432498, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/dtypes/base.py\": 1715898073.430773, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/dtypes/inference.py\": 1715898073.432948, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/dtypes/dtypes.py\": 1715898073.4322033, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/dtypes/common.py\": 1715898073.4314854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/dtypes/missing.py\": 1715898073.433346, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/util/_decorators.py\": 1715898073.8157763, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/__init__.py\": 1715898073.4645913, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/_util.py\": 1715898073.4648662, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/dtypes/cast.py\": 1715898073.4311402, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/dtypes/astype.py\": 1715898073.4304368, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/dtypes/concat.py\": 1715898073.4318154, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/array_algos/__init__.py\": 1715898073.4094052, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/common.py\": 1715898073.4003286, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/construction.py\": 1715898073.4008715, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/array_algos/take.py\": 1715898073.4119449, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/indexers/utils.py\": 1715898073.4381676, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/indexers/__init__.py\": 1715898073.4373524, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/algorithms.py\": 1715898073.3987591, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/arrow/accessors.py\": 1715898073.4220731, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/util/_validators.py\": 1715898073.8173466, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/missing.py\": 1715898073.4033775, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/ops.cpython-312-darwin.so\": 1715898103.992725, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/roperator.py\": 1715898073.4044712, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/computation/__init__.py\": 1715898073.4248135, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/computation/check.py\": 1715898073.4256964, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/computation/expressions.py\": 1715898073.4278388, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/ops/missing.py\": 1715898073.453518, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/ops/dispatch.py\": 1715898073.45232, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/ops/invalid.py\": 1715898073.4529815, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/ops/array_ops.py\": 1715898073.4515042, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/ops/common.py\": 1715898073.451917, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/ops/docstrings.py\": 1715898073.4526992, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/ops/mask_ops.py\": 1715898073.4532597, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/ops/__init__.py\": 1715898073.4509294, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arraylike.py\": 1715898073.399779, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/_arrow_string_mixins.py\": 1715898073.4127798, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/_utils.py\": 1715898073.414197, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/compat/numpy/function.py\": 1715898073.3979716, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/array_algos/quantile.py\": 1715898073.4112628, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/sorting.py\": 1715898073.4058836, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/base.py\": 1715898073.414724, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/nanops.py\": 1715898073.4038491, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/array_algos/masked_accumulations.py\": 1715898073.410411, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/array_algos/masked_reductions.py\": 1715898073.4107807, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/util/__init__.py\": 1715898073.4606984, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/hashing.cpython-312-darwin.so\": 1715898101.0093024, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/util/hashing.py\": 1715898073.4609416, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/masked.py\": 1715898073.4184415, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/arrays.cpython-312-darwin.so\": 1715898110.3367076, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/numeric.py\": 1715898073.4187264, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/floating.py\": 1715898073.417026, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/integer.py\": 1715898073.4174805, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/array_algos/transforms.py\": 1715898073.4122078, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/_mixins.py\": 1715898073.4130254, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/strings/__init__.py\": 1715898073.457826, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/strings/base.py\": 1715898073.458493, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/strings/object_array.py\": 1715898073.4587784, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/numpy_.py\": 1715898073.4190598, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/string_.py\": 1715898073.4197145, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/tseries/__init__.py\": 1715898073.8140585, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/tseries/frequencies.py\": 1715898073.8145878, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/arrow/array.py\": 1715898073.4224138, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/arrow/__init__.py\": 1715898073.4213765, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/boolean.py\": 1715898073.4151235, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/accessor.py\": 1715898073.3984811, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/base.py\": 1715898073.4000506, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/formats/__init__.py\": 1715898073.472717, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/formats/console.py\": 1715898073.4732912, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/categorical.py\": 1715898073.415861, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/tslib.cpython-312-darwin.so\": 1715898109.6829689, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/array_algos/datetimelike_accumulations.py\": 1715898073.4098155, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/datetimelike.py\": 1715898073.4163494, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/_ranges.py\": 1715898073.413752, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/tseries/offsets.py\": 1715898073.8151205, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/datetimes.py\": 1715898073.4167304, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/timedeltas.py\": 1715898073.4207058, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/interval.py\": 1715898073.4181054, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/period.py\": 1715898073.4193933, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/sparse.cpython-312-darwin.so\": 1715898112.0699236, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/formats/printing.py\": 1715898073.4753428, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/sparse/array.py\": 1715898073.4241822, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/sparse/accessor.py\": 1715898073.4238055, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/sparse/__init__.py\": 1715898073.4231355, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/string_arrow.py\": 1715898073.42004, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/arrays/__init__.py\": 1715898073.4125156, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/flags.py\": 1715898073.4011266, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/internals.cpython-312-darwin.so\": 1715898102.6477072, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/_numba/__init__.py\": 1715898073.4062908, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/_numba/executor.py\": 1715898073.4065468, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/apply.py\": 1715898073.3994377, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/indexing.cpython-312-darwin.so\": 1715898108.0304601, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/indexes/__init__.py\": 1715898073.438455, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/index.cpython-312-darwin.so\": 1715898104.333539, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/writers.cpython-312-darwin.so\": 1715898108.3508682, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/join.cpython-312-darwin.so\": 1715898111.0242798, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/array_algos/putmask.py\": 1715898073.4110305, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/indexes/frozen.py\": 1715898073.4415207, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/strings/accessor.py\": 1715898073.4581895, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/indexes/base.py\": 1715898073.439548, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/indexes/extension.py\": 1715898073.441178, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/indexes/category.py\": 1715898073.4400804, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/indexes/range.py\": 1715898073.4432719, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/tools/__init__.py\": 1715898073.4590225, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/tools/timedeltas.py\": 1715898073.4600666, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/indexes/datetimelike.py\": 1715898073.440455, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/tools/times.py\": 1715898073.460405, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/indexes/datetimes.py\": 1715898073.4408212, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/indexes/multi.py\": 1715898073.4423938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/indexes/timedeltas.py\": 1715898073.4438255, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/indexes/interval.py\": 1715898073.4420073, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/indexes/period.py\": 1715898073.442889, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/indexes/api.py\": 1715898073.4390142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/indexing.py\": 1715898073.4030192, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/sample.py\": 1715898073.4047358, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/array_algos/replace.py\": 1715898073.4116645, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/internals/blocks.py\": 1715898073.4479825, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/internals/api.py\": 1715898073.4469423, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/internals/base.py\": 1715898073.4475203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/internals/ops.py\": 1715898073.449442, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/internals/managers.py\": 1715898073.4490042, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/internals/array_manager.py\": 1715898073.4472373, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/internals/concat.py\": 1715898073.4483604, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/internals/__init__.py\": 1715898073.446607, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/internals/construction.py\": 1715898073.4486625, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/methods/__init__.py\": 1715898073.449802, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/reshape/__init__.py\": 1715898073.4537714, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/reshape/concat.py\": 1715898073.4545052, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/mmap.cpython-312-darwin.so\": 1723142169.1145537, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/grp.cpython-312-darwin.so\": 1723142183.0479221, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/tarfile.py\": 1723142149.901066, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/shared_docs.py\": 1715898073.4055846, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/common.py\": 1715898073.4657307, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/formats/format.py\": 1715898073.4744465, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/methods/describe.py\": 1715898073.4500623, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/window/__init__.py\": 1715898073.3875966, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/window/aggregations.cpython-312-darwin.so\": 1715898113.7275045, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/window/indexers.cpython-312-darwin.so\": 1715898107.704625, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/indexers/objects.py\": 1715898073.437843, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/util/numba_.py\": 1715898073.4612088, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/window/common.py\": 1715898073.4617825, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/window/doc.py\": 1715898073.4621382, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/window/numba_.py\": 1715898073.4632854, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/window/online.py\": 1715898073.463566, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/window/rolling.py\": 1715898073.4639144, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/window/ewm.py\": 1715898073.4625704, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/window/expanding.py\": 1715898073.4629946, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/window/__init__.py\": 1715898073.4615195, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/generic.py\": 1715898073.4025533, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/methods/selectn.py\": 1715898073.4503372, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/reshape/util.py\": 1715898073.4568465, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/tools/numeric.py\": 1715898073.4596813, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/reshape/melt.py\": 1715898073.455208, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/reshape.cpython-312-darwin.so\": 1715898103.669783, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/indexes/accessors.py\": 1715898073.4386992, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/arrays/__init__.py\": 1715898073.3955839, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/tools/datetimes.py\": 1715898073.459279, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/formats/info.py\": 1715898073.4750624, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/plotting/_core.py\": 1715898073.4842145, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/plotting/_misc.py\": 1715898073.4844992, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/plotting/__init__.py\": 1715898073.483901, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/series.py\": 1715898073.4051907, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/frame.py\": 1715898073.4017756, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/groupby/base.py\": 1715898073.4341855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/groupby.cpython-312-darwin.so\": 1715898111.7294302, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/groupby/categorical.py\": 1715898073.434455, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/groupby/grouper.py\": 1715898073.4358003, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/groupby/ops.py\": 1715898073.43694, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/groupby/numba_.py\": 1715898073.436433, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/groupby/indexing.py\": 1715898073.4361258, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/groupby/groupby.py\": 1715898073.4354353, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/groupby/generic.py\": 1715898073.4349167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/groupby/__init__.py\": 1715898073.4339068, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/api.py\": 1715898073.3990471, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/tseries/api.py\": 1715898073.8143177, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/computation/common.py\": 1715898073.4260008, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/computation/align.py\": 1715898073.425063, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/computation/scope.py\": 1715898073.4292834, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/computation/ops.py\": 1715898073.4281883, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/computation/engines.py\": 1715898073.426473, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/computation/parsing.py\": 1715898073.428533, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/computation/expr.py\": 1715898073.4272423, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/computation/eval.py\": 1715898073.4268131, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/computation/api.py\": 1715898073.4253795, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/reshape/encoding.py\": 1715898073.4548812, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/reshape/merge.py\": 1715898073.4556925, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/reshape/pivot.py\": 1715898073.4560044, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/reshape/tile.py\": 1715898073.4565828, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/reshape/api.py\": 1715898073.4540167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/api/extensions/__init__.py\": 1715898073.393984, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/api/indexers/__init__.py\": 1715898073.3943021, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/interchange/__init__.py\": 1715898073.4442394, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/interchange/dataframe_protocol.py\": 1715898073.4456131, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/interchange/utils.py\": 1715898073.4461772, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/interchange/from_dataframe.py\": 1715898073.4459007, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/api/interchange/__init__.py\": 1715898073.3946202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/dtypes/api.py\": 1715898073.4299471, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/api/types/__init__.py\": 1715898073.394941, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/resample.py\": 1715898073.4041862, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/json.cpython-312-darwin.so\": 1715898114.050837, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/json/_normalize.py\": 1715898073.479958, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/json/_table_schema.py\": 1715898073.4802227, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/parsers.cpython-312-darwin.so\": 1715898103.3405864, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/parsers/base_parser.py\": 1715898073.481098, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/parsers/arrow_parser_wrapper.py\": 1715898073.4808125, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/parsers/c_parser_wrapper.py\": 1715898073.481372, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/parsers/python_parser.py\": 1715898073.481661, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/parsers/readers.py\": 1715898073.4819968, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/parsers/__init__.py\": 1715898073.4805255, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/json/_json.py\": 1715898073.4796846, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/json/__init__.py\": 1715898073.4794042, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/stata.py\": 1715898073.4689307, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/api/typing/__init__.py\": 1715898073.395268, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/api/__init__.py\": 1715898073.3936298, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_testing/contexts.py\": 1715898073.393267, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_testing/_io.py\": 1715898073.392001, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_testing/_warnings.py\": 1715898073.392258, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/cmath.cpython-312-darwin.so\": 1723142185.3512552, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_libs/testing.cpython-312-darwin.so\": 1715898104.9858413, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_testing/asserters.py\": 1715898073.3926227, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_testing/compat.py\": 1715898073.392962, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_testing/__init__.py\": 1715898073.3914976, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/testing.py\": 1715898073.3897781, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/util/_print_versions.py\": 1715898073.8165593, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/clipboards.py\": 1715898073.4653823, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/excel/_util.py\": 1715898073.4718719, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/excel/_calamine.py\": 1715898073.4704685, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/excel/_odfreader.py\": 1715898073.47076, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/excel/_openpyxl.py\": 1715898073.4713323, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/excel/_pyxlsb.py\": 1715898073.4715984, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/excel/_xlrd.py\": 1715898073.4721375, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/excel/_base.py\": 1715898073.4701915, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/excel/_odswriter.py\": 1715898073.4710524, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/excel/_xlsxwriter.py\": 1715898073.472403, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/excel/__init__.py\": 1715898073.469897, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/feather_format.py\": 1715898073.4660397, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/gbq.py\": 1715898073.466306, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/html.py\": 1715898073.466597, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/orc.py\": 1715898073.4668672, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/parquet.py\": 1715898073.4671454, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/compat/pickle_compat.py\": 1715898073.3971252, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/pickle.py\": 1715898073.46741, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/core/computation/pytables.py\": 1715898073.428878, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/pytables.py\": 1715898073.467849, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/sas/sasreader.py\": 1715898073.4835582, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/sas/__init__.py\": 1715898073.4823549, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/spss.py\": 1715898073.468142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/sql.py\": 1715898073.468508, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/xml.py\": 1715898073.4692461, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/io/api.py\": 1715898073.4651248, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/util/_tester.py\": 1715898073.8170805, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/_version_meson.py\": 1715898073.3749964, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pandas/__init__.py\": 1715898073.3885326, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zmq/utils/garbage.py\": 1722971936.9001846, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/_version.py\": 1721050109.752779, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/__init__.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/_functools.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/compat/py38.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/compat/__init__.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/compat/py39.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/errors.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/_modified.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/_log.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/dir_util.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/debug.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/spawn.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/archive_util.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/file_util.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/util.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/cmd.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/configparser.py\": 1723142149.4868634, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/config.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/_vendor/__init__.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/_vendor/packaging/__init__.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/_vendor/packaging/_elffile.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/_vendor/packaging/_manylinux.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/_vendor/packaging/_musllinux.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/_vendor/packaging/tags.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/_vendor/packaging/_structures.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/_vendor/packaging/version.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/_vendor/packaging/utils.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/fancy_getopt.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/dist.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/extension.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/core.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/_distutils_hack/override.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/log.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/filelist.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/monkey.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/logging.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_importlib.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/version.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_imp.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/depends.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_vendor/more_itertools/recipes.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_vendor/more_itertools/more.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_vendor/more_itertools/__init__.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_path.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/discovery.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/command/__init__.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_vendor/ordered_set/__init__.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/packaging/_elffile.py\": 1718189538.7036242, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/packaging/_manylinux.py\": 1718189538.7036242, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/packaging/_musllinux.py\": 1718189538.7036242, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/packaging/tags.py\": 1718189538.7076242, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/packaging/utils.py\": 1718189538.7076242, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/packaging/specifiers.py\": 1718189538.7076242, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/packaging/_tokenizer.py\": 1718189538.7036242, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/packaging/_parser.py\": 1718189538.7036242, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/packaging/markers.py\": 1718189538.7036242, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/errors.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_vendor/jaraco/functools/__init__.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_vendor/jaraco/context.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/resources/_itertools.py\": 1723142152.1381092, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/resources/readers.py\": 1723142152.1460671, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/importlib/readers.py\": 1723142152.1176486, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_vendor/jaraco/text/__init__.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_itertools.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_entry_points.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/packaging/requirements.py\": 1718189538.7076242, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_reqs.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/command/bdist.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/command/__init__.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/warnings.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/config/expand.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/config/setupcfg.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/config/__init__.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/email/_header_value_parser.py\": 1723142150.280879, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/email/headerregistry.py\": 1723142150.4404323, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/config/_apply_pyprojecttoml.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/config/pyprojecttoml.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/dist.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/extension.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_normalization.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_core_metadata.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/msvc.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/__init__.py\": 1722265876.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/utils.py\": 1721050109.7566967, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/configparser.py\": 1721050109.7539918, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/configdefaults.py\": 1721050109.7535856, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/graph/utils.py\": 1721050109.7733366, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/misc/__init__.py\": 1721050109.799704, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/misc/ordered_set.py\": 1721050109.8020535, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/graph/basic.py\": 1721050109.7699113, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/graph/features.py\": 1721050109.7709856, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/graph/op.py\": 1721050109.772192, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/graph/fg.py\": 1721050109.7714376, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/graph/replace.py\": 1721050109.7726452, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/graph/type.py\": 1721050109.7729924, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/graph/rewriting/__init__.py\": 1721050109.7740533, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/graph/destroyhandler.py\": 1721050109.770328, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/graph/rewriting/basic.py\": 1721050109.7746859, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/graph/rewriting/db.py\": 1721050109.775283, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/graph/rewriting/utils.py\": 1721050109.7766461, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/graph/__init__.py\": 1721050109.7692633, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/misc/pkl_utils.py\": 1721050109.8023329, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/link/__init__.py\": 1721050109.7769818, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/link/utils.py\": 1721050109.7779002, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/compile/profiling.py\": 1721050109.7615323, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/link/basic.py\": 1721050109.7773392, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/compile/io.py\": 1721050109.7597005, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/link/c/__init__.py\": 1721050109.779106, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/link/c/interface.py\": 1721050109.7816155, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/link/c/type.py\": 1721050109.783836, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/link/c/params_type.py\": 1721050109.782907, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/link/c/op.py\": 1721050109.7824335, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/compile/ops.py\": 1721050109.7610655, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/compile/function/types.py\": 1721050109.763307, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/compile/sharedvalue.py\": 1721050109.761949, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/compile/function/pfunc.py\": 1721050109.7627764, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/filelock/_error.py\": 1719088394.0516903, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/filelock/_api.py\": 1719088394.0516903, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/filelock/_util.py\": 1719088394.0516903, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/filelock/_soft.py\": 1719088394.0516903, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/filelock/_unix.py\": 1719088394.0516903, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/filelock/_windows.py\": 1719088394.0516903, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/filelock/asyncio.py\": 1719088394.0516903, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/filelock/version.py\": 1719088394.0516903, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/filelock/__init__.py\": 1719088394.0516903, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/compile/compilelock.py\": 1721050109.7587357, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/setuptools/_distutils/sysconfig.py\": 1722265877.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/link/c/exceptions.py\": 1721050109.781281, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/link/c/cmodule.py\": 1721050109.7803702, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/link/c/basic.py\": 1721050109.779683, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/link/jax/linker.py\": 1721050109.785638, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/link/jax/__init__.py\": 1721050109.785343, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/link/numba/linker.py\": 1721050109.7923818, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/link/numba/__init__.py\": 1721050109.7920382, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/link/pytorch/linker.py\": 1721050109.797649, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/link/vm.py\": 1721050109.7787673, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/compile/mode.py\": 1721050109.7600734, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/compile/function/__init__.py\": 1721050109.7623954, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/compile/monitormode.py\": 1721050109.7604187, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/compile/__init__.py\": 1721050109.757586, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/printing.py\": 1721050109.7554922, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/graph/null_type.py\": 1721050109.7717905, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/gradient.py\": 1721050109.754572, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/misc/safe_asarray.py\": 1721050109.8026235, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/scalar/basic.py\": 1721050109.8038497, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/__config__.py\": 1723938030.6557333, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/version.py\": 1716471641.364292, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_distributor_init.py\": 1716471641.6533716, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/_testutils.py\": 1716471641.6596167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/__init__.py\": 1716471641.6556702, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/_pep440.py\": 1716471641.659244, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/_ccallback_c.cpython-312-darwin.so\": 1716471691.1454513, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/_ccallback.py\": 1716471641.6569586, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/__init__.py\": 1716471641.6526515, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/_sf_error.py\": 1716471641.6891913, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/_ufuncs_cxx.cpython-312-darwin.so\": 1716471697.0319958, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/_cdflib.cpython-312-darwin.so\": 1716471660.8006918, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/_ufuncs.cpython-312-darwin.so\": 1716471674.5919712, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/array_api_compat/common/_helpers.py\": 1716471641.6645174, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/array_api_compat/common/__init__.py\": 1716471641.6636732, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/array_api_compat/__init__.py\": 1716471641.6628582, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/array_api_compat/common/_aliases.py\": 1716471641.6640775, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/array_api_compat/_internal.py\": 1716471641.6632462, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/array_api_compat/numpy/_aliases.py\": 1716471641.667342, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/array_api_compat/common/_linalg.py\": 1716471641.664995, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/array_api_compat/numpy/linalg.py\": 1716471641.668111, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/array_api_compat/numpy/__init__.py\": 1716471641.666996, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/_array_api.py\": 1716471641.656126, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/_support_alternative_backends.py\": 1716471641.6902792, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/_specfun.cpython-312-darwin.so\": 1716471695.2719367, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/_comb.cpython-312-darwin.so\": 1716471654.062544, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/deprecation.py\": 1716471641.6616938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/_basic.py\": 1716471641.6862688, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/_util.py\": 1716471641.6608505, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/_logsumexp.py\": 1716471641.6875894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_fblas.cpython-312-darwin.so\": 1716471669.4617956, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/blas.py\": 1716471641.732867, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_flapack.cpython-312-darwin.so\": 1716471678.3350494, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/lapack.py\": 1716471641.7359753, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_misc.py\": 1716471641.7298691, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/cython_lapack.cpython-312-darwin.so\": 1716471657.5851045, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_cythonized_array_utils.cpython-312-darwin.so\": 1716471665.503463, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_decomp.py\": 1716471641.722136, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_decomp_svd.py\": 1716471641.726422, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_solve_toeplitz.cpython-312-darwin.so\": 1716471665.0449262, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_basic.py\": 1716471641.720907, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_decomp_lu_cython.cpython-312-darwin.so\": 1716471685.9175322, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_decomp_lu.py\": 1716471641.7237663, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_decomp_ldl.py\": 1716471641.7232895, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_decomp_cholesky.py\": 1716471641.72252, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_decomp_qr.py\": 1716471641.7252262, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_decomp_qz.py\": 1716471641.7256305, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_decomp_schur.py\": 1716471641.726022, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_decomp_polar.py\": 1716471641.7247643, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_expm_frechet.py\": 1716471641.7269037, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_matfuncs_sqrtm_triu.cpython-312-darwin.so\": 1716471657.994932, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_matfuncs_sqrtm.py\": 1716471641.7294633, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/cython_blas.cpython-312-darwin.so\": 1716471652.489691, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_matfuncs_expm.cpython-312-darwin.so\": 1716471684.923705, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_matfuncs.py\": 1716471641.7279572, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_special_matrices.py\": 1716471641.7316537, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_solvers.py\": 1716471641.7311897, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_procrustes.py\": 1716471641.730236, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_decomp_update.cpython-312-darwin.so\": 1716471654.421909, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/_sputils.py\": 1716471641.7593334, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/_matrix.py\": 1716471641.758565, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/_base.py\": 1716471641.752291, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/_sparsetools.cpython-312-darwin.so\": 1716471693.1142027, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/_data.py\": 1716471641.7558677, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/_index.py\": 1716471641.75743, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/_compressed.py\": 1716471641.7533793, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/_csr.py\": 1716471641.7554376, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/_csc.py\": 1716471641.754927, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/_csparsetools.cpython-312-darwin.so\": 1716471691.9625373, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/_lil.py\": 1716471641.7578444, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/_dok.py\": 1716471641.7566757, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/_coo.py\": 1716471641.7544847, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/_dia.py\": 1716471641.7562673, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/_bsr.py\": 1716471641.7527983, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/_construct.py\": 1716471641.7539692, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/_extract.py\": 1716471641.7570457, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/_matrix_io.py\": 1716471641.7582152, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_interface.py\": 1716471641.7745602, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/utils.py\": 1716471641.7843947, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/iterative.py\": 1716471641.781795, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/minres.py\": 1716471641.783608, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/_gcrotmk.py\": 1716471641.7813268, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lgmres.py\": 1716471641.782329, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lsqr.py\": 1716471641.7832184, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/lsmr.py\": 1716471641.7827888, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/tfqmr.py\": 1716471641.7839417, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_isolve/__init__.py\": 1716471641.7807815, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_dsolve/_superlu.cpython-312-darwin.so\": 1716471655.3071275, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py\": 1716471641.790033, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_dsolve/_add_newdocs.py\": 1716471641.789577, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_dsolve/__init__.py\": 1716471641.7891088, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/decorator.py\": 1716471641.6613064, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/_threadsafety.py\": 1716471641.6600177, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/arpack/_arpack.cpython-312-darwin.so\": 1716471663.594603, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/arpack/arpack.py\": 1716471641.7934191, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/arpack/__init__.py\": 1716471641.7923937, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py\": 1716471641.7956936, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/lobpcg/__init__.py\": 1716471641.7952724, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_propack/_spropack.cpython-312-darwin.so\": 1716471686.6430671, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_propack/_dpropack.cpython-312-darwin.so\": 1716471670.017839, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_propack/_cpropack.cpython-312-darwin.so\": 1716471698.8662508, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_propack/_zpropack.cpython-312-darwin.so\": 1716471676.3272107, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_svdp.py\": 1716471641.7769237, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/_svds.py\": 1716471641.7916446, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_eigen/__init__.py\": 1716471641.7912092, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_onenormest.py\": 1716471641.7763634, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_expm_multiply.py\": 1716471641.7738373, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_matfuncs.py\": 1716471641.7752364, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_norm.py\": 1716471641.7758057, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/_special_sparse_arrays.py\": 1716471641.7775598, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/isolve.py\": 1716471641.7796865, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/dsolve.py\": 1716471641.778137, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/interface.py\": 1716471641.7791507, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/eigen.py\": 1716471641.7786527, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/matfuncs.py\": 1716471641.7801664, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/linalg/__init__.py\": 1716471641.7730792, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/csgraph/_laplacian.py\": 1716471641.7658467, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/csgraph/_tools.cpython-312-darwin.so\": 1716471688.306618, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/csgraph/_validation.py\": 1716471641.7664871, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/csgraph/_shortest_path.cpython-312-darwin.so\": 1716471694.801248, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/csgraph/_traversal.cpython-312-darwin.so\": 1716471700.9077697, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/csgraph/_min_spanning_tree.cpython-312-darwin.so\": 1716471669.0347993, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/csgraph/_flow.cpython-312-darwin.so\": 1716471691.5185423, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/csgraph/_matching.cpython-312-darwin.so\": 1716471667.0221834, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/csgraph/_reordering.cpython-312-darwin.so\": 1716471659.4405878, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/csgraph/__init__.py\": 1716471641.765121, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/base.py\": 1716471641.75968, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/bsr.py\": 1716471641.7600474, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/compressed.py\": 1716471641.7603917, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/construct.py\": 1716471641.7607365, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/coo.py\": 1716471641.7610786, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/csc.py\": 1716471641.7614634, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/csr.py\": 1716471641.7618492, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/data.py\": 1716471641.7625315, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/dia.py\": 1716471641.7628813, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/dok.py\": 1716471641.7631724, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/extract.py\": 1716471641.763536, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/lil.py\": 1716471641.7638707, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/sparsetools.py\": 1716471641.764176, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/sputils.py\": 1716471641.764752, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/sparse/__init__.py\": 1716471641.7517014, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_sketches.py\": 1716471641.7306767, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_decomp_cossin.py\": 1716471641.7229311, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/decomp.py\": 1716471641.7332537, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/decomp_cholesky.py\": 1716471641.7337031, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/decomp_lu.py\": 1716471641.7340624, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/decomp_qr.py\": 1716471641.7344568, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/decomp_svd.py\": 1716471641.735161, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/decomp_schur.py\": 1716471641.7348118, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/basic.py\": 1716471641.732468, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/misc.py\": 1716471641.7366564, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/special_matrices.py\": 1716471641.7370214, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/matfuncs.py\": 1716471641.7363038, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/__init__.py\": 1716471641.7203407, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/_orthogonal.py\": 1716471641.6885448, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/_spfun_stats.py\": 1716471641.6894925, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/_ellip_harm_2.cpython-312-darwin.so\": 1716471652.8391778, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/_ellip_harm.py\": 1716471641.6869118, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/_lambertw.py\": 1716471641.6872437, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/_spherical_bessel.py\": 1716471641.6898525, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/add_newdocs.py\": 1716471641.6916215, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/basic.py\": 1716471641.6919863, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/orthogonal.py\": 1716471641.6925926, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/specfun.py\": 1716471641.6933336, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/sf_error.py\": 1716471641.692953, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/spfun_stats.py\": 1716471641.6936185, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/__init__.py\": 1716471641.683956, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_warnings_errors.py\": 1716471641.8463817, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/_ckdtree.cpython-312-darwin.so\": 1716471650.8455424, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/_kdtree.py\": 1716471642.0130324, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/messagestream.cpython-312-darwin.so\": 1716471678.7484736, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/_qhull.cpython-312-darwin.so\": 1716471672.998303, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/_voronoi.cpython-312-darwin.so\": 1716471657.2237628, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/_spherical_voronoi.py\": 1716471642.0145097, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/_plotutils.py\": 1716471642.0133617, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/_procrustes.py\": 1716471642.0140018, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/_distance_wrap.cpython-312-darwin.so\": 1716471654.8400862, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/_hausdorff.cpython-312-darwin.so\": 1716471693.4674563, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/_distance_pybind.cpython-312-darwin.so\": 1716471677.5308135, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/distance.py\": 1716471642.0159025, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/_geometric_slerp.py\": 1716471642.0126178, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/ckdtree.py\": 1716471642.014954, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/kdtree.py\": 1716471642.0164309, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/qhull.py\": 1716471642.0167987, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/constants/_codata.py\": 1716471642.0512564, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/constants/_constants.py\": 1716471642.051719, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/constants/codata.py\": 1716471642.0520403, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/constants/constants.py\": 1716471642.0523474, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/constants/__init__.py\": 1716471642.0503159, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/transform/_rotation_groups.py\": 1716471642.0430393, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/transform/_rotation.cpython-312-darwin.so\": 1716471662.0512686, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/transform/_rotation_spline.py\": 1716471642.0436113, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/transform/rotation.py\": 1716471642.0439708, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/transform/__init__.py\": 1716471642.0426524, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/spatial/__init__.py\": 1716471642.0122118, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/ndimage/_ni_support.py\": 1716471642.136391, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/ndimage/_nd_image.cpython-312-darwin.so\": 1716471697.9451847, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/doccer.py\": 1716471641.66207, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/ndimage/_ni_docstrings.py\": 1716471642.1360533, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/ndimage/_filters.py\": 1716471642.13373, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/ndimage/_fourier.py\": 1716471642.1340988, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/ndimage/_interpolation.py\": 1716471642.1345336, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/ndimage/_ni_label.cpython-312-darwin.so\": 1716471676.759656, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/ndimage/_morphology.py\": 1716471642.135651, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/ndimage/_measurements.py\": 1716471642.1350546, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/ndimage/filters.py\": 1716471642.1367264, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/ndimage/fourier.py\": 1716471642.1371593, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/ndimage/interpolation.py\": 1716471642.1377034, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/ndimage/measurements.py\": 1716471642.1380658, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/ndimage/morphology.py\": 1716471642.13837, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/ndimage/__init__.py\": 1716471642.1330855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_minpack2.cpython-312-darwin.so\": 1716471651.3706357, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_dcsrch.py\": 1716471642.2024136, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_linesearch.py\": 1716471642.2048752, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_group_columns.cpython-312-darwin.so\": 1716471672.1560802, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_numdiff.py\": 1716471642.212997, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_hessian_update_strategy.py\": 1716471642.2034507, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_differentiable_functions.py\": 1716471642.2000422, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_optimize.py\": 1716471642.214278, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_trustregion.py\": 1716471642.2182438, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_trustregion_dogleg.py\": 1716471642.2185652, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_trustregion_ncg.py\": 1716471642.219593, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_trlib/_trlib.cpython-312-darwin.so\": 1716471670.6472468, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_trlib/__init__.py\": 1716471642.1539252, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_trustregion_krylov.py\": 1716471642.2192695, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_trustregion_exact.py\": 1716471642.218923, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_constraints.py\": 1716471642.19902, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_trustregion_constr/projections.py\": 1716471642.1589873, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_trustregion_constr/qp_subproblem.py\": 1716471642.1594858, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_trustregion_constr/equality_constrained_sqp.py\": 1716471642.1579187, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_trustregion_constr/canonical_constraint.py\": 1716471642.1575572, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_trustregion_constr/tr_interior_point.py\": 1716471642.160818, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_trustregion_constr/report.py\": 1716471642.1598902, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_trustregion_constr/minimize_trustregion_constr.py\": 1716471642.1584187, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_trustregion_constr/__init__.py\": 1716471642.1571364, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_lbfgsb.cpython-312-darwin.so\": 1716471682.9146807, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_lbfgsb_py.py\": 1716471642.2043839, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_moduleTNC.cpython-312-darwin.so\": 1716471701.2317908, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_tnc.py\": 1716471642.2178936, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_cobyla.cpython-312-darwin.so\": 1716471680.734056, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_cobyla_py.py\": 1716471642.1984406, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_slsqp.cpython-312-darwin.so\": 1716471660.4232721, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_slsqp_py.py\": 1716471642.2172039, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_minimize.py\": 1716471642.2107275, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_minpack.cpython-312-darwin.so\": 1716471656.7590585, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_lsq/common.py\": 1716471642.1501472, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_lsq/trf.py\": 1716471642.1527932, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_lsq/dogbox.py\": 1716471642.150756, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_lsq/least_squares.py\": 1716471642.1514752, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_lsq/givens_elimination.cpython-312-darwin.so\": 1716471697.4157078, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_lsq/trf_linear.py\": 1716471642.1532824, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_lsq/bvls.py\": 1716471642.1496983, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_lsq/lsq_linear.py\": 1716471642.1522458, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_lsq/__init__.py\": 1716471642.1493037, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_minpack_py.py\": 1716471642.2114217, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_spectral.py\": 1716471642.2175362, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_nonlin.py\": 1716471642.2123778, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_root.py\": 1716471642.2158015, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_zeros.cpython-312-darwin.so\": 1716471666.6448748, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_zeros_py.py\": 1716471642.2207677, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_root_scalar.py\": 1716471642.2162738, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_nnls.py\": 1716471642.2118297, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_basinhopping.py\": 1716471642.1964657, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_highs/__init__.py\": 1716471642.1694887, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_highs/_highs_wrapper.cpython-312-darwin.so\": 1716471685.418794, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_highs/_highs_constants.cpython-312-darwin.so\": 1716471684.4884703, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_linprog_highs.py\": 1716471642.2069407, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_interpolative.cpython-312-darwin.so\": 1716471671.3913403, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/_interpolative_backend.py\": 1716471641.7274435, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/linalg/interpolative.py\": 1716471641.7355893, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_remove_redundancy.py\": 1716471642.2153137, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_linprog_util.py\": 1716471642.209513, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_linprog_ip.py\": 1716471642.2074711, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_linprog_simplex.py\": 1716471642.2089083, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_bglu_dense.cpython-312-darwin.so\": 1716471663.9518013, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_linprog_rs.py\": 1716471642.2082694, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_linprog_doc.py\": 1716471642.2062566, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_linprog.py\": 1716471642.2055645, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_lsap.cpython-312-darwin.so\": 1716471662.9889045, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_differentialevolution.py\": 1716471642.2007327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_pava_pybind.cpython-312-darwin.so\": 1716471684.045215, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_isotonic.py\": 1716471642.2039108, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_shgo_lib/__init__.py\": 1716471642.163142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_shgo_lib/_vertex.py\": 1716471642.1642027, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_shgo_lib/_complex.py\": 1716471642.1636765, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_shgo.py\": 1716471642.2168114, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_dual_annealing.py\": 1716471642.2029777, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_qap.py\": 1716471642.2148426, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_direct.cpython-312-darwin.so\": 1716471671.7742214, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_direct_py.py\": 1716471642.2018847, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/_milp.py\": 1716471642.2100472, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/cobyla.py\": 1716471642.2213354, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/lbfgsb.py\": 1716471642.2223668, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/linesearch.py\": 1716471642.222993, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/minpack.py\": 1716471642.2234797, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/minpack2.py\": 1716471642.2240787, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/moduleTNC.py\": 1716471642.2245328, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/nonlin.py\": 1716471642.2249756, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/optimize.py\": 1716471642.2254581, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/slsqp.py\": 1716471642.2259002, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/tnc.py\": 1716471642.226397, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/zeros.py\": 1716471642.2268908, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/optimize/__init__.py\": 1716471642.19576, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_distr_params.py\": 1716471641.8275113, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/_quadrature.py\": 1716471642.0785763, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/_odepack.cpython-312-darwin.so\": 1716471675.7906735, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/_odepack_py.py\": 1716471642.0790267, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/_quadpack.cpython-312-darwin.so\": 1716471658.9236765, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/_quadpack_py.py\": 1716471642.0797362, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/_vode.cpython-312-darwin.so\": 1716471680.2152448, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/_dop.cpython-312-darwin.so\": 1716471682.2616622, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/_lsoda.cpython-312-darwin.so\": 1716471694.313763, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/_ode.py\": 1716471642.077599, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/_bvp.py\": 1716471642.0768921, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/_ivp/common.py\": 1716471642.0668972, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/_ivp/base.py\": 1716471642.0658002, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/_ivp/bdf.py\": 1716471642.0664418, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/_ivp/radau.py\": 1716471642.0689585, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/_ivp/dop853_coefficients.py\": 1716471642.0674076, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/_ivp/rk.py\": 1716471642.0694048, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/_ivp/lsoda.py\": 1716471642.0684156, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/_ivp/ivp.py\": 1716471642.0679865, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/_ivp/__init__.py\": 1716471642.0653892, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/_quad_vec.py\": 1716471642.0780325, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/dop.py\": 1716471642.0811303, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/lsoda.py\": 1716471642.0816722, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/vode.py\": 1716471642.0835242, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/odepack.py\": 1716471642.0822153, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/quadpack.py\": 1716471642.082941, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/integrate/__init__.py\": 1716471642.0763779, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/_finite_differences.py\": 1716471641.6584845, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_constants.py\": 1716471641.8217714, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_censored_data.py\": 1716471641.8210287, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_distn_infrastructure.py\": 1716471641.826929, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/special/cython_special.cpython-312-darwin.so\": 1716471653.2853737, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_stats.cpython-312-darwin.so\": 1716471687.8932593, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_tukeylambda_stats.py\": 1716471641.8456578, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_ksstats.py\": 1716471641.831513, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_boost/beta_ufunc.cpython-312-darwin.so\": 1716471690.3438473, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_boost/binom_ufunc.cpython-312-darwin.so\": 1716471692.7295864, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_boost/nbinom_ufunc.cpython-312-darwin.so\": 1716471693.8118172, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_boost/hypergeom_ufunc.cpython-312-darwin.so\": 1716471672.5452616, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_boost/ncf_ufunc.cpython-312-darwin.so\": 1716471651.7316325, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_boost/ncx2_ufunc.cpython-312-darwin.so\": 1716471692.356557, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_boost/nct_ufunc.cpython-312-darwin.so\": 1716471659.8218577, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_boost/skewnorm_ufunc.cpython-312-darwin.so\": 1716471677.117984, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_boost/invgauss_ufunc.cpython-312-darwin.so\": 1716471696.4758189, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_boost/__init__.py\": 1716471641.8542526, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_continuous_distns.py\": 1716471641.8239775, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/_fitpack.cpython-312-darwin.so\": 1716471683.5878966, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/dfitpack.cpython-312-darwin.so\": 1716471675.1603718, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/_fitpack_impl.py\": 1716471642.116105, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/_bspl.cpython-312-darwin.so\": 1716471679.1044385, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/_bsplines.py\": 1716471642.11483, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/_fitpack_py.py\": 1716471642.1166472, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/_polyint.py\": 1716471642.1201582, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/_ppoly.cpython-312-darwin.so\": 1716471652.1052244, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/interpnd.cpython-312-darwin.so\": 1716471687.2876112, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/_interpolate.py\": 1716471642.1181378, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/_fitpack2.py\": 1716471642.117384, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/_rbf.py\": 1716471642.1205683, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/_rbfinterp_pythran.cpython-312-darwin.so\": 1716471681.6350641, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/_rbfinterp.py\": 1716471642.12104, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/_cubic.py\": 1716471642.115535, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/_ndgriddata.py\": 1716471642.1189113, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/_pade.py\": 1716471642.119589, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/_rgi_cython.cpython-312-darwin.so\": 1716471653.6904526, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/_ndbspline.py\": 1716471642.1220326, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/_rgi.py\": 1716471642.121539, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/fitpack.py\": 1716471642.1224842, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/fitpack2.py\": 1716471642.122873, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/interpolate.py\": 1716471642.1233084, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/ndgriddata.py\": 1716471642.1236908, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/polyint.py\": 1716471642.124269, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/rbf.py\": 1716471642.124635, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/interpolate/__init__.py\": 1716471642.1138167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_biasedurn.cpython-312-darwin.so\": 1716471679.6145773, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_discrete_distns.py\": 1716471641.8257296, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_levy_stable/levyst.cpython-312-darwin.so\": 1716471661.1707108, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_levy_stable/__init__.py\": 1716471641.8549876, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/_docscrape.py\": 1716471641.6577327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_axis_nan_policy.py\": 1716471641.819084, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_entropy.py\": 1716471641.8280709, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/distributions.py\": 1716471641.848245, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/_bunch.py\": 1716471641.6565304, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_stats_pythran.cpython-312-darwin.so\": 1716471700.4447114, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_stats_mstats_common.py\": 1716471641.842517, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_mstats_basic.py\": 1716471641.8346384, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_common.py\": 1716471641.8214035, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/_uarray/_uarray.cpython-312-darwin.so\": 1716471696.0073864, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/_uarray/_backend.py\": 1716471641.6700938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/_uarray/__init__.py\": 1716471641.6697338, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/uarray.py\": 1716471641.662468, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fft/_basic.py\": 1716471641.8886309, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fft/_realtransforms.py\": 1716471641.8913634, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fft/_fftlog_backend.py\": 1716471641.8903794, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fft/_fftlog.py\": 1716471641.8899148, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fft/_pocketfft/pypocketfft.cpython-312-darwin.so\": 1716471681.206253, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fft/_pocketfft/helper.py\": 1716471641.8930416, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fft/_pocketfft/basic.py\": 1716471641.8926625, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fft/_pocketfft/realtransforms.py\": 1716471641.8942332, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fft/_pocketfft/__init__.py\": 1716471641.8922594, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fft/_helper.py\": 1716471641.8908405, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fft/_basic_backend.py\": 1716471641.889005, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fft/_realtransforms_backend.py\": 1716471641.8918197, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fft/_backend.py\": 1716471641.8880541, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fft/__init__.py\": 1716471641.887697, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_hypotests.py\": 1716471641.830163, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_resampling.py\": 1716471641.84004, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_binomtest.py\": 1716471641.8201735, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_stats_py.py\": 1716471641.8444319, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_variation.py\": 1716471641.845986, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_ansari_swilk_statistics.cpython-312-darwin.so\": 1716471695.649732, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_wilcoxon.py\": 1716471641.8468838, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_fit.py\": 1716471641.8287184, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_relative_risk.py\": 1716471641.8394313, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_crosstab.py\": 1716471641.825139, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_odds_ratio.py\": 1716471641.8374236, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/contingency.py\": 1716471641.8478186, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_morestats.py\": 1716471641.8336253, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_sobol.cpython-312-darwin.so\": 1716471690.765386, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_qmc_cy.cpython-312-darwin.so\": 1716471689.9532714, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_qmc.py\": 1716471641.8385434, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_multicomp.py\": 1716471641.8356783, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_binned_statistic.py\": 1716471641.8196592, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_mvn.cpython-312-darwin.so\": 1716471655.8695614, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_kde.py\": 1716471641.8308742, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_mstats_extras.py\": 1716471641.8351705, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/mstats.py\": 1716471641.8495092, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/qmc.py\": 1716471641.8513007, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_covariance.py\": 1716471641.8247101, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_rcont/rcont.cpython-312-darwin.so\": 1716471668.4600394, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_rcont/__init__.py\": 1716471641.8559144, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_qmvnt.py\": 1716471641.8390632, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_multivariate.py\": 1716471641.8368976, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_unuran/__init__.py\": 1716471641.855248, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_unuran/unuran_wrapper.cpython-312-darwin.so\": 1716471673.778491, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_sampling.py\": 1716471641.8416827, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/sampling.py\": 1716471641.8516948, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_rvs_sampling.py\": 1716471641.841049, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_page_trend_test.py\": 1716471641.837833, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_mannwhitneyu.py\": 1716471641.8321898, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_bws_test.py\": 1716471641.8205798, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_sensitivity_analysis.py\": 1716471641.8421109, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/_survival.py\": 1716471641.8452868, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/biasedurn.py\": 1716471641.847329, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/kde.py\": 1716471641.8486722, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/morestats.py\": 1716471641.8490963, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/mstats_basic.py\": 1716471641.849902, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/mstats_extras.py\": 1716471641.850561, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/mvn.py\": 1716471641.8509655, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/stats.py\": 1716471641.8520463, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/stats/__init__.py\": 1716471641.818504, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/scalar/loop.py\": 1721050109.804497, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/scalar/math.py\": 1721050109.8050098, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/scalar/__init__.py\": 1721050109.803099, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/exceptions.py\": 1721050109.8247585, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/type.py\": 1721050109.832799, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/raise_op.py\": 1721050109.756039, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/scalar/sharedvar.py\": 1721050109.805393, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/compile/builders.py\": 1721050109.7580047, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/misc/frozendict.py\": 1721050109.8014822, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/elemwise_cgen.py\": 1721050109.8242323, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/utils.py\": 1721050109.833655, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/type_other.py\": 1721050109.8332083, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/variable.py\": 1721050109.8344991, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/elemwise.py\": 1721050109.8226237, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/shape.py\": 1721050109.8294122, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/blockwise.py\": 1721050109.8220525, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/basic.py\": 1721050109.819565, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/math.py\": 1721050109.828233, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/subtensor.py\": 1721050109.832249, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/extra_ops.py\": 1721050109.8253071, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/rewriting/basic.py\": 1721050109.8418581, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/blas_headers.py\": 1721050109.8213243, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/blas.py\": 1721050109.8201265, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/rewriting/elemwise.py\": 1721050109.844016, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/rewriting/blas.py\": 1721050109.842387, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/blas_c.py\": 1721050109.820575, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/rewriting/blas_c.py\": 1721050109.8427653, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/blas_scipy.py\": 1721050109.821665, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/rewriting/blas_scipy.py\": 1721050109.843098, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/rewriting/blockwise.py\": 1721050109.843465, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/rewriting/extra_ops.py\": 1721050109.8443806, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/rewriting/jax.py\": 1721050109.844713, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/nlinalg.py\": 1721050109.8287325, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/slinalg.py\": 1721050109.8304985, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/unification/_version.py\": 1683416554.478406, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/multipledispatch/utils.py\": 1721907639.2040813, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/multipledispatch/variadic.py\": 1721907639.2040813, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/multipledispatch/conflict.py\": 1721907639.2000813, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/multipledispatch/dispatcher.py\": 1721907639.2040813, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/multipledispatch/core.py\": 1721907639.2000813, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/multipledispatch/__init__.py\": 1721907639.2000813, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/unification/dispatch.py\": 1683416554.478406, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/unification/utils.py\": 1683416554.478406, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/unification/variable.py\": 1683416554.478406, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/unification/core.py\": 1683416554.478406, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/unification/more.py\": 1683416554.478406, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/unification/__init__.py\": 1683416554.478406, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/cons/core.py\": 1687647865.1346836, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/cons/unify.py\": 1687647865.1346836, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/cons/_version.py\": 1687647865.1346836, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/cons/__init__.py\": 1687647865.1346836, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/etuples/_version.py\": 1684304360.7207901, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/etuples/core.py\": 1684304360.7207901, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/etuples/dispatch.py\": 1684304360.7207901, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/etuples/__init__.py\": 1684304360.7207901, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/graph/rewriting/unify.py\": 1721050109.7760441, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/rewriting/linalg.py\": 1721050109.8450937, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/rewriting/math.py\": 1721050109.846027, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/rewriting/shape.py\": 1721050109.846543, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/special.py\": 1721050109.8314607, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/rewriting/special.py\": 1721050109.8468807, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/sharedvar.py\": 1721050109.8299594, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/rewriting/subtensor.py\": 1721050109.8474095, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/rewriting/uncanonicalize.py\": 1721050109.8477972, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/rewriting/__init__.py\": 1721050109.8414044, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/xlogx.py\": 1721050109.8348112, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/linalg.py\": 1721050109.827577, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/io.py\": 1721050109.827267, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/sort.py\": 1721050109.8308425, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/functional.py\": 1721050109.8266594, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/__init__.py\": 1721050109.8187852, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/updates.py\": 1721050109.7563808, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/random/type.py\": 1721050109.8385253, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/random/utils.py\": 1721050109.8388453, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/random/op.py\": 1721050109.8382096, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/random/rewriting/basic.py\": 1721050109.8403423, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/random/rewriting/numba.py\": 1721050109.8409925, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/random/basic.py\": 1721050109.8377726, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/random/rewriting/jax.py\": 1721050109.8406634, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/random/rewriting/__init__.py\": 1721050109.8399844, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/random/__init__.py\": 1721050109.8373108, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/tensor/random/var.py\": 1721050109.8392885, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/sparse/type.py\": 1721050109.8169272, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/sparse/utils.py\": 1721050109.817412, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/sparse/basic.py\": 1721050109.8156223, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/sparse/rewriting.py\": 1721050109.816303, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/sparse/sharedvar.py\": 1721050109.8166273, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/sparse/__init__.py\": 1721050109.8147016, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/ifelse.py\": 1721050109.7550008, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/scan/utils.py\": 1721050109.8139436, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/scan/op.py\": 1721050109.8100042, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/scan/rewriting.py\": 1721050109.8111582, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/scan/basic.py\": 1721050109.8088791, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/scan/checkpoints.py\": 1721050109.809249, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/scan/views.py\": 1721050109.8143067, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/scan/__init__.py\": 1721050109.808386, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/__init__.py\": 1721050109.7523954, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/_version.py\": 1720728731.7050734, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/exceptions.py\": 1720728731.7050734, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/tree/_tree.cpython-312-darwin.so\": 1709887159.5097158, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/tree/sequence.py\": 1709887156.7433689, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/tree/__init__.py\": 1709887156.7411354, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/coding/__init__.py\": 1722348302.8852165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/__init__.py\": 1722348302.8892167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/array_api_compat.py\": 1722348302.8932166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/npcompat.py\": 1722348302.9092166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/namedarray/__init__.py\": 1722348302.9132168, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/namedarray/_typing.py\": 1722348302.9172168, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/namedarray/utils.py\": 1722348302.9172168, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/utils.py\": 1722348302.9132168, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/dtypes.py\": 1722348302.9012167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/namedarray/pycompat.py\": 1722348302.9172168, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/options.py\": 1722348302.9092166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/nputils.py\": 1722348302.9092166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/dask_array_ops.py\": 1722348302.8972166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/namedarray/parallelcompat.py\": 1722348302.9172168, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/nanops.py\": 1722348302.9092166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/duck_array_ops.py\": 1722348302.9052167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/types.py\": 1722348302.9132168, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/indexing.py\": 1722348302.9052167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/datatree_render.py\": 1722348302.9012167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/treenode.py\": 1722348302.9132168, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/iterators.py\": 1722348302.9052167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/formatting.py\": 1722348302.9052167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/formatting_html.py\": 1722348302.9052167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/ops.py\": 1722348302.9092166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/namedarray/_aggregations.py\": 1722348302.9132168, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/namedarray/core.py\": 1722348302.9172168, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/common.py\": 1722348302.8932166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/_typed_ops.py\": 1722348302.8932166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/arithmetic.py\": 1722348302.8932166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/extension_array.py\": 1722348302.9052167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/util/__init__.py\": 1722348302.953217, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/util/deprecation_helpers.py\": 1722348302.953217, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/variable.py\": 1722348302.9132168, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/coding/variables.py\": 1722348302.8892167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/pdcompat.py\": 1722348302.9092166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/coding/times.py\": 1722348302.8892167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/coding/cftimeindex.py\": 1722348302.8892167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/coding/cftime_offsets.py\": 1722348302.8892167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/coding/calendar_ops.py\": 1722348302.8892167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/indexes.py\": 1722348302.9052167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/alignment.py\": 1722348302.8932166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/merge.py\": 1722348302.9092166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/computation.py\": 1722348302.8972166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/_aggregations.py\": 1722348302.8932166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/accessor_dt.py\": 1722348302.8932166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/accessor_str.py\": 1722348302.8932166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/coordinates.py\": 1722348302.8972166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/missing.py\": 1722348302.9092166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/concat.py\": 1722348302.8972166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/plot/utils.py\": 1722348302.9212167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/plot/facetgrid.py\": 1722348302.9212167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/plot/dataarray_plot.py\": 1722348302.9172168, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/plot/dataset_plot.py\": 1722348302.9172168, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/plot/__init__.py\": 1722348302.9172168, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/plot/accessor.py\": 1722348302.9172168, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/dataset.py\": 1722348302.9012167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/dataarray.py\": 1722348302.8972166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/groupby.py\": 1722348302.9052167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/resample_cftime.py\": 1722348302.9092166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/groupers.py\": 1722348302.8812165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/datatree_mapping.py\": 1722348302.9012167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/datatree_ops.py\": 1722348302.9012167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/datatree.py\": 1722348302.9012167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/testing/assertions.py\": 1722348302.9212167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/testing/__init__.py\": 1722348302.9212167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/coding/strings.py\": 1722348302.8892167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/conventions.py\": 1722348302.8812165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/backends/common.py\": 1722348302.8812165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/multiprocessing/process.py\": 1723142152.4712725, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/multiprocessing/reduction.py\": 1723142152.4768887, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/multiprocessing/context.py\": 1723142152.4468846, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/multiprocessing/__init__.py\": 1723142152.4414325, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/backends/locks.py\": 1722348302.8852165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/backends/lru_cache.py\": 1722348302.8852165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/backends/file_manager.py\": 1722348302.8852165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/backends/netcdf3.py\": 1722348302.8852165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/backends/store.py\": 1722348302.8852165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/backends/netCDF4_.py\": 1722348302.8852165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/backends/h5netcdf_.py\": 1722348302.8852165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/backends/memory.py\": 1722348302.8852165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/backends/plugins.py\": 1722348302.8852165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/backends/pydap_.py\": 1722348302.8852165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/backends/scipy_.py\": 1722348302.8852165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/backends/zarr.py\": 1722348302.8852165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/backends/__init__.py\": 1722348302.8812165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/combine.py\": 1722348302.8932166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/namedarray/daskmanager.py\": 1722348302.9172168, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/backends/api.py\": 1722348302.8812165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/tutorial.py\": 1722348302.8812165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/coding/frequencies.py\": 1722348302.8892167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/extensions.py\": 1722348302.9052167, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/core/parallel.py\": 1722348302.9092166, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/util/print_versions.py\": 1722348302.953217, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray/__init__.py\": 1722348302.8812165, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/typing_extensions.py\": 1717802652.1252954, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/rcparams.py\": 1721464180.9518938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/utils.py\": 1721464180.9518938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/data/base.py\": 1721464180.9518938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/data/inference_data.py\": 1721464180.9518938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/data/io_beanmachine.py\": 1721464180.9518938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/data/io_cmdstan.py\": 1721464180.9558938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/data/io_cmdstanpy.py\": 1721464180.9558938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/data/io_emcee.py\": 1721464180.9558938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/data/io_numpyro.py\": 1721464180.9558938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/data/io_pyro.py\": 1721464180.9558938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/data/io_pystan.py\": 1721464180.9558938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/data/converters.py\": 1721464180.9518938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/data/io_netcdf.py\": 1721464180.9558938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/data/datasets.py\": 1721464180.9518938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/data/io_datatree.py\": 1721464180.9558938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/data/io_dict.py\": 1721464180.9558938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/data/io_json.py\": 1721464180.9558938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/data/io_pyjags.py\": 1721464180.9558938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/data/io_zarr.py\": 1721464180.9558938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/data/utils.py\": 1721464180.9558938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/data/__init__.py\": 1721464180.9518938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/labels.py\": 1721464180.9518938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/sel_utils.py\": 1721464180.9518938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fftpack/_helper.py\": 1716471642.0550005, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fftpack/_basic.py\": 1716471642.0544715, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fftpack/convolve.cpython-312-darwin.so\": 1716471662.5178306, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fftpack/_pseudo_diffs.py\": 1716471642.0555675, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fftpack/_realtransforms.py\": 1716471642.056299, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fftpack/basic.py\": 1716471642.056986, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fftpack/helper.py\": 1716471642.0576353, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fftpack/pseudo_diffs.py\": 1716471642.0580115, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fftpack/realtransforms.py\": 1716471642.0583851, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/fftpack/__init__.py\": 1716471642.0537293, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_sigtools.cpython-312-darwin.so\": 1716471667.5943, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/windows/_windows.py\": 1716471642.0996795, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/windows/windows.py\": 1716471642.1002202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/windows/__init__.py\": 1716471642.0987442, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_waveforms.py\": 1716471642.093454, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_max_len_seq_inner.cpython-312-darwin.so\": 1716471688.6797237, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_max_len_seq.py\": 1716471642.0890958, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_upfirdn_apply.cpython-312-darwin.so\": 1716471677.921485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_upfirdn.py\": 1716471642.092888, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_spline.cpython-312-darwin.so\": 1716471701.6012218, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_arraytools.py\": 1716471642.0843296, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_filter_design.py\": 1716471642.0863307, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_lti_conversion.py\": 1716471642.0877979, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_ltisys.py\": 1716471642.088554, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_fir_filter_design.py\": 1716471642.087283, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_sosfilt.cpython-312-darwin.so\": 1716471673.3850937, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_signaltools.py\": 1716471642.091669, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_bsplines.py\": 1716471642.0847485, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_savitzky_golay.py\": 1716471642.090089, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_spectral.cpython-312-darwin.so\": 1716471689.0974214, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_spectral_py.py\": 1716471642.0923312, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_short_time_fft.py\": 1716471642.0906668, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_wavelets.py\": 1716471642.093839, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_peak_finding_utils.cpython-312-darwin.so\": 1716471666.0225306, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_peak_finding.py\": 1716471642.089659, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/_czt.py\": 1716471642.0851367, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/bsplines.py\": 1716471642.0941424, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/filter_design.py\": 1716471642.0944395, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/fir_filter_design.py\": 1716471642.0947294, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/lti_conversion.py\": 1716471642.0950837, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/ltisys.py\": 1716471642.0955255, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/spectral.py\": 1716471642.0967095, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/signaltools.py\": 1716471642.096133, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/waveforms.py\": 1716471642.097507, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/wavelets.py\": 1716471642.0978217, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/spline.py\": 1716471642.0971875, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/signal/__init__.py\": 1716471642.083907, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/stats/density_utils.py\": 1721464180.991894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/stats/stats_utils.py\": 1721464180.991894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/stats/diagnostics.py\": 1721464180.991894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray_einstats/linalg.py\": 1705619396.954183, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray_einstats/accessors.py\": 1705619396.954183, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray_einstats/__init__.py\": 1705619396.954183, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/xarray_einstats/stats.py\": 1705619396.954183, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/stats/stats.py\": 1721464180.991894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/stats/stats_refitting.py\": 1721464180.991894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/stats/__init__.py\": 1721464180.991894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/plot_utils.py\": 1721464180.9718938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/autocorrplot.py\": 1721464180.963894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/bpvplot.py\": 1721464180.963894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/bfplot.py\": 1721464180.963894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/compareplot.py\": 1721464180.963894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/densityplot.py\": 1721464180.963894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/distcomparisonplot.py\": 1721464180.963894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/distplot.py\": 1721464180.9678938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/dotplot.py\": 1721464180.9678938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/stats/ecdf_utils.py\": 1721464180.991894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/ecdfplot.py\": 1721464180.9678938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/elpdplot.py\": 1721464180.9678938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/energyplot.py\": 1721464180.9678938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/essplot.py\": 1721464180.9678938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/forestplot.py\": 1721464180.9678938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/hdiplot.py\": 1721464180.9678938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/kdeplot.py\": 1721464180.9678938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/khatplot.py\": 1721464180.9678938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/lmplot.py\": 1721464180.9678938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/loopitplot.py\": 1721464180.9678938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/mcseplot.py\": 1721464180.9678938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/pairplot.py\": 1721464180.9678938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/parallelplot.py\": 1721464180.9678938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/posteriorplot.py\": 1721464180.9718938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/ppcplot.py\": 1721464180.9718938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/rankplot.py\": 1721464180.9718938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/separationplot.py\": 1721464180.9718938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/traceplot.py\": 1721464180.9718938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/tsplot.py\": 1721464180.9718938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/violinplot.py\": 1721464180.9718938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/__init__.py\": 1721464180.963894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/__init__.py\": 1721464180.9718938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/wrappers/base.py\": 1721464180.999894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/wrappers/wrap_stan.py\": 1721464180.999894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/wrappers/wrap_pymc.py\": 1721464180.999894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/wrappers/__init__.py\": 1721464180.999894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/preview.py\": 1721464180.9518938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/__init__.py\": 1721464180.9518938, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/cloudpickle/cloudpickle.py\": 1697464874.1655874, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/cloudpickle/__init__.py\": 1697464874.1655874, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/cachetools/keys.py\": 1721092005.4765847, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/cachetools/__init__.py\": 1721092005.4765847, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/_extension.py\": 1709150575.7088203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/__init__.py\": 1709150575.7088203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/filesize.py\": 1709150575.7208202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/_null_file.py\": 1709150575.7128203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/errors.py\": 1709150575.7208202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/color_triplet.py\": 1709150575.7168202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/palette.py\": 1709150575.7248204, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/_palettes.py\": 1709150575.7128203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/repr.py\": 1709150575.7248204, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/terminal_theme.py\": 1709150575.7288203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/color.py\": 1709150575.7168202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/style.py\": 1709150575.7288203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/default_styles.py\": 1709150575.7208202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/theme.py\": 1709150575.7328203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/themes.py\": 1709150575.7328203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/_emoji_codes.py\": 1709150575.7088203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/_emoji_replace.py\": 1709150575.7088203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/_export_format.py\": 1709150575.7088203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/_fileno.py\": 1709150575.7088203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/_loop.py\": 1709150575.7128203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/_pick.py\": 1709150575.7128203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/_cell_widths.py\": 1709150575.7088203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/cells.py\": 1709150575.7168202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/_wrap.py\": 1709150575.7128203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/segment.py\": 1709150575.7288203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/jupyter.py\": 1709150575.7208202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/protocol.py\": 1709150575.7248204, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/measure.py\": 1709150575.7248204, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/constrain.py\": 1709150575.7168202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/align.py\": 1709150575.7168202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/containers.py\": 1709150575.7168202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/control.py\": 1709150575.7168202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/emoji.py\": 1709150575.7208202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/text.py\": 1709150575.7288203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/_log_render.py\": 1709150575.7128203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/highlighter.py\": 1709150575.7208202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/markup.py\": 1709150575.7248204, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/pager.py\": 1709150575.7248204, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/attr/_compat.py\": 1722977239.895933, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/attr/_config.py\": 1722977239.895933, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/attr/exceptions.py\": 1722977239.895933, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/attr/setters.py\": 1722977239.8999329, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/attr/_make.py\": 1722977239.895933, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/attr/converters.py\": 1722977239.895933, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/attr/filters.py\": 1722977239.895933, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/attr/validators.py\": 1722977239.8999329, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/attr/_cmp.py\": 1722977239.895933, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/attr/_funcs.py\": 1722977239.895933, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/attr/_next_gen.py\": 1722977239.895933, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/attr/_version_info.py\": 1722977239.895933, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/attr/__init__.py\": 1722977239.8919327, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/abc.py\": 1709150575.7128203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/pretty.py\": 1709150575.7248204, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/region.py\": 1709150575.7248204, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/box.py\": 1709150575.7168202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/padding.py\": 1709150575.7248204, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/panel.py\": 1709150575.7248204, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/_ratio.py\": 1709150575.7128203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/table.py\": 1709150575.7288203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/scope.py\": 1709150575.7288203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/screen.py\": 1709150575.7288203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/styled.py\": 1709150575.7288203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/console.py\": 1709150575.7168202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/ansi.py\": 1709150575.7168202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/file_proxy.py\": 1709150575.7208202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/live_render.py\": 1709150575.7208202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/live.py\": 1709150575.7208202, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/progress_bar.py\": 1709150575.7248204, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/_spinners.py\": 1709150575.7128203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/spinner.py\": 1709150575.7288203, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/rich/progress.py\": 1709150575.7248204, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/util.py\": 1720728731.7090733, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/vartypes.py\": 1720728731.7090733, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/pytensorf.py\": 1720728731.7050734, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/gp/cov.py\": 1720728731.7130735, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/gp/mean.py\": 1720728731.7170737, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/cluster/_vq.cpython-312-darwin.so\": 1716471658.4216163, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/cluster/vq.py\": 1716471642.0475557, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/cluster/_hierarchy.cpython-312-darwin.so\": 1716471700.004857, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/cluster/_optimal_leaf_ordering.cpython-312-darwin.so\": 1716471674.1793668, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/_lib/_disjoint_set.py\": 1716471641.65733, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/cluster/hierarchy.py\": 1716471642.047057, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/scipy/cluster/__init__.py\": 1716471642.0461333, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/blocking.py\": 1720728731.7050734, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/data.py\": 1720728731.7050734, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/logprob/abstract.py\": 1720728731.7170737, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/logprob/utils.py\": 1720728731.7210739, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/logprob/rewriting.py\": 1720728731.7170737, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/logprob/transforms.py\": 1720728731.7170737, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/logprob/transform_value.py\": 1720728731.7170737, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/logprob/basic.py\": 1720728731.7170737, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/logprob/binary.py\": 1720728731.7170737, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/logprob/censoring.py\": 1720728731.7170737, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/logprob/cumsum.py\": 1720728731.7170737, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/logprob/checks.py\": 1720728731.7170737, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/logprob/mixture.py\": 1720728731.7170737, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/math.py\": 1720728731.7050734, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/logprob/order.py\": 1720728731.7170737, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/logprob/scan.py\": 1720728731.7170737, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/logprob/tensor.py\": 1720728731.7170737, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/logprob/__init__.py\": 1720728731.7170737, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/initial_point.py\": 1720728731.7050734, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/model_graph.py\": 1720728731.7050734, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/model/core.py\": 1720728731.7210739, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/model/__init__.py\": 1720728731.7210739, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/gp/util.py\": 1720728731.7170737, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/gp/gp.py\": 1720728731.7130735, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/gp/hsgp_approx.py\": 1720728731.7170737, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/gp/__init__.py\": 1720728731.7130735, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/ode/utils.py\": 1720728731.7210739, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/ode/ode.py\": 1720728731.7210739, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/ode/__init__.py\": 1720728731.7210739, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/backends/arviz.py\": 1720728731.7090733, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/model/transform/__init__.py\": 1720728731.7210739, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/model/fgraph.py\": 1720728731.7210739, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/model/transform/basic.py\": 1720728731.7210739, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/model/transform/conditioning.py\": 1720728731.7210739, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/stats/log_density.py\": 1720728731.725074, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/stats/__init__.py\": 1720728731.725074, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/stats/convergence.py\": 1720728731.725074, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/backends/report.py\": 1720728731.7090733, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/backends/base.py\": 1720728731.7090733, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/backends/ndarray.py\": 1720728731.7090733, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/step_methods/compound.py\": 1720728731.725074, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/step_methods/step_sizes.py\": 1720728731.725074, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/step_methods/arraystep.py\": 1720728731.725074, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/step_methods/hmc/quadpotential.py\": 1720728731.7290742, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/step_methods/hmc/integration.py\": 1720728731.7290742, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/tuning/scaling.py\": 1720728731.7290742, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/tuning/starting.py\": 1720728731.7290742, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/tuning/__init__.py\": 1720728731.7290742, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/step_methods/hmc/base_hmc.py\": 1720728731.725074, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/step_methods/hmc/hmc.py\": 1720728731.725074, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/step_methods/hmc/nuts.py\": 1720728731.7290742, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/step_methods/hmc/__init__.py\": 1720728731.725074, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/step_methods/metropolis.py\": 1720728731.725074, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/step_methods/slicer.py\": 1720728731.725074, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/step_methods/__init__.py\": 1720728731.725074, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/backends/__init__.py\": 1720728731.7090733, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/sampling/deterministic.py\": 1720728731.7210739, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/sampling/forward.py\": 1720728731.7210739, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/threadpoolctl.py\": 1714400227.7273889, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/multiprocessing/util.py\": 1723142152.496025, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/multiprocessing/heap.py\": 1723142152.4525516, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/multiprocessing/sharedctypes.py\": 1723142152.4879699, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/sampling/parallel.py\": 1720728731.725074, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/sampling/population.py\": 1720728731.725074, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/sampling/mcmc.py\": 1720728731.725074, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/sampling/__init__.py\": 1720728731.7210739, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/distributions/shape_utils.py\": 1720728731.7130735, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/printing.py\": 1720728731.7050734, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/distributions/distribution.py\": 1720728731.7130735, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/distributions/censored.py\": 1720728731.7090733, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/distributions/transforms.py\": 1720728731.7130735, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/distributions/dist_math.py\": 1720728731.7130735, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/distributions/continuous.py\": 1720728731.7090733, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/distributions/custom.py\": 1720728731.7090733, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/distributions/discrete.py\": 1720728731.7130735, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/distributions/truncated.py\": 1720728731.7130735, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/distributions/mixture.py\": 1720728731.7130735, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/distributions/multivariate.py\": 1720728731.7130735, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/distributions/simulator.py\": 1720728731.7130735, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/distributions/timeseries.py\": 1720728731.7130735, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/distributions/__init__.py\": 1720728731.7090733, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/func_utils.py\": 1720728731.7050734, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/plots/__init__.py\": 1720728731.7210739, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/smc/kernels.py\": 1720728731.725074, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_multiprocessing.cpython-312-darwin.so\": 1723142179.3086424, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/multiprocessing/connection.py\": 1723142152.444174, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/multiprocessing/queues.py\": 1723142152.4743135, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/concurrent/futures/process.py\": 1723142150.157225, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/smc/sampling.py\": 1720728731.725074, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/smc/__init__.py\": 1720728731.725074, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/variational/minibatch_rv.py\": 1720728731.7290742, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/variational/updates.py\": 1720728731.7290742, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/variational/opvi.py\": 1720728731.7290742, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/variational/approximations.py\": 1720728731.7290742, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/variational/callbacks.py\": 1720728731.7290742, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/variational/test_functions.py\": 1720728731.7290742, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/variational/stein.py\": 1720728731.7290742, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/variational/operators.py\": 1720728731.7290742, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/variational/inference.py\": 1720728731.7290742, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/variational/__init__.py\": 1720728731.7290742, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pymc/__init__.py\": 1720728731.7050734, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pygments/styles/default.py\": 1714846879.5624723, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/external/__init__.py\": 1714494766.261368, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/external/husl.py\": 1714494766.261368, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/_core/__init__.py\": 1714494766.2533677, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/_core/typing.py\": 1714494766.2573678, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/external/version.py\": 1714494766.261368, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/external/appdirs.py\": 1714494766.261368, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/utils.py\": 1714494766.2533677, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/colors/xkcd_rgb.py\": 1714494766.261368, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/colors/crayons.py\": 1714494766.261368, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/colors/__init__.py\": 1714494766.261368, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/_compat.py\": 1714494766.2453673, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/palettes.py\": 1714494766.2493675, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/rcmod.py\": 1714494766.2493675, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/_core/data.py\": 1714494766.2533677, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/_base.py\": 1714494766.2453673, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/lib-dynload/_statistics.cpython-312-darwin.so\": 1723142186.1166592, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/statistics.py\": 1723142149.8724833, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/algorithms.py\": 1714494766.2453673, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/_statistics.py\": 1714494766.2453673, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/external/docscrape.py\": 1714494766.261368, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/_docstrings.py\": 1714494766.2453673, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/axisgrid.py\": 1714494766.2453673, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/relational.py\": 1714494766.2493675, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/statsmodels/compat/numpy.py\": 1715941825.3530238, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/statsmodels/tools/data.py\": 1715941825.7635248, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/statsmodels/tools/validation/validation.py\": 1715941825.7770221, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/statsmodels/tools/validation/__init__.py\": 1715941825.776251, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/statsmodels/tools/tools.py\": 1715941825.768888, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/unittest/util.py\": 1723142152.770109, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/unittest/result.py\": 1723142152.7584302, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/unittest/case.py\": 1723142152.6985006, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/unittest/suite.py\": 1723142152.7677279, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/unittest/loader.py\": 1723142152.7012513, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/unittest/signals.py\": 1723142152.7651236, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/unittest/runner.py\": 1723142152.7623746, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/unittest/main.py\": 1723142152.7045925, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/unittest/__init__.py\": 1723142152.6871457, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/testing/_private/__init__.py\": 1707226214.6733747, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/testing/_private/utils.py\": 1707226214.674903, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/testing/_private/extbuild.py\": 1707226214.673885, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/testing/overrides.py\": 1707226214.6719277, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/numpy/testing/__init__.py\": 1707226214.670813, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/statsmodels/tools/_testing.py\": 1715941825.7628508, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/statsmodels/tools/__init__.py\": 1715941825.7624924, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/statsmodels/compat/python.py\": 1715941825.3548613, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/statsmodels/compat/__init__.py\": 1715941825.3521914, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/statsmodels/compat/pandas.py\": 1715941825.353373, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/version.py\": 1704469431.1641064, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/origin.py\": 1704469431.1561062, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/compat.py\": 1704469431.1521063, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/util.py\": 1704469431.1641064, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/infix_parser.py\": 1704469431.1561062, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/tokens.py\": 1704469431.1641064, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/parse_formula.py\": 1704469431.1561062, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/constraint.py\": 1704469431.1521063, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/contrasts.py\": 1704469431.1521063, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/categorical.py\": 1704469431.1521063, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/state.py\": 1704469431.1601064, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/splines.py\": 1704469431.1561062, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/mgcv_cubic_splines.py\": 1704469431.1561062, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/builtins.py\": 1704469431.1521063, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/eval.py\": 1704469431.1561062, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/desc.py\": 1704469431.1521063, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/design_info.py\": 1704469431.1521063, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/redundancy.py\": 1704469431.1561062, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/missing.py\": 1704469431.1561062, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/build.py\": 1704469431.1521063, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/highlevel.py\": 1704469431.1561062, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/user_util.py\": 1704469431.1641064, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/patsy/__init__.py\": 1704469431.1481063, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/statsmodels/compat/patsy.py\": 1715941825.3537426, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/statsmodels/_version.py\": 1715941825.336266, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/statsmodels/__init__.py\": 1715941825.3358302, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/regression.py\": 1714494766.2493675, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/_stats/__init__.py\": 1714494766.2573678, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/_core/rules.py\": 1714494766.2533677, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/_core/groupby.py\": 1714494766.2533677, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/_core/scales.py\": 1714494766.2533677, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/_stats/base.py\": 1714494766.2573678, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/_stats/density.py\": 1714494766.2573678, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/categorical.py\": 1714494766.2493675, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/_stats/counting.py\": 1714494766.2573678, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/external/kde.py\": 1714494766.261368, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/distributions.py\": 1714494766.2493675, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/cm.py\": 1714494766.2493675, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/matrix.py\": 1714494766.2493675, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/miscplot.py\": 1714494766.2493675, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/_version.py\": 1716897740.2842982, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/comm.py\": 1716897740.2842982, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/utils.py\": 1716897740.2882981, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget.py\": 1716897740.2882981, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/trait_types.py\": 1716897740.2882981, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_layout.py\": 1716897740.2922983, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_style.py\": 1716897740.2922983, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/domwidget.py\": 1716897740.2882981, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/valuewidget.py\": 1716897740.2882981, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_core.py\": 1716897740.2882981, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_description.py\": 1716897740.2882981, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_bool.py\": 1716897740.2882981, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_button.py\": 1716897740.2882981, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/docutils.py\": 1716897740.2882981, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_box.py\": 1716897740.2882981, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_int.py\": 1716897740.2922983, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_float.py\": 1716897740.2922983, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_color.py\": 1716897740.2882981, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_date.py\": 1716897740.2882981, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_datetime.py\": 1716897740.2882981, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_time.py\": 1716897740.2922983, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_output.py\": 1716897740.2922983, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_selection.py\": 1716897740.2922983, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_selectioncontainer.py\": 1716897740.2922983, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_string.py\": 1716897740.2922983, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_controller.py\": 1716897740.2882981, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/interaction.py\": 1716897740.2882981, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_link.py\": 1716897740.2922983, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_media.py\": 1716897740.2922983, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_tagsinput.py\": 1716897740.2922983, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_templates.py\": 1716897740.2922983, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/widget_upload.py\": 1716897740.2922983, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/widgets/__init__.py\": 1716897740.2882981, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/ipywidgets/__init__.py\": 1716897740.2842982, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/widgets.py\": 1714494766.2533677, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/seaborn/__init__.py\": 1714494766.2413673, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zstandard/backend_c.cpython-312-darwin.so\": 1721044238.6916566, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/zstandard/__init__.py\": 1720994330.0, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/BmpImagePlugin.py\": 1719903896.114855, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/_imagingmath.cpython-312-darwin.so\": 1719903901.011499, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/ImageMath.py\": 1719903896.1458163, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/ImageOps.py\": 1719903896.1492808, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/GifImagePlugin.py\": 1719903896.122637, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/JpegPresets.py\": 1719903896.1690621, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/JpegImagePlugin.py\": 1719903896.1683033, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/PIL/PpmImagePlugin.py\": 1719903896.1813383, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/lazylinker_ext/__init__.py\": 1723946391.856523, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/lazylinker_ext/lazylinker_ext.so\": 1723946391.3481693, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/link/c/lazylinker_c.py\": 1721050109.781937, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/link/c/cvm.py\": 1721050109.7809982, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp85vd94ki/__init__.py\": 1724635281.651259, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp85vd94ki/m8b2a839fc46f6551180fd317f76254ef8ef5581c08ebde2d8f48f55cb28acbf5.so\": 1724635281.6135697, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/cutils_ext/__init__.py\": 1724635281.892843, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/cutils_ext/cutils_ext.so\": 1723946393.4211738, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/link/c/cutils.py\": 1721050109.7807083, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpv7ssccyo/__init__.py\": 1724635282.780546, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpv7ssccyo/m6ba7616e78c749eb93bcc27d7ba538bafcb798d9989b9ac070539cc9fabb8d6a.so\": 1724635282.7504952, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmplvb2uh8c/__init__.py\": 1724635283.8729873, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmplvb2uh8c/m1ecc436b27eac45c0801894d3a30dfef1996fc619a5a893d87d1d5cd6e2bea92.so\": 1724635283.8420155, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmppzua2_cf/__init__.py\": 1723947682.401431, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmppzua2_cf/mad9005bfe75d6f76f7cfe1f54c880576d7fbd7d7177f761d445ba325f2d016bc.so\": 1723947682.3674564, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpbatyszxw/__init__.py\": 1724625667.2348804, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpbatyszxw/me8a7390272653390afc867770904b36e6e75f495d22d4c27907e709b9b576ca9.so\": 1724625667.2059407, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpm4hrt3c1/__init__.py\": 1724307843.9602463, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpm4hrt3c1/m736a6a8ec3060852c8d1582e2badb5a77b212bb487494540614072b059cc4bac.so\": 1724307843.930746, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpr2aouevj/__init__.py\": 1724307829.3451605, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpr2aouevj/meb7c12175382d3b7f7a6266392337b11e9f7234e3a18ef983f005c215bf16c05.so\": 1724307829.2946806, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp8pk2ecic/__init__.py\": 1724307830.8854318, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp8pk2ecic/mb3f5b0cdeb9a97afeee703ead284708bd5f8a45b449ba70a9dca8fa181896920.so\": 1724307830.8557465, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpz_s31z0v/__init__.py\": 1724307831.957675, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpz_s31z0v/m9cd6f595aaa77672dd30e103ef8ba27256fc774461f4a0cba41915dacb17cbac.so\": 1724307831.9276166, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp_xxavynh/__init__.py\": 1723947751.991851, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp_xxavynh/m3255f1bd562f7542cf1d9f0f02fa23efcd391e7462a1ad1bc94712b6483000b7.so\": 1723947751.97396, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpcbgnlg4a/__init__.py\": 1724307833.5108292, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpcbgnlg4a/m3550fde929bc02cc0512c6b0a25e718e25b18106884a91e09106dcfe6aa5e436.so\": 1724307833.481305, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpgb0vrsv7/__init__.py\": 1724307834.5544538, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpgb0vrsv7/meb1d93ebb1725096e3518009815c87958da18ef9333f3488c40af21c92417ad2.so\": 1724307834.5257742, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpirsbhuy2/__init__.py\": 1724307835.6002207, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpirsbhuy2/m7ee4baecf861eb5213a8903a990459adf3fc3b9598331e7af36dc7b395181c2f.so\": 1724307835.5712848, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpozfjsjnd/__init__.py\": 1724307836.729269, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpozfjsjnd/maed2e94dfe712270b80803664c8c7872858155ef44e33437b464f1b7527dfec1.so\": 1724307836.6913183, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpv__qjx1_/__init__.py\": 1724307837.8608298, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpv__qjx1_/ma28e80fbf3f2180905c761f3aa048b86cad91b29d01dce71eb73d66e34bcd7f7.so\": 1724307837.8308358, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpk9qrkrir/__init__.py\": 1723947741.9440503, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpk9qrkrir/mb0a88f80a127a1335a9120064cd6cb8a755524243afe95523f3cbdad37ed8651.so\": 1723947741.9139314, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpihz8umhf/__init__.py\": 1724307839.8442047, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpihz8umhf/m3fc15cdffa518db2c4198cbac2799fb368edd771dc0bdf892441a0088ad31154.so\": 1724307839.813587, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp5wvgjd1f/__init__.py\": 1724307840.9426217, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp5wvgjd1f/m7cb4c4f7721b009ee84bacb65913aa25d0f6a9641acb17a364aed5d354ae016c.so\": 1724307840.9136934, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpq9ougxen/__init__.py\": 1724177246.0686114, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpq9ougxen/mbb29bb7284841bfe162a05c6f548a62dd3924fca573d9beef8896e7e686d0297.so\": 1724177246.0389543, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmprzsk1zq9/__init__.py\": 1723947722.3607485, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmprzsk1zq9/meb7d0d922464b0f252faa6521c53c29ee6d3eaa88bcb0b7be8d42eaa843ea2d7.so\": 1723947722.332464, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp6n8na7pc/__init__.py\": 1724627763.6464434, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp6n8na7pc/mc844d319666d8ca00f5a0b7eb8570b644c4a481c94b4803f0242dc7e5f451362.so\": 1724627763.627429, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp9059kn6j/__init__.py\": 1724628997.4971066, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp9059kn6j/mbe53a367f387fd510418bc99197273b95b8b56d3f57a127d905c7b831de2a9f1.so\": 1724628997.4777074, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp5fdq5rlg/__init__.py\": 1723947769.0397406, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp5fdq5rlg/m13a175fa52dd18a1f3f903a9f5abba80bb685dd56e47aee54c2b181a8c7cbff0.so\": 1723947769.0208325, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp5ewfl1gz/__init__.py\": 1724628998.2677813, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp5ewfl1gz/m05cdfbfdb8e00b0027a7c27c18aaaf00ff51ae7eec0f5ba1eb1983ac42f3a23f.so\": 1724628998.2479815, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp3vb231i0/__init__.py\": 1724628999.0313592, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp3vb231i0/m9438f53e1d022da9a0214b0f09d36f7d4da3b375b998e2de3488dc4762b56463.so\": 1724628999.0115807, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp7wb5wjzp/__init__.py\": 1724628999.77457, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp7wb5wjzp/me32b1bdd59d936447bb96950f58530eac1dc8bfcfacb132d553060cfc1cb366b.so\": 1724628999.7550569, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpdcz9yssi/__init__.py\": 1724629000.5084655, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpdcz9yssi/m3f1a9e8ed4e5d9d9c69c50bd6f3cf671e6e8537033d49b15f2e8bc068d219cc2.so\": 1724629000.4890616, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpb2mqh31h/__init__.py\": 1724629001.2641125, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpb2mqh31h/mb0ff4f946379212e4943a9064917378bdd5168460e82256afa9908f9f83136fb.so\": 1724629001.244729, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpa2t_vvx3/__init__.py\": 1724629002.028201, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpa2t_vvx3/mdc91181653d0cf2652e3bc1c532b4a233d31888110e42d4ac3aa46aeffe3b409.so\": 1724629002.008883, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpa1e3bf44/__init__.py\": 1723947801.2993803, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpa1e3bf44/mba60fa02d1e09484779372bdf58e2d12e68da6b24e9056bccd87d3925c921a39.so\": 1723947801.2810261, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmprjwu_eoz/__init__.py\": 1724629002.7618408, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmprjwu_eoz/m73931703f5393e72499097765f4be11aeed6fb31ff7f7e5a001dae547eeab4be.so\": 1724629002.7423658, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp4noelofv/__init__.py\": 1724628995.349681, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp4noelofv/m8a1f8a112bcea5f8b35ddd755aae19a4957e67b3b62ef05e5e5a32bc336c5a57.so\": 1724628995.325472, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/_defaults.py\": 1711016612.211142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/_compat.py\": 1711016612.211142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/backend/execute.py\": 1711016612.215142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/exceptions.py\": 1711016612.211142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/copying.py\": 1711016612.211142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/parameters/base.py\": 1711016612.215142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/parameters/engines.py\": 1711016612.215142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/parameters/formats.py\": 1711016612.215142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/parameters/renderers.py\": 1711016612.2191422, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/parameters/formatters.py\": 1711016612.215142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/parameters/mixins.py\": 1711016612.2191422, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/parameters/__init__.py\": 1711016612.215142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/backend/dot_command.py\": 1711016612.215142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/_tools.py\": 1711016612.211142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/backend/piping.py\": 1711016612.215142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/backend/rendering.py\": 1711016612.215142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/encoding.py\": 1711016612.211142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/backend/unflattening.py\": 1711016612.215142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/backend/viewing.py\": 1711016612.215142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/backend/mixins.py\": 1711016612.215142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/backend/upstream_version.py\": 1711016612.215142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/backend/__init__.py\": 1711016612.215142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/base.py\": 1711016612.211142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/quoting.py\": 1711016612.215142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/dot.py\": 1711016612.211142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/piping.py\": 1711016612.211142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/jupyter_integration.py\": 1711016612.211142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/saving.py\": 1711016612.215142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/rendering.py\": 1711016612.215142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/unflattening.py\": 1711016612.215142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/graphs.py\": 1711016612.211142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/sources.py\": 1711016612.215142, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/graphviz/__init__.py\": 1711016612.211142, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpp5l2es08/__init__.py\": 1723947684.55851, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpp5l2es08/m28288347be280590711df7f10b238d4d5253fc39b446812334918942c17f17af.so\": 1723947684.5300274, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpnr68ygc5/__init__.py\": 1723947744.5648336, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpnr68ygc5/mc07974ae0c0993cd19c845cce257eb2269bafbd9a084d96b10488876e1a99cb5.so\": 1723947744.5463684, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpj16ks2j_/__init__.py\": 1723947763.4406059, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpj16ks2j_/m1329ca0044f62163e20c6c66d760728e9cebb211668c38b277869c2395a37829.so\": 1723947763.4223626, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp5rf648o_/__init__.py\": 1723946394.5544002, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp5rf648o_/mb782a9925f26f74c46a75d98e1484e89ff6c5c482e4b63d738d2bb93e667f8f6.so\": 1723946394.5257728, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpw9morm6e/__init__.py\": 1724635289.5212898, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpw9morm6e/m40aa69908baa813d83422cb4cab88f7cb10335a6c2d8110592df9754f2a2dc43.so\": 1724635289.4892876, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpkaosj4yp/__init__.py\": 1724627750.7887962, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpkaosj4yp/mc0c812752595dbde7d70ffb4ae8de43b3566224eb5833f40a35262f4f1ed52d3.so\": 1724627750.7664423, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp29qkb58q/__init__.py\": 1724635290.6408272, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp29qkb58q/m04a7751f7478181b4d1433b9b93a51f26515bf9d3feb65a68d5ad40fc63b1c4d.so\": 1724635290.6108854, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpybu4rsj_/__init__.py\": 1724625644.4421585, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpybu4rsj_/m45bd03a88cf176ed16a78bd2ef3af55cc2c3d183d19df1506b3093dd8f669289.so\": 1724625644.3997447, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpc3kj798h/__init__.py\": 1724625645.8601587, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpc3kj798h/mbe8748fb57938208fc7a0447026477ef5a76ea9e8bff0c3b9f63fa29811b49db.so\": 1724625645.825109, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpsxh3f3hv/__init__.py\": 1724625647.2654736, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpsxh3f3hv/m6983469bc68b983115b6adb035f64fd235d77b861fa22d2db596d1aa331d4186.so\": 1724625647.2305121, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpergrp864/__init__.py\": 1724625648.6875746, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpergrp864/ma2f131378662301138176bc20f29a92ea1d8081126fd4afe7aec5c775ade7cc9.so\": 1724625648.652516, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp217znunc/__init__.py\": 1724625650.0920665, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp217znunc/m2fa753d917a02a0bf7c3094ce99ac2a09766a3043acc4351dbd4449be6e9bd87.so\": 1724625650.0569665, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpbz5pshu7/__init__.py\": 1724625651.4709866, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpbz5pshu7/me0a447eec2d8480bb551fc13f3f720d73025e3c5a63b37f05d14fba40cce59fd.so\": 1724625651.4360924, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmps13fdi42/__init__.py\": 1724625652.8958535, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmps13fdi42/m072485ca51c4bcab897b0845f0d4e12458d4e39bc20c4ee7338bff8cc23ca172.so\": 1724625652.8613443, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpluj80n1d/__init__.py\": 1724625654.2494547, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpluj80n1d/mf76c6c732f4b4d59537810a9450619fdd1721bec0629023a440fe04378dc3b2c.so\": 1724625654.2148323, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmph9ez5egn/__init__.py\": 1724307845.3278735, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmph9ez5egn/m1bf1a34024e637085360ccc0cb5cb6658d3b380c010aa49e8f21a52de72162a3.so\": 1724307845.2938113, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpqjef_4rb/__init__.py\": 1724625655.7256951, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpqjef_4rb/m8a8515ff2e166625e6bfbb059db35fd33b640ad7a7a9f1f5b02acdabcd08f1f1.so\": 1724625655.6897671, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpb4zfbk18/__init__.py\": 1724625657.1617546, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpb4zfbk18/ma6cb9b760413565eaf73a351b7d16aa154fe130a9f3f550f1ebe612848064671.so\": 1724625657.1272542, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp8vfp632c/__init__.py\": 1724625658.630258, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp8vfp632c/mf4f619c46a06ef26b6e4503f4af776713774ad62377a03bdf3724603963be953.so\": 1724625658.591139, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpp1v05ddk/__init__.py\": 1724625660.0785036, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpp1v05ddk/m0607c01f5384e7e21a446a16845c86416d2d28435e5865b3571d1119213340c9.so\": 1724625660.04191, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp78sjqt99/__init__.py\": 1724635292.267972, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp78sjqt99/md953ef0b7df34581dc0eed2f5d3be6d197977c771d5adc76d2f8e9ee92cd9d72.so\": 1724635292.2313113, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpihh1hvoj/__init__.py\": 1724635293.372414, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpihh1hvoj/md395913ab0dc1135609f0d8644070b2b711f7f28c2e21164141e2809495d1d6a.so\": 1724635293.3423154, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpoj4telk9/__init__.py\": 1724635294.4677076, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpoj4telk9/mce9e73d744f98cf6435b2d5370a95d15496f44e431c934406705586b9d572573.so\": 1724635294.4376156, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp4vv9mubo/__init__.py\": 1724635295.587471, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp4vv9mubo/m8fdc6262ec2959b397f97e26a44f49ae7570f1556a4d0ed76bd7ee5b49fa31a5.so\": 1724635295.5572739, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp6aqi2mr7/__init__.py\": 1724629020.1151335, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp6aqi2mr7/m99338524f4594298f7e35452cf94ec38b8ac80618e4de3e4ac4dd9eb659470a1.so\": 1724629020.0956492, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp7q7fdc0d/__init__.py\": 1724627761.1634138, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp7q7fdc0d/me93c8354f0fedde00325bf4b3a8ac5f6c1481ca798179e8199ffb5cfd8d1d235.so\": 1724627761.1441047, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp8xgo2429/__init__.py\": 1724627745.2363224, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp8xgo2429/m2bb16b0207271161ce9327c333f80628476f4868ac519f8fb65ca689013af5a3.so\": 1724627745.2122662, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmphc03h8ve/__init__.py\": 1724633498.2912703, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmphc03h8ve/mef993f06af13b3c947b7e5effa1cb1b8a6a826c7769b7aa8c09ec5e761bb49c1.so\": 1724633498.2695951, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpmplsy5ff/__init__.py\": 1724635296.7582912, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpmplsy5ff/m8ed15ba5ccb1384808e17cd7fe7b8238471f82a6425fc8adeac44543b0f4c11d.so\": 1724635296.7277627, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpd9rwa_fv/__init__.py\": 1724635297.9047866, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpd9rwa_fv/ma5197eb8c5ad4e6e24c00c401955be273078e159cbf1a5173eaf4c776f4528e8.so\": 1724635297.8746686, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpv3hnvpm8/__init__.py\": 1724635299.0346427, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpv3hnvpm8/mf5d7b1abc30817c964ab609431308feb9196e93317071d76546ca1237ca1aeb9.so\": 1724635299.0045393, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp3yjetl44/__init__.py\": 1724635300.174983, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp3yjetl44/mb07f0ad16a4417b41bbab581d08ce6635f1c9c7aee2d6f087724a4371b814fa4.so\": 1724635300.1446123, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpd0mf7n5h/__init__.py\": 1724635301.294286, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpd0mf7n5h/m07dcebad42a9929628f2647372301131c89eae0b31bc6f3e20b670a4f2d3114c.so\": 1724635301.2638304, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp9xrgegg6/__init__.py\": 1724625664.6202407, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp9xrgegg6/m4a0a3c8a30744691c74f9648306d6612bb2aa51f524bafd5b3d685914dde8f52.so\": 1724625664.5903842, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp2qhycsut/__init__.py\": 1724635302.4553738, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp2qhycsut/mc9d092578a7266b6dafe70a40e50c5210f64f492a59c0f6965b0dbe61f04649a.so\": 1724635302.4250295, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpl_s1qphd/__init__.py\": 1723947737.6025074, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpl_s1qphd/m6095d46a565d4da8dc7646c384ed6498dac4b74a3e78f53927e99eab082e10f0.so\": 1723947737.5751011, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp89f0wfee/__init__.py\": 1724633272.9111166, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp89f0wfee/m9ac1a28efe4819cd4637ccb5330750c6932b3d462ce0d1864a2aaf1e04c12aa6.so\": 1724633272.8914888, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpy17516ul/__init__.py\": 1724307848.6962624, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpy17516ul/mbb1a558a69b3834cbd8bb5160f53dcb1edcf00af31190d19c71508ba0bcc380a.so\": 1724307848.6624353, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp_w3kfazy/__init__.py\": 1723947760.5220544, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp_w3kfazy/mf8c6ce80d645cda4a8c3d9897483455b8c2b7a36ededca78ec65883cfb139eeb.so\": 1723947760.5042925, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpgxsu4qbf/__init__.py\": 1724635303.6041076, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpgxsu4qbf/m7b7b4f8f35e42b47e6d6e5590f1ff7f197a53f97e3e09e692d2cff65efd1f688.so\": 1724635303.574075, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp3lx44dl2/__init__.py\": 1724177244.9583945, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp3lx44dl2/m1c0ff320f1468a74acce7aedf058509f33af0f307597c6512b7ee0024e652ac5.so\": 1724177244.9284806, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpb9v4t4q7/__init__.py\": 1724629097.0145085, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpb9v4t4q7/md6000b77ee8225f1124c44f1a69957e68085487a26167a4f57011e4ab98cd04d.so\": 1724629096.9947498, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpn6wy5czh/__init__.py\": 1724629097.7700865, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpn6wy5czh/m3d0c247ad9181159000a84c08dc12f4002d9f15bdb4260245aa1d404220c64c9.so\": 1724629097.7503002, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpxi7u04dm/__init__.py\": 1724629006.956192, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpxi7u04dm/mb600a1d7caf5f9221109833edc980eab46bba59f963cb4e4d1587c7941a15931.so\": 1724629006.93686, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpazhma3dp/__init__.py\": 1724629010.7219927, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpazhma3dp/m5aef798e1a72249941ec97086b0e50bbe706f65c9cfdd708bd825866c778e8ba.so\": 1724629010.7025642, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmplhajrzch/__init__.py\": 1724625636.230367, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmplhajrzch/mb313fa4245cd1fa3cdf1e20fe4cdd13378fdef18b90079c58195e0def2e75456.so\": 1724625636.1881104, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpw3xrtika/__init__.py\": 1724635308.6073058, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpw3xrtika/m31b26a56a8bcdc8727fd91b8156034d13f0b6c4ebd66c078b4f3d21e6d27c92c.so\": 1724635308.5715122, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpw1yhs31f/__init__.py\": 1724625676.3256202, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpw1yhs31f/m3a4355b371d7ed7e95cba5f72911d39bd50de2d7056632226266447ac2b94d9a.so\": 1724625676.29581, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpzdh9fbkc/__init__.py\": 1724627755.256769, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpzdh9fbkc/m34961de12a79e077544ffccc0e98b1b857f0339a82fb920ecac38ad1683c54b0.so\": 1724627755.236823, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpu7cj9i_z/__init__.py\": 1724635310.0142965, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpu7cj9i_z/m6fd3f73cc111d4a6cd5d305cc6ad75e7e059e39d42d8acf680667fb061a15a30.so\": 1724635309.984818, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpubygwg3t/__init__.py\": 1724627771.8279545, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpubygwg3t/m32183553ac1f207e960bf8811232c86fb78031c54e29a7d653d8b3047b4dcb08.so\": 1724627771.808659, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp97rwvoee/__init__.py\": 1723947761.2465723, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp97rwvoee/m6348abaa96b319b61cbccab10456ab0e6afab4dbcade233af0e4c825230c1dbe.so\": 1723947761.228596, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp6szd4joo/__init__.py\": 1724635311.4175751, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp6szd4joo/m2baf3ce14a92dfca8fbc67b8d63cd2bdf6768785a45972f78f0c0537879e0f15.so\": 1724635311.3868299, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp919_clv2/__init__.py\": 1724635312.5207467, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp919_clv2/m678f7d587e0df98dfede05beabf1e4553a7a290d5c70dd6cc9355eaf3e928152.so\": 1724635312.4895399, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp4p5ko96c/__init__.py\": 1724635313.6569045, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp4p5ko96c/m5046c59a287d625bbe56eb29e9c5aee9f3c88692d2d398d0387e292a46d21a14.so\": 1724635313.6264958, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpkj9r81jx/__init__.py\": 1724635315.0578399, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpkj9r81jx/m5d3661cf561979b5a54fe3f6e6e7676f4f459225821ba89ac653cea0968d05de.so\": 1724635315.0277972, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpyefaw358/__init__.py\": 1724629073.23352, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpyefaw358/m0ea7d14c625196b536e885fcb44104c4644d493064e02d3e5aa76a1b95ea2ed4.so\": 1724629073.2136335, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpf0rkdvo7/__init__.py\": 1724629100.433077, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpf0rkdvo7/m2947d463fa6f601a8cb7741339181c01a11752679972f3043906f1d2e7465e09.so\": 1724629100.413202, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp_v77usg6/__init__.py\": 1724627778.0289721, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp_v77usg6/m0d834c58bcba568244413a34261ac29c8c0ca1edc0404def564c3a68fdc4d832.so\": 1724627778.0098772, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpw5g8ejaz/__init__.py\": 1724635316.2163975, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpw5g8ejaz/m8a03400aa82160e53a1824ffff1d3000dfcd455e540c3e1b06516e6599c6fc6a.so\": 1724635316.1865048, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpx5cuyyw9/__init__.py\": 1724635317.359782, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpx5cuyyw9/me324330cdbd73837156a63bbb162d0d83c019bf52f77ac04b3b155959d8a0fcb.so\": 1724635317.329574, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpmz91nrw3/__init__.py\": 1724635318.7676508, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpmz91nrw3/m8800f0a9b7136942c4276ac579e602ff7769aaaaacde1363562cbbb378874be2.so\": 1724635318.7331426, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp0h056vpl/__init__.py\": 1724635319.8883307, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp0h056vpl/mc6af317ef7f4cf88348a848f8334aeeeadfb1cdcea5174789d1d1c413a4dc02d.so\": 1724635319.8582585, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpuyq3z6ck/__init__.py\": 1724635321.0161722, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpuyq3z6ck/m02e648c17d55a69dbb588ce6b38df81250cc4829f4d7b95f5a9462c832f4852e.so\": 1724635320.986329, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpif27ww9b/__init__.py\": 1724635322.3731039, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpif27ww9b/med7d13527ce1a581bc4861d53a21f9cd9587349c160d8a9aab4da3cdf4740fbc.so\": 1724635322.337827, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp3j7xp97c/__init__.py\": 1724635323.9335172, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp3j7xp97c/m99dae60e1fc9a07451b2fc4d15946cb8e17df51e5c244cb7f6ae2afc528944d5.so\": 1724635323.898058, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp31hwv3lc/__init__.py\": 1724635325.292835, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp31hwv3lc/meec127b8cf0116c0b4bac5340877d2d72b4af956d20dabe057fa3f4ec656f61a.so\": 1724635325.2588573, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp5_3h_hw3/__init__.py\": 1724635326.4003963, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp5_3h_hw3/m44e992fd56aeb7e37480793031693765ae964d6c161f038dd045f5fc60872b99.so\": 1724635326.3702657, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpa3c3u_08/__init__.py\": 1724635327.7425942, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpa3c3u_08/mc81702a8415940df496bba7cfdbdc7a4e1da8d0418a109ac9a4cf7214a039b12.so\": 1724635327.7084575, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpefawraut/__init__.py\": 1724635329.1640172, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpefawraut/m37458ba076119bd107113daf3e2eec1ae87dddcaa4c3355251434d31f04af341.so\": 1724635329.12968, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpltpnxy2h/__init__.py\": 1724635330.2599483, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpltpnxy2h/m5ca07567cdf1142054b2284cd61f58d68641c8139e420868e2a92455b7708cf7.so\": 1724635330.229928, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp3k5hh5js/__init__.py\": 1724627796.533488, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp3k5hh5js/m63e403c615ad0da99b885e60d8bfd020ec5ceecb80905586a89686d33f0ae2a1.so\": 1724627796.5136945, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmphjqxe4cx/__init__.py\": 1724635331.3769526, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmphjqxe4cx/m9b52d07d48ab8a0297018b12de25a307af98c561a273c2c2396fec8a839b8316.so\": 1724635331.347114, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpgrng3hzp/__init__.py\": 1723947756.2107713, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpgrng3hzp/m04628b1c7f81994a83857a023af695482b10cc48dae3de2b07e177aafa1f4811.so\": 1723947756.1929107, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpxydeq1aw/__init__.py\": 1724625690.585522, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpxydeq1aw/m1ddd2f3c38eb2d8b955848497d896def4300bbdce28c00b70692fe7705fcafc3.so\": 1724625690.5560048, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpb8_bhddd/__init__.py\": 1724625740.9269753, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpb8_bhddd/m0c9b148449443af264d34c9b383cbdc72d71c86532421c5bd265e8736c772efd.so\": 1724625740.8961532, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpba3rvfuj/__init__.py\": 1724635332.5409615, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpba3rvfuj/mbefc83ca069b3aa706dc0d9843895ee16dd133d605f6e805e2be10b4198d5641.so\": 1724635332.5109785, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp8xh56o1n/__init__.py\": 1724629038.9965835, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp8xh56o1n/m899ada8bdaf1c8d2f2a41db52c07aeb935f3e943a8a13d05a6fec44a3a3ef7f1.so\": 1724629038.9769938, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpqv3c74hg/__init__.py\": 1724635333.6927154, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpqv3c74hg/mede985a004d7aedbf287ae6b6afd9ce1db9eabd8c666f35526a3bd8b942678f5.so\": 1724635333.662706, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp5jfoga05/__init__.py\": 1724625718.555681, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp5jfoga05/md5a39fb8bdeb8e4fb12f0088dd8d5e14f0e3175106bb4c3bdde73c566683205a.so\": 1724625718.5254548, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp78fzst5v/__init__.py\": 1724635335.0594432, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp78fzst5v/m02b10b11f2682148279e00e1640bc79db1858b3f53dbca6cd983215dd2368695.so\": 1724635335.024616, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpxvmzd_6n/__init__.py\": 1724177357.9080675, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpxvmzd_6n/mdb201ed3e991bbc6296f3bfb813bae17c727fd5359ff6a7d9b0d3d7b4a32a597.so\": 1724177357.8794165, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmphdq2wmev/__init__.py\": 1724177281.609557, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmphdq2wmev/m67784a4a078719f6ae218f2976ca32cb0764f5c4839f28cd4c131f63b30864d4.so\": 1724177281.5758336, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpn8xoweh_/__init__.py\": 1724177280.2461393, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpn8xoweh_/mee45153c2d6c2a5207dab6b9fd8e54a2af54a9b20c163a8e33718007a6e4c757.so\": 1724177280.2102423, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmplrprm1a8/__init__.py\": 1724627774.8682313, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmplrprm1a8/m299e84a1da67cb5abc5443d12180a46eef25532780589fd65ead33aecf60ce5f.so\": 1724627774.8485043, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpawhpibs0/__init__.py\": 1724635336.187416, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpawhpibs0/m961c548b12d4dfacf65d672774890a55f85d5dc651dae84e43336d254e7fbf68.so\": 1724635336.1575985, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpcdsep1na/__init__.py\": 1724635337.5407999, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpcdsep1na/ma65ee15e894d41c6931dc7ce72494d1ea79fba21f7780d7c43f10480855b5efa.so\": 1724635337.5067906, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp_bntjtag/__init__.py\": 1723947808.0057588, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp_bntjtag/m3f22fe5bce792b6d08908ce70c65457cec418baf7789516f8e43c5e4ae6c338b.so\": 1723947807.9872234, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpu_7ztjvd/__init__.py\": 1724635338.647418, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpu_7ztjvd/m3769948e755698c5cdc9f800a77b222701a921ca10d9490b4a897fc816ad56ee.so\": 1724635338.6174927, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpaqs_t3oy/__init__.py\": 1724635339.7483847, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpaqs_t3oy/m9344a9989b35a666c518fe177858977b2006f6af7134a074272c8c6aa3bb1f37.so\": 1724635339.7178323, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpnusc6swb/__init__.py\": 1724629103.8776717, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpnusc6swb/m253465e25cb76ce921a2573887a78de4b858a6e3d753528c98a4552b54200f31.so\": 1724629103.8577785, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpadd4hjh8/__init__.py\": 1724635341.2492301, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpadd4hjh8/mfd8962036f3a59c8a1efbf82fb89642d4a467c7df76be1a3754d93674dac6e8e.so\": 1724635341.2172532, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpb_zjhenz/__init__.py\": 1724635342.8066173, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpb_zjhenz/m9a7039b33bec310a1e5ba165f851ca0d7704250bd0e31a53fb6cad857ad6563e.so\": 1724635342.7702527, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpsyp9zyvn/__init__.py\": 1724635343.9510484, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpsyp9zyvn/m7afe1e81c09e198d5a53cdc9f7bea612695adc28a5d0cc351fa28f9fb9e7eb19.so\": 1724635343.921522, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmposu04e48/__init__.py\": 1724635345.0396955, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmposu04e48/md958b4b3cac56e5db21e4196832e7acefb8a5375675485506a5e8f83fac81978.so\": 1724635345.010551, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpwdlr_s8d/__init__.py\": 1724635346.3978257, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpwdlr_s8d/mfd34c7409ee12cfe9c5f39f236e1bd75286109c6598cff743401587af71018de.so\": 1724635346.3628705, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpnug_iqz9/__init__.py\": 1724635347.753906, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpnug_iqz9/mdc8de0cc89555e95bf5a3a9ab068f2f5ab59348cb04e5131d5600f002e115b55.so\": 1724635347.7232893, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpbsuam_xr/__init__.py\": 1724635348.8822544, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpbsuam_xr/m0255fa2e0f9e7f7131ec30b14b6f7646dde20589193391ef60714677746b1118.so\": 1724635348.852883, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp9jkjmonc/__init__.py\": 1724635350.0418155, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp9jkjmonc/m9dcf77ef3df85913678e0f171d5ebdd2d4723c76efe76efc5c5070dd5d7d535d.so\": 1724635350.0103421, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpmu8bs5p2/__init__.py\": 1724635351.136498, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpmu8bs5p2/m47acddb88c3f173b59ba0dd02805e8ef27e57cda4e7e524c339c3b7e42d9332e.so\": 1724635351.1068778, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp7xx72q2d/__init__.py\": 1724635352.550506, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp7xx72q2d/mdad5aa72db05d20fe01714ef11d360ac2e605bc45e43c68318f9cec910889f59.so\": 1724635352.5159318, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp3sy6wzel/__init__.py\": 1724629198.8163216, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp3sy6wzel/m8dbc6f37a6f01f1ca831c686542a9f447ee8c865a9011fd51fc8bc42827532b6.so\": 1724629198.7967257, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp9l68e03r/__init__.py\": 1724635353.7071502, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp9l68e03r/ma2f147a060cef30a079f8823ad4230a2d7c225e67579916a4e4002578add4c45.so\": 1724635353.6780128, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpo3mfaznh/__init__.py\": 1724635355.0642343, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpo3mfaznh/m5609608d38ba30bfa51889cd0e6ef1a4233b2fec7405533fadf1413ec959dd50.so\": 1724635355.0292969, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpivzasay6/__init__.py\": 1724635356.432379, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpivzasay6/m0839488392f00c8909e7a549c04254787d20f1e03205ae811a943be30512f373.so\": 1724635356.3980138, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpm2z9eb9z/__init__.py\": 1724635357.5602386, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpm2z9eb9z/mb6a2eb8518f129cce95f047d0425172c4b908a8ddb33f4891fc29089f5ae112f.so\": 1724635357.529736, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp0ivz3ex_/__init__.py\": 1724625815.0903318, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp0ivz3ex_/m3bd843b82eb127821a7690540d495fed66c88d77820139af7d9282a154b318c8.so\": 1724625815.0550482, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpscy36kdg/__init__.py\": 1724635358.6855445, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpscy36kdg/mb461db5640a305cbe5032b73cf6a4c3c8b17472fad3cc1ab856f1547e1b79796.so\": 1724635358.6556869, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpehulfvsq/__init__.py\": 1724625847.7182536, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpehulfvsq/m21a31c3e8bf273ff5f1a0883a6ef758d4209c2d1bacd6275d9eb2fa819985227.so\": 1724625847.68294, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmprnptklax/__init__.py\": 1724635360.236701, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmprnptklax/m8466913be03d2e7df76fabb8ce16ae4a815a9fd2aa86d232dc860ce2dfcac693.so\": 1724635360.1996293, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpjc82usjm/__init__.py\": 1724635361.3735585, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpjc82usjm/m462e664eff5962c1f50134dbd2134f057aaea0ccfcf31bbb1a42a35cbf3f1688.so\": 1724635361.3430018, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpt6qftygx/__init__.py\": 1724627777.295867, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpt6qftygx/m17e4d00b651f07e1d412b6b7338d6c666ebbc4b2881e687823e656d647fa0f53.so\": 1724627777.27674, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp7j5xbkl8/__init__.py\": 1724635362.7364426, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp7j5xbkl8/m83a08a6452465ded47d4e06b628f26b74cf37e7d82e361527247368d8b368f2e.so\": 1724635362.7021942, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpg4tc4z_i/__init__.py\": 1724635364.0743787, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpg4tc4z_i/m0644005b33c66a4fa975ff58eb74950aab4b9b41887cbc7ae5d7a174f930671e.so\": 1724635364.0398908, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmputji31mt/__init__.py\": 1724635365.4866517, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmputji31mt/m282bbbaf860fb247e571bf6708632cf4913970c8ad7894f41c95bd3981725135.so\": 1724635365.452062, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp12lpkb7l/__init__.py\": 1724635366.859882, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp12lpkb7l/mbfb86b1ab6479df691b293eef0b38b1e49018b103181911920d960cd1d61b114.so\": 1724635366.8245497, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmplj93h7ww/__init__.py\": 1724635368.0894942, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmplj93h7ww/mb12b1801d223dbe91fe5cd59af4d7302aac9840f780abf532757b57d14fcf6cc.so\": 1724635368.0596662, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpyiyec7_e/__init__.py\": 1724635369.4700093, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpyiyec7_e/md42ce54e93976c908bcf3037f02321ab64f8c329b8c05bd71cf9c97d6bf3659a.so\": 1724635369.4356387, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp7ut8bvcb/__init__.py\": 1724635370.9323902, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp7ut8bvcb/mac65a7c272b996665e5aacbc7fb9b9aa5220eb9e0fa90f7a20afe6e970300294.so\": 1724635370.897976, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpsi9uifd9/__init__.py\": 1724635372.3085942, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpsi9uifd9/mb51aaab8e108966ba429e142d2d082466b2a40cf3b6921563c8efd20d1bea00c.so\": 1724635372.274326, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpbndrvlxn/__init__.py\": 1723947774.1095183, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpbndrvlxn/md17c48771f1a55c5d271626113348ec828ca04099d93782adfb98a4b8bfa70d6.so\": 1723947774.0912893, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp9ti4yvy1/__init__.py\": 1724635373.4517305, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp9ti4yvy1/m20b8000f9b1c03409953f5bc0ba16b581d8182a0c438fd8c7689563f4b194c0b.so\": 1724635373.422024, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp33pe8vpl/__init__.py\": 1724635374.8013453, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp33pe8vpl/m53e0a0382c265c4ee5828796f47a63023087960a53bd2dc13bf7a5f818650d4e.so\": 1724635374.7673826, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpa07tngf4/__init__.py\": 1724635376.2283359, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpa07tngf4/m9c9720d676bb91de1ea48db0186a61f774715d297b05cf115ba0ef617226ed04.so\": 1724635376.1916766, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpn0e67k17/__init__.py\": 1724635377.3640006, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpn0e67k17/m1a270a4c44d6bb50bc7e5956e33da13534f5cae99bbd3706180ba2a4384db912.so\": 1724635377.3341658, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpn_s6t_p4/__init__.py\": 1724635378.858739, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpn_s6t_p4/m372a5eee6ffc6cb47f908abacdf52641bdbef85725bcd2a628796c4465c22e98.so\": 1724635378.823658, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp99358zwa/__init__.py\": 1724635380.0456674, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp99358zwa/m0f0c7d2b4de7ea7102afe29b3b73bc39e6c89a77218a29503f4494c9b97c77c3.so\": 1724635380.0151527, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpvrogabhk/__init__.py\": 1724635381.5669045, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpvrogabhk/mbab394d11815b32668e29d24e9b07c70875b710fa881639098374352e68b113b.so\": 1724635381.5319932, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmps11bqenh/__init__.py\": 1724635382.705911, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmps11bqenh/m4983888afb98c482f9b91982008b617da1a8ed28caaba7364c7388d5924b8016.so\": 1724635382.675412, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmptaq9ubmt/__init__.py\": 1724625735.4854748, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmptaq9ubmt/ma17822fa98f1a04dcf1da5ced3900661b6bb3e1ccf5f7d1cde7a792b32c34a43.so\": 1724625735.455895, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpddcer8ph/__init__.py\": 1724177248.8159084, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpddcer8ph/mb3b561ff7eb73f0bf594739f42ec63ca2304424a8ec9c6557e4462734b736235.so\": 1724177248.7861836, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpc01m_5bf/__init__.py\": 1724635384.0283124, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpc01m_5bf/m97d0112454ec599e10e88cb92fd70c9a89379eb4a39068d1cd77a43371d0a8b6.so\": 1724635383.9956782, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpr9c5qprb/__init__.py\": 1724627793.0281672, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpr9c5qprb/m472aebc22c20dae7ac6f0f8aefe8bafc5785457e5d4b9af139711233da4fe916.so\": 1724627793.008889, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpq7wpndxu/__init__.py\": 1724177278.865617, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpq7wpndxu/m5c232479949895e429036d121451d275260af85402efa1f3ba3ad17ebd9c771b.so\": 1724177278.8362713, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmprw3m2slq/__init__.py\": 1724635385.200012, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmprw3m2slq/m9d49fb283a72799a28fe460bc565e0332d85499412d30d4e65504b36014b14e6.so\": 1724635385.1691635, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp1qcz2qdm/__init__.py\": 1723947765.2562635, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp1qcz2qdm/md4407a70cd590d7680ad324ff54c815acbb8722e879191770248e5135ff39695.so\": 1723947765.2384489, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpfi2jqhqi/__init__.py\": 1724635386.3917387, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpfi2jqhqi/m2aa7ef48637f1c1601b004b75f0b26b42ae0a9aaa9fe3dab3ecf462e66cee41b.so\": 1724635386.3588004, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpc46mxrmc/__init__.py\": 1724635387.7528057, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpc46mxrmc/mbd3918900abb8b8f7aa3690fa16202ba4847bf5e15ae3329e5ccca10f16547f7.so\": 1724635387.721982, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp1iandm09/__init__.py\": 1724635389.2125463, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp1iandm09/m91a76ba342c81617f5aecd9dce3e5ecb807e222c9f49b806749c3373530fc2c6.so\": 1724635389.1776688, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp7xnk9v89/__init__.py\": 1724635390.6930475, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp7xnk9v89/mae72dd07f230a893d6accd10c8e55e643e8bbda78a4485f9e73867ef0e2a063e.so\": 1724635390.656003, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpw4jpuol0/__init__.py\": 1724635392.2030423, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpw4jpuol0/m886809f83ade5bfccf21cddb216a23fe0e50406b9abb753fc885c84054f5acf7.so\": 1724635392.1684494, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpra_18qua/__init__.py\": 1724625813.6673908, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpra_18qua/mca3ada366b70db0211459600ed7bffddde1b5e7e32f06e4627ca1eb280666046.so\": 1724625813.6357071, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpdlvw905v/__init__.py\": 1724635393.3572335, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpdlvw905v/m2b4111e8d578db1f9b3d6854702494fa71e0d0c6f20c094a057b86efdd92c09b.so\": 1724635393.327174, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpnl9x6trc/__init__.py\": 1724635394.6182797, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpnl9x6trc/m727d0ce30aa1016635fbc5f116c0d88c169db694cc2e8973805dfa626f959304.so\": 1724635394.5882442, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmps8m0qivn/__init__.py\": 1724635395.7827816, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmps8m0qivn/m320c1abf5dde3dc5f0e5fdb35f8cbfe58b80dca412655851f5f67e468e6eb48e.so\": 1724635395.7526412, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpnhj0yehp/__init__.py\": 1724635396.9043922, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpnhj0yehp/m1f9a1206ce7b964dbd24fc04b9577a95cd5e4bc4908bd6f02f326f319261152f.so\": 1724635396.8739505, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp__9_zvzq/__init__.py\": 1724625684.428693, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp__9_zvzq/m2c5aaad8dc44377be4871836a1a8459b67edeaf0452215f75bb095ec95a73a49.so\": 1724625684.388534, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpi2xh0zbo/__init__.py\": 1724635398.3212044, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpi2xh0zbo/m54d0a2c1a8498fe3b2de314f41fdae762036510040fb56b73bb0e988ea63875d.so\": 1724635398.286921, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp_g1_6l4r/__init__.py\": 1724635399.7111442, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp_g1_6l4r/m14a24022c399c5ebd5e5a14756387c588a6a8fd6bb62c26887af52ad9a294dd5.so\": 1724635399.6761715, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp6au4u2q8/__init__.py\": 1724635401.163835, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp6au4u2q8/m3880c8067fb0f3c75010ee12e437c449ab7e4370bfc22f4e51577f1f56f1d9ac.so\": 1724635401.1290302, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpcel_yf9g/__init__.py\": 1724635402.5927448, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpcel_yf9g/mba146fce6d4f84539949b2dbea333df4f38b759ab7a1955c65f49e7b10428290.so\": 1724635402.558198, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp_f2wu83m/__init__.py\": 1724635403.8232105, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp_f2wu83m/mf6266ca5434b1f9f83d734dd6898ed197de39be71b184e83e3dc42e0647eecc6.so\": 1724635403.7922685, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp28i3eow7/__init__.py\": 1724635405.120385, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp28i3eow7/m3b59446515ad79afa383dc3cf5ea5b95aa6a6ad1294ae946a783a562f62c4583.so\": 1724635405.0882115, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpkzehkqup/__init__.py\": 1724635406.2685714, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpkzehkqup/mb066953c7d234b7cb2ea68156a423994d087087e6d6de4a5ae6bef339f4687d0.so\": 1724635406.23836, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp8k2hs8im/__init__.py\": 1724635408.2242072, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp8k2hs8im/m23adfe9a64d560fead1aeb12e06e844dfba5d2c7b463d3048c5b056fa69c3655.so\": 1724635408.1893249, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmps7t8yt96/__init__.py\": 1724635409.8878777, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmps7t8yt96/mb5cca7da4c3487eb2681751580d41bd361b483f547ce9259124845e59fb6c12f.so\": 1724635409.853432, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp5r5ocrab/__init__.py\": 1724635411.252134, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp5r5ocrab/mfc6178edbc2da9d1ec4564917e66dea34f0e95f2a392826dbfedc9ce269fe0de.so\": 1724635411.2171967, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpews6etnv/__init__.py\": 1724635412.6082113, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpews6etnv/m67198467c0e3f0cdddcc8a7409e655205cc287c4a22f4242910184e81433057a.so\": 1724635412.5738895, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpkgqg6aho/__init__.py\": 1724635414.0674498, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpkgqg6aho/ma7ce803fb8321fc1a7c51c5c5ce52ba0e5d69a73b3f4ac87f3ee9aa9c93ab35e.so\": 1724635414.0331542, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp3tmmamze/__init__.py\": 1724177284.3248644, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp3tmmamze/mbadf1e87c9648c02b5f90219113d12fa29860413409a0f3f009f9625be23ae36.so\": 1724177284.2908542, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpnz4c7g01/__init__.py\": 1724635415.4264722, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpnz4c7g01/m2e5278dafa69c273f3ea97839fdfe41342b2818793c8fad6930affd3159abf2c.so\": 1724635415.3920426, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp3tqyjolf/__init__.py\": 1724635416.5473316, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp3tqyjolf/m7ca425705df2765580eb3b3bd5dc9e121ef9c740bbd6844e83a4b6996464e5b5.so\": 1724635416.5175514, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmppcauzi_3/__init__.py\": 1724635418.0977886, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmppcauzi_3/m1f1354d341838bca582722fbe58b0484b5a7303eaad9745c1b338fc61af79077.so\": 1724635418.0622263, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpbduzjdtb/__init__.py\": 1724635419.5821588, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpbduzjdtb/m84c2b87bec3ce31e72341cf5723bfea310332ac947a230fadb67583f3a7cd342.so\": 1724635419.5513797, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp7b_n8kjs/__init__.py\": 1724635420.7837615, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp7b_n8kjs/m2afcf1ffe5ae242c3bb5fe167de90f26e73131ab61c0c6035ce8c8a525465ac6.so\": 1724635420.7534928, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpscd0lpyh/__init__.py\": 1724635422.2099912, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpscd0lpyh/m9fb12dc8e374f549a266bb25a36e4b35982c0fe5daf820250acc615134100c01.so\": 1724635422.1712627, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpafc0mnrr/__init__.py\": 1724635423.5929682, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpafc0mnrr/mfbad0f8aa5dbfcde3135c1973c67e037613d61caf3c04d6cde72524804d8ef3e.so\": 1724635423.5586667, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpt04ersb3/__init__.py\": 1724635431.5262756, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpt04ersb3/m1dc9ad3b3f902fedf5cd8dba34fe60bbbf6403ae4317e3b783824fc30d42b7e4.so\": 1724635431.4937944, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpei6gg08v/__init__.py\": 1724625759.3144016, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpei6gg08v/m6c93c3e133ad4a88b10d573c2b7e1adea991a80410aec3c21f137ab512c6abdb.so\": 1724625759.2823956, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpu2stt2qq/__init__.py\": 1724635435.5058608, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpu2stt2qq/m23b33bf47189d9c2ee1216db3f114e3ed14388a830d93029598f507ae177629e.so\": 1724635435.4758418, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmptz4uovhj/__init__.py\": 1724635436.927068, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmptz4uovhj/mf1c3074e4c0bed482fb844f94a9bca67d6d8e722d251cdea61f5e90888fb5e9b.so\": 1724635436.8919814, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpxmyujxur/__init__.py\": 1724635438.3032615, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpxmyujxur/mec698f83f87ae48b81c189774ed311f5b10b98d85e8b91142e1b45d492c34f73.so\": 1724635438.2678423, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/multiprocessing/popen_fork.py\": 1723142152.4604623, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/autocorrplot.py\": 1721464180.979894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/bpvplot.py\": 1721464180.979894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/compareplot.py\": 1721464180.979894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/densityplot.py\": 1721464180.979894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/distplot.py\": 1721464180.979894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/elpdplot.py\": 1721464180.979894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/energyplot.py\": 1721464180.979894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/essplot.py\": 1721464180.979894, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/forestplot.py\": 1721464180.9838939, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/hdiplot.py\": 1721464180.9838939, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/kdeplot.py\": 1721464180.9838939, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/khatplot.py\": 1721464180.9838939, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/loopitplot.py\": 1721464180.9838939, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/mcseplot.py\": 1721464180.9838939, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/mpl_toolkits/axes_grid1/axes_size.py\": 1723759721.6552446, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/mpl_toolkits/axes_grid1/axes_divider.py\": 1723759721.6539218, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/mpl_toolkits/axes_grid1/mpl_axes.py\": 1723759721.6561382, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/mpl_toolkits/axes_grid1/axes_grid.py\": 1723759721.6543844, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/mpl_toolkits/axes_grid1/parasite_axes.py\": 1723759721.6565053, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/mpl_toolkits/axes_grid1/__init__.py\": 1723759721.6531003, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/pairplot.py\": 1721464180.9838939, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/parallelplot.py\": 1721464180.9838939, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/posteriorplot.py\": 1721464180.9838939, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/_animation_data.py\": 1723759721.5364718, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/matplotlib/animation.py\": 1723759721.543417, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/ppcplot.py\": 1721464180.9838939, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/rankplot.py\": 1721464180.9838939, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/traceplot.py\": 1721464180.9838939, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/violinplot.py\": 1721464180.9838939, \"/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/arviz/plots/backends/matplotlib/__init__.py\": 1721464180.979894, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpjbrf4oqh/__init__.py\": 1723947712.0263076, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpjbrf4oqh/m651af1bdd3afccbb48636c26705d77db2e18c6653f6b84247a30f2f0cd8608f3.so\": 1723947711.9959514, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpv6ozqcre/__init__.py\": 1723947761.9395049, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpv6ozqcre/m460aa4e23b351ad4f9dd7d9579b836cd915761d8d9244c3866c51628f59c7866.so\": 1723947761.921281, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpl6efxq2f/__init__.py\": 1723947791.3418686, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpl6efxq2f/mc49bf2a6079f886c024404bab5838870de0798eb3286d2a33ce93724a8f16713.so\": 1723947791.3236322, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpw4mj430w/__init__.py\": 1723947714.1960554, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpw4mj430w/m8c4ce8f38357ee54f54fe436ac133a7b84399e4e2690e104c1bdb9e6a4f5ded7.so\": 1723947714.1681397, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmptp9mmnvw/__init__.py\": 1723947715.2558906, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmptp9mmnvw/m7ce5d747985405e42fde04810fb35d0d2e21d9d1a089c95182d59bc896b70671.so\": 1723947715.2278419, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpa7nieqfj/__init__.py\": 1724625707.5887299, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpa7nieqfj/mbadfe17faae58b4ba86dcf197630cef3864fb6b8570bd516b568b09321efe601.so\": 1724625707.547982, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp_73dikq8/__init__.py\": 1724625810.9104915, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp_73dikq8/m1a7901ef7d64721512047e6d6183659a4a96f2c5059f648b829875a812d798a2.so\": 1724625810.8669739, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpf02kpet8/__init__.py\": 1724625812.4804802, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpf02kpet8/m8c0dd24d581cfaccf03e134185c28b17cf39d3f40277f4bd84a99cbee72fad50.so\": 1724625812.4428465, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpvf26gjsf/__init__.py\": 1724635492.985669, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpvf26gjsf/m15029dce752b2eebc37d46377258fa30fbb6071f4076ae63f07f3030360b927c.so\": 1724635492.883088, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpr4rcw54_/__init__.py\": 1724635495.0000803, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpr4rcw54_/me07d186132fa64e7d91150b8fa5aaa0626184ca144b887d60a5845271bca268f.so\": 1724635494.9630902, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpfytmw54q/__init__.py\": 1724635496.434955, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpfytmw54q/m71982fb630a34f2a828cc54646f4a404962944386d84cbaf25ee339960a0e15e.so\": 1724635496.399473, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp5xjulcwi/__init__.py\": 1723947785.8088565, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp5xjulcwi/m4f809a4dea9554846ed611f35b4c7c723083d89a45c29688a8da80e639533210.so\": 1723947785.7909634, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpb1z86w7q/__init__.py\": 1723947792.0616913, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpb1z86w7q/m96327b153e21774e88f81a45f3c020adeaf5f01fea5e0d311e811cc39d636497.so\": 1723947792.0435767, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp68w_yvfr/__init__.py\": 1724633271.88044, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp68w_yvfr/m7eacf43d2af6418355b04343497019ae08424b8cbbdf98e9119c227c7ad36f37.so\": 1724633271.8034396, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpvkxq6dwc/__init__.py\": 1724633273.6639316, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpvkxq6dwc/m47349cd816f6d6baaa52852eeaa45f4da4b150c4ccb6556d581f138bf8381edf.so\": 1724633273.644373, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpxz48sqob/__init__.py\": 1724633274.4221773, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpxz48sqob/m95e38f7884d36fa95c3feef4d871cccc6ca185a8c13ea1ab30c5fe0dec4c7720.so\": 1724633274.4024858, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpzk5eowp1/__init__.py\": 1724633275.1820495, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpzk5eowp1/m37b49716fcaeff2d52b3751fb6d3e0a8923771012c84fd5f3a8c54aefd64754c.so\": 1724633275.1621618, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpyttk6ah5/__init__.py\": 1724627758.1882594, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpyttk6ah5/mea2a437a49b2eba56e9224e34c63f611ebaee4fe1edb7d048df1daa91bf0f7e3.so\": 1724627758.1691432, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpivubd91p/__init__.py\": 1724633518.9989696, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpivubd91p/m4627d78c9d434ac0ef6c2236332ad6c91eb20089772a7d8953922d5ac447f51a.so\": 1724633518.974487, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp8zr21s72/__init__.py\": 1724635503.1076877, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp8zr21s72/m178073e4ca03f17c78470adf52ab00fb4a355591484a6390d90a81b25f4c6e0f.so\": 1724635503.069881, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpi6g47_rs/__init__.py\": 1724635504.5339892, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpi6g47_rs/mc2651cf2042a6abd2c191ba51b281f1d658235bf2b6f3e5e83679d2ce7e6bd64.so\": 1724635504.4994984, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmprafc6gdz/__init__.py\": 1724629105.9884765, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmprafc6gdz/m58fb7616ca3c8695e765b56971fa297e2792cf1e7522b71a9331f1643754b094.so\": 1724629105.965493, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpdiav2pus/__init__.py\": 1724635506.0472224, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpdiav2pus/m5c6c88bff84da5cad10a8aab9f0d2b2209b74d700a5c7c5acb9f330c8e9e0cfe.so\": 1724635506.0115745, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp9vswftpj/__init__.py\": 1724635507.5890586, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp9vswftpj/m33864f1b16654fc19ae2952c304a044c7923e999a6d48c568f9f225e1355288d.so\": 1724635507.553543, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp5nzzx07s/__init__.py\": 1724633520.8536546, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp5nzzx07s/m1a9ff62605ac2001d4bf5b562f0857ec71c1d0fa9264835d7fe6f6a3510d2c24.so\": 1724633520.8336186, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpyskhdcwm/__init__.py\": 1724635508.892808, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpyskhdcwm/ma28f6796e28be3ec92e008e205b76082fae56dfd0d764a273e48fea8c4f932cf.so\": 1724635508.859084, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp2lj_ylfc/__init__.py\": 1724635510.615939, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp2lj_ylfc/maeb79f004591c8b79df99456711541abcbf19636c9d501b4bbfc61713367a48e.so\": 1724635510.5763676, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpeijam88d/__init__.py\": 1724635512.1644151, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpeijam88d/m6e680b2a13953ca4143e096bdb394e314b4f21057806c731080636dc500f563e.so\": 1724635512.129605, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp_e0s70e8/__init__.py\": 1724635513.720388, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp_e0s70e8/m4273e02c1088f5531825b4bafb9f8d66d0a16ad11af214bfa719865c71bad1a0.so\": 1724635513.6850133, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp6ragc81y/__init__.py\": 1724635515.5100338, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmp6ragc81y/m74e62d50008f160cc5cbed23f6e25b58acf99a4aff17820cc02f9c7f594fca61.so\": 1724635515.464465, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpovkbh806/__init__.py\": 1724633521.9129531, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpovkbh806/mbeda69293f9f7a787b5e93aecd1ecbfc56d91e47e2f71cbf4a3f6dfac94a5d67.so\": 1724633521.8922129, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpb1n0nl12/__init__.py\": 1724625855.5499713, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpb1n0nl12/m02d47f8a5e83e92da0797418a24a10dd442b6206fdbfff75e60eb6942a90d173.so\": 1724625855.5145254, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpsftbu_n2/__init__.py\": 1724625670.2750154, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpsftbu_n2/m1c3353ff8189658367873995adaf6a62e5e932cad81c660acad20fbdccb277bc.so\": 1724625670.2439055, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpbynw2r24/__init__.py\": 1724625672.9088387, \"/Users/philtpatton/.pytensor/compiledir_macOS-14.5-arm64-arm-64bit-arm-3.12.5-64/tmpbynw2r24/m9808a49189ae7ec8180193e4f7d53f8213925b59e6f9825ce9a2c4ba0f30c7e1.so\": 1724625672.879122}\n" + ] + } + ], + "source": [ + "\n", + "# imports\n", + "import os\n", + "import sys\n", + "import types\n", + "import json\n", + "\n", + "# figure size/format\n", + "fig_width = 7\n", + "fig_height = 5\n", + "fig_format = 'retina'\n", + "fig_dpi = 96\n", + "interactivity = ''\n", + "is_shiny = False\n", + "is_dashboard = False\n", + "plotly_connected = True\n", + "\n", + "# matplotlib defaults / format\n", + "try:\n", + " import matplotlib.pyplot as plt\n", + " plt.rcParams['figure.figsize'] = (fig_width, fig_height)\n", + " plt.rcParams['figure.dpi'] = fig_dpi\n", + " plt.rcParams['savefig.dpi'] = fig_dpi\n", + " from IPython.display import set_matplotlib_formats\n", + " set_matplotlib_formats(fig_format)\n", + "except Exception:\n", + " pass\n", + "\n", + "# plotly use connected mode\n", + "try:\n", + " import plotly.io as pio\n", + " if plotly_connected:\n", + " pio.renderers.default = \"notebook_connected\"\n", + " else:\n", + " pio.renderers.default = \"notebook\"\n", + " for template in pio.templates.keys():\n", + " pio.templates[template].layout.margin = dict(t=30,r=0,b=0,l=0)\n", + "except Exception:\n", + " pass\n", + "\n", + "# disable itables paging for dashboards\n", + "if is_dashboard:\n", + " try:\n", + " from itables import options\n", + " options.dom = 'fiBrtlp'\n", + " options.maxBytes = 1024 * 1024\n", + " options.language = dict(info = \"Showing _TOTAL_ entries\")\n", + " options.classes = \"display nowrap compact\"\n", + " options.paging = False\n", + " options.searching = True\n", + " options.ordering = True\n", + " options.info = True\n", + " options.lengthChange = False\n", + " options.autoWidth = False\n", + " options.responsive = True\n", + " options.keys = True\n", + " options.buttons = []\n", + " except Exception:\n", + " pass\n", + " \n", + " try:\n", + " import altair as alt\n", + " # By default, dashboards will have container sized\n", + " # vega visualizations which allows them to flow reasonably\n", + " theme_sentinel = '_quarto-dashboard-internal'\n", + " def make_theme(name):\n", + " nonTheme = alt.themes._plugins[name] \n", + " def patch_theme(*args, **kwargs):\n", + " existingTheme = nonTheme()\n", + " if 'height' not in existingTheme:\n", + " existingTheme['height'] = 'container'\n", + " if 'width' not in existingTheme:\n", + " existingTheme['width'] = 'container'\n", + "\n", + " if 'config' not in existingTheme:\n", + " existingTheme['config'] = dict()\n", + " \n", + " # Configure the default font sizes\n", + " title_font_size = 15\n", + " header_font_size = 13\n", + " axis_font_size = 12\n", + " legend_font_size = 12\n", + " mark_font_size = 12\n", + " tooltip = False\n", + "\n", + " config = existingTheme['config']\n", + "\n", + " # The Axis\n", + " if 'axis' not in config:\n", + " config['axis'] = dict()\n", + " axis = config['axis']\n", + " if 'labelFontSize' not in axis:\n", + " axis['labelFontSize'] = axis_font_size\n", + " if 'titleFontSize' not in axis:\n", + " axis['titleFontSize'] = axis_font_size \n", + "\n", + " # The legend\n", + " if 'legend' not in config:\n", + " config['legend'] = dict()\n", + " legend = config['legend']\n", + " if 'labelFontSize' not in legend:\n", + " legend['labelFontSize'] = legend_font_size\n", + " if 'titleFontSize' not in legend:\n", + " legend['titleFontSize'] = legend_font_size \n", + "\n", + " # The header\n", + " if 'header' not in config:\n", + " config['header'] = dict()\n", + " header = config['header']\n", + " if 'labelFontSize' not in header:\n", + " header['labelFontSize'] = header_font_size\n", + " if 'titleFontSize' not in header:\n", + " header['titleFontSize'] = header_font_size \n", + "\n", + " # Title\n", + " if 'title' not in config:\n", + " config['title'] = dict()\n", + " title = config['title']\n", + " if 'fontSize' not in title:\n", + " title['fontSize'] = title_font_size\n", + "\n", + " # Marks\n", + " if 'mark' not in config:\n", + " config['mark'] = dict()\n", + " mark = config['mark']\n", + " if 'fontSize' not in mark:\n", + " mark['fontSize'] = mark_font_size\n", + "\n", + " # Mark tooltips\n", + " if tooltip and 'tooltip' not in mark:\n", + " mark['tooltip'] = dict(content=\"encoding\")\n", + "\n", + " return existingTheme\n", + " \n", + " return patch_theme\n", + "\n", + " # We can only do this once per session\n", + " if theme_sentinel not in alt.themes.names():\n", + " for name in alt.themes.names():\n", + " alt.themes.register(name, make_theme(name))\n", + " \n", + " # register a sentinel theme so we only do this once\n", + " alt.themes.register(theme_sentinel, make_theme('default'))\n", + " alt.themes.enable('default')\n", + "\n", + " except Exception:\n", + " pass\n", + "\n", + "# enable pandas latex repr when targeting pdfs\n", + "try:\n", + " import pandas as pd\n", + " if fig_format == 'pdf':\n", + " pd.set_option('display.latex.repr', True)\n", + "except Exception:\n", + " pass\n", + "\n", + "# interactivity\n", + "if interactivity:\n", + " from IPython.core.interactiveshell import InteractiveShell\n", + " InteractiveShell.ast_node_interactivity = interactivity\n", + "\n", + "# NOTE: the kernel_deps code is repeated in the cleanup.py file\n", + "# (we can't easily share this code b/c of the way it is run).\n", + "# If you edit this code also edit the same code in cleanup.py!\n", + "\n", + "# output kernel dependencies\n", + "kernel_deps = dict()\n", + "for module in list(sys.modules.values()):\n", + " # Some modules play games with sys.modules (e.g. email/__init__.py\n", + " # in the standard library), and occasionally this can cause strange\n", + " # failures in getattr. Just ignore anything that's not an ordinary\n", + " # module.\n", + " if not isinstance(module, types.ModuleType):\n", + " continue\n", + " path = getattr(module, \"__file__\", None)\n", + " if not path:\n", + " continue\n", + " if path.endswith(\".pyc\") or path.endswith(\".pyo\"):\n", + " path = path[:-1]\n", + " if not os.path.exists(path):\n", + " continue\n", + " kernel_deps[path] = os.stat(path).st_mtime\n", + "print(json.dumps(kernel_deps))\n", + "\n", + "# set run_path if requested\n", + "if r'/Users/philtpatton/source/repos/philpatton.github.io':\n", + " os.chdir(r'/Users/philtpatton/source/repos/philpatton.github.io')\n", + "\n", + "# reset state\n", + "%reset\n", + "\n", + "# shiny\n", + "# Checking for shiny by using False directly because we're after the %reset. We don't want\n", + "# to set a variable that stays in global scope.\n", + "if False:\n", + " try:\n", + " import htmltools as _htmltools\n", + " import ast as _ast\n", + "\n", + " _htmltools.html_dependency_render_mode = \"json\"\n", + "\n", + " # This decorator will be added to all function definitions\n", + " def _display_if_has_repr_html(x):\n", + " try:\n", + " # IPython 7.14 preferred import\n", + " from IPython.display import display, HTML\n", + " except:\n", + " from IPython.core.display import display, HTML\n", + "\n", + " if hasattr(x, '_repr_html_'):\n", + " display(HTML(x._repr_html_()))\n", + " return x\n", + "\n", + " # ideally we would undo the call to ast_transformers.append\n", + " # at the end of this block whenver an error occurs, we do \n", + " # this for now as it will only be a problem if the user \n", + " # switches from shiny to not-shiny mode (and even then likely\n", + " # won't matter)\n", + " import builtins\n", + " builtins._display_if_has_repr_html = _display_if_has_repr_html\n", + "\n", + " class _FunctionDefReprHtml(_ast.NodeTransformer):\n", + " def visit_FunctionDef(self, node):\n", + " node.decorator_list.insert(\n", + " 0,\n", + " _ast.Name(id=\"_display_if_has_repr_html\", ctx=_ast.Load())\n", + " )\n", + " return node\n", + "\n", + " def visit_AsyncFunctionDef(self, node):\n", + " node.decorator_list.insert(\n", + " 0,\n", + " _ast.Name(id=\"_display_if_has_repr_html\", ctx=_ast.Load())\n", + " )\n", + " return node\n", + "\n", + " ip = get_ipython()\n", + " ip.ast_transformers.append(_FunctionDefReprHtml())\n", + "\n", + " except:\n", + " pass\n", + "\n", + "def ojs_define(**kwargs):\n", + " import json\n", + " try:\n", + " # IPython 7.14 preferred import\n", + " from IPython.display import display, HTML\n", + " except:\n", + " from IPython.core.display import display, HTML\n", + "\n", + " # do some minor magic for convenience when handling pandas\n", + " # dataframes\n", + " def convert(v):\n", + " try:\n", + " import pandas as pd\n", + " except ModuleNotFoundError: # don't do the magic when pandas is not available\n", + " return v\n", + " if type(v) == pd.Series:\n", + " v = pd.DataFrame(v)\n", + " if type(v) == pd.DataFrame:\n", + " j = json.loads(v.T.to_json(orient='split'))\n", + " return dict((k,v) for (k,v) in zip(j[\"index\"], j[\"data\"]))\n", + " else:\n", + " return v\n", + "\n", + " v = dict(contents=list(dict(name=key, value=convert(value)) for (key, value) in kwargs.items()))\n", + " display(HTML(''), metadata=dict(ojs_define = True))\n", + "globals()[\"ojs_define\"] = ojs_define\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "fig-bbs", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBcAAAQ3CAYAAACjEIYHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB2HAAAdhwGP5fFlAAC8MUlEQVR4nOzdd3hUZfrG8Xsmk5CEEEJHSghFESlGQLqCBQuCK01dUQTLT3RdXde2tkUR115WXcVVxAoKCDYsKKgQCSAlIMVCCaGGHtKTyczvDzZHJiQhc87MnEny/VxXrmveyXne95nJzITcnOLwer1eAQAAAAAAmOS0uwEAAAAAAFC9ES4AAAAAAABLCBcAAAAAAIAlhAsAAAAAAMASwgUAAAAAAGAJ4QIAAAAAALCEcAEAAAAAAFhCuAAAAAAAACwhXAAAAAAAAJYQLgAAAAAAAEsIFwAAAAAAgCWECwAAAAAAwBLCBQAAAAAAYAnhAgAAAAAAsIRwAQAAAAAAWEK4AAAAAAAALCFcAAAAAAAAlhAuAAAAAAAAS1x2N4CqWbt2rdatW6edO3eqTp06atmypXr37q1WrVrZ3RoAAAAAoJYjXAhzM2bM0OTJk7Vhw4bjvud0OjVo0CA9/fTT6t69uw3dAQAAAAAgObxer9fuJnA8t9utcePG6f333z/htpGRkXruued06623hqAzAAAAAAB8ES6EqVtuuUWvvvqqMY6NjdWYMWOUnJysoqIiLVu2TB999JGKi4slSQ6HQzNmzNAVV1xhV8sAAAAAgFqKcCEMffrpp/rTn/5kjE877TR99dVXat26tc92a9as0ZAhQ7Rr1y5JRwOIzZs3q3nz5iHtFwAAAABQu3G1iDDj8Xj0wAMPGOPY2Fh99tlnxwULknT66adr1qxZcjqP/hjz8vL06KOPhqxXAAAAAAAkwoWw880332jdunXG+LbbblO7du0q3L5fv34aPXq0MZ46daqys7OD2iMAAAAAAMciXAgzc+fO9RnfcMMNJ6y58cYbjduFhYX68ssvA94XAAAAAAAV4ZwLYSYxMVHbt2+XJLVv316bNm06YU1RUZHq16+vgoICSdLYsWP19ttvB7VPAAAAwCqv1yu32y2Px2N3K0CN5nQ65XK55HA4graGK2gzw2+HDx82ggVJ6tu3b5XqoqKi1KNHD/3444+SpLVr1/q99mDn6BNvBIQZV1Ki3zXu9IwgdAIAAKriG88seb1e5eTk6MiRI8rJySFYAELE6XQqLi5O8fHxiouLC3jQQLgQRjZs2OAzbt++fZVr27dvb4QLv/76qzwej3GiRwAAACAceDwe7dy5Uzk5OYqJiVGTJk0UHR0tp9MZ1P9RBWozr9crj8ejgoICHTlyRDt27FBcXJxatmwZ0L8ZCRfCyNatW33Gbdq0qXLtsdvm5+drz549atGiRcB6AwAAAKxwRji1c+dO5eXlqU2bNoqNjbW7JaBWiY2NVcOGDZWXl6ft27dr586datWqVcCCPf5rO4wcOXLEZ9ygQYMq1yYkJPiMuWIEAAAAwkmb01sqJydHrVu3JlgAbBQbG6vWrVsrJydHOTk5AZuXcCGMlP3BRkdHV7k2Jiam0rkAAAAAO53Su61iYmIIFoAwEBsbq5iYmOP+g9sKwoUwUnq1h1JRUVFVrq1Tp47POD8/PyA9AQAAAFY5I5zqdNbJio+Pt7sVAP8THx+vnJwcBeoCkoQLYaTsngpFRUVVri0sLPQZl92TAQAAALBLTHy0YupF+7VnLoDgio6OlsfjkdvtDsh8hAthJC4uzmdcdk+GypTdU6HsXAAAAIBd6sRGyhnh5GpmQBgpfT8G6nKwXC0ijJTdTezQoUNVrj18+LDPuF69eoFoCQhr7vQMv2tcSYkhWwsAAPjicpNA+Aj0+5HoMIy0bdvWZ5yRUfU/ZrZt22bcjomJUfPmzQPWFwAAAAAAlSFcCCOnnXaaz3jTpk1Vrt28ebNxu2PHjuxyBgAAAAAIGf4CDSMJCQlq3bq1MU5NTa1SXVFRkVauXGmMu3btGvDeAAAAAACoCOFCmBkyZIhxe/PmzdqyZcsJaxYvXuxz8sdLLrkkKL0BAAAAAFAewoUwM3z4cJ/x66+/fsKaY7eJioryCSgAAAAAAAg2woUwM3jwYJ9zL7z00kvaunVrhdunpqZq1qxZxvi6667jShEAAAAAgJAiXAgzTqdTjz32mDHOzc3VsGHDtH379uO2Xbt2rUaPHm1clzQmJkYPPfRQyHoFAAAAAECSXHY3gONddtlluvHGG43DHdavX69OnTppzJgxSk5OVnFxsZYuXarZs2eruLjYqHvjjTfUokULu9oGAAAAgIByOBzG7WnTpmncuHH2NYNKES6EqVdeeUXZ2dn64IMPJB3dg+G///1vudu6XC4988wzuuqqq0LZIgAAABByb731lsaPH1/h951Op+rUqaP4+Hg1adJEbdu21Wmnnaa+ffvqnHPOUXx8fAi7rdxbb72l9PR0SVJycrIuu+wyW/sJlo8//lhpaWmSpKSkJAKCGopwIUy5XC7NmDFDQ4cO1WOPPaaNGzcet43D4dDAgQP19NNPq2fPnjZ0CVQ/7vQMu1sAgOO4khL9ruHzDCifx+NRfn6+8vPzlZmZqXXr1umzzz6TJNWpU0eXXHKJ/v73v6t///42d3o0XPjhhx8kSddee22NDhfefvttSdLAgQMJF2oowoUwN2bMGI0ZM0ZpaWlat26ddu/ercjISLVs2VJ9+/ZVq1at7G4RAAAAsE2LFi0UExPjc19OTo4OHz6swsJCn/sLCws1Z84czZkzR6NGjdKUKVPUqFGjULYL1FiEC9VEcnKykpOT7W4DAAAACCvvv/++Bg0aVO73srKy9NNPPyk1NVXTpk3zuQrb7Nmz9dNPP+nHH39Uy5YtQ9Qt/OX1eu1uAVXE1SIAAAAA1Ej169fX+eefr4ceekibNm3SjBkz1KBBA+P727Zt0yWXXKLs7GwbuwRqBvZcAAAAAFDjOZ1OXXnllerXr58GDRpk7MWwZs0a3X333ZoyZUqV5yoqKtKSJUu0detW7d27V9HR0WrevLnOOussW6/elpmZqSVLlmj37t3KyspSw4YN1a5dO5199tmqU6eOpbn37dunH3/8UXv27NHBgwdVp04dNW/eXJ07d1a3bt3kdIbf/1tv375dS5YsUWZmpvLy8tSkSRO1b99e/fv3V2RkZEDW2Llzp1JTU7V9+3aVlJTopJNO0sCBA00dvl5cXKzVq1dr3bp1OnjwoAoKChQTE6PGjRurbdu2Sk5ODqsTkpZFuAAAAACg1khMTNScOXPUt29fFRQUSJLefPNN3X///UpMrPzkqtu3b9fEiRM1a9Ys5eTkHPd9h8Ohs846S08//bR69epV7hzff/+9zjnnnOPuf/vtt42THpY1ceJEPfzwwxX29eWXX2rSpElatmxZuYcRxMXFafz48XrkkUd89tyoio8//liPP/64fvrppwoPUWjYsKEuu+wy3X333Tr11FMlSenp6Wrbtu1x2/7www8+l5c81rXXXqu33nrL5z4zl6KcN2+e/vnPf2rVqlXlfj8+Pl7jxo3TxIkT1bBhwxPOV14PW7du1W233aYvv/xSJSUlx9Vceuml+ve//62kpKQTzp+bm6vJkyfrjTfe0P79+yvczul0Kjk5WRMmTNCNN954wnlDLfziJQAAAAAIouTkZN1www3GuLi4WM8//3ylNe+++65OOeUUTZs2rdxgQTp6foBFixapT58+eu655wLac3ny8/M1evRoDRkyREuXLq3wj/+cnBy99NJL6ty5szZs2FClubOysnThhRdq+PDhWr58eaXnPjh48KDefPNNffDBB6YeR6C43W5de+21Gjp0aIXBgiQdOXJEL774ojp27Kjly5f7vc63336r7t276/PPPy83WJCkTz/9VP3799fvv/9e6Vy7du1Sjx499MQTT1QaLEhHr4SyatWqCkMou7HnAgAAAIBa529/+5tefvllYzx//vwKt3355Zd12223+fyB3b9/f51//vlq1aqVCgoKtHr1as2aNUvZ2dnyer268847FR0drVtuucVnrpiYGLVv317S0V3qS/eeqFevnpo2bVru+uX973phYaEuuOACpaSkGPfVrVtXw4YNU69evVS/fn3t27dPX331lb7//ntJ0u7duzVw4ECtXLmy0r00Dh8+rP79+/sEEVFRUTrvvPM0YMAANWvWTIWFhdqxY4eWLVumRYsWye12+8wRGRlpPM69e/ca57WIjo6u8ASazZo1q7Cnqrj66qv14Ycf+vR86aWXql+/fqpXr562bt2qWbNmGX/w79+/X+edd54WLVqkM844o0pr/PLLL7r99tt15MgRNWrUSMOHD1e3bt0UGxurTZs2afr06crIOHqp4F27dmns2LH68ccfyz1sxOv16oorrtCvv/5q3NehQwddcsklOvnkkxUXF6e8vDzt2bNHa9eu1ffff6/Dhw9beIaCi3ABAAAAQK3Tvn17dejQQZs2bZIkbdiwQfv27VOTJk18tlu+fLnuuOMOI1ho0aKFpk+froEDBx4356OPPqpRo0YpNTVVknTXXXfp/PPP1ymnnGJs07t3b2PNQYMG6YcffpAkjRgx4rhDAipz9913+wQLl112mV577bXjAop7771X8+bN0xVXXKHc3Fzt379f1113nb799tsK577uuut8goVzzjlHr7/+uhEWlLV//3699tprqlevnnFfy5Ytjcc5btw443/be/fubYQdgfTWW2/5BAsdO3bUnDlzdNppp/lsN2nSJD388MOaPHmypKN7dVxzzTVauXJllc5L8fTTT8vj8WjMmDH6z3/+o/r16/t8/6GHHtLIkSP11VdfSZKWLl2qr776SkOGDDlurkWLFvn8DCdNmqQHHnigwvNXuN1uff311/rxxx9P2KcdCBcAAIAtXEmVH9tcHnd6RhA6sV9NfVxAuOvbt6/xB7AkrVq1ShdeeKHPNv/3f/9n/K98gwYNtGjRogr/yG7RooW+/vprnX766dq6davy8/P16KOP6t133w1o36tXr9ZLL71kjC+77DLNmTOnwnMZXHLJJZoxY4YuvfRSSdKCBQu0YMECnXfeecdt+/nnn2vu3LnG+IILLtBnn32mqKioCvtp3LixHnjgAbMPx7Li4mLdd999xrhhw4aaP39+uXtnRERE6NFHH1VWVpbxHK5fv15Tp049bi+T8ng8Hg0bNkzvvvtuuc93bGys3n33XbVv315HjhyRJE2fPr3ccGHBggXG7eTkZD300EOVru1yuXTJJZfokksuOWGfduCcCwAAAABqpbInHCx7zPuCBQu0Zs0aY/zkk09WGCyUqlevnp588kljPGvWLB04cCAA3f7h2PM51KtXT2+88UaFwUKpYcOG+fyB++qrr5a73TPPPOMz97Rp0yoNFsLB3LlztWfPHmP88MMPn/DknP/617/UvHlzY/zKK69UaS2Xy6X//Oc/lT7fjRs31ogRI4zxsmXLyt3u2J6P3buluiJcAAAAAFArlb1ywsGDB33GM2bM8Nm2KlcqkKThw4cbhwgUFhZq0aJF1ho9RlFRkT766CNjPHbsWDVq1KhKtddee61xe8GCBcedpHHfvn3GYRqSdM0119h6ac2q+vzzz43bMTExVfo5xcXF+Twf69evV3p6+gnrzjvvPLVu3fqE2/Xp08e4vXnzZhUXFx+3TWxsrHF7xYoV5W5TnRAuAAAAAKiV4uLifMalu7GXWrx4sXF78ODBioyMrNK8LpdL3bt3N8YV/c+1GStXrlR+fr4x9mcX+WMvj3n48GGfEwlKvo9Xks//voezpUuXGrcHDBjgc+6HygwdOrTCeSpybGhQmWNPWun1epWVlXXcNse+RrZs2aIrr7xSO3furNL84YhwAQAAAECtVHoFg1Lx8fHG7fz8fP3222/GuHPnzn7NfeyVD3bs2GGyw+Mde5iG5F9fZa/GULavspep7Nmzp5/dhZ7H49HmzZuN8emnn17l2m7duvmMj/15V+TYQykqUza4ys3NPW6bESNG+JxAdM6cOWrTpo3OP/98PfPMM1q2bJmKioqqtF44IFwAAAAAUCuVvazfsYcXlD1EYuLEiXI4HFX+mjlzplF76NChgPVc9vwNbdq0qXJPx+6GX15fx84dHR193JUQwlFWVpY8Ho8xruhynuWJj49XdHS0Ma7Kz+nY7f1R9hAU6WgA8cEHH/gEESUlJVqwYIHuvvtu9enTRw0aNNCFF16oKVOmhPVlKCXCBQAAAAC11JYtW3zGjRs3Nm4H8g+5vLy8gM0VzL6O3ZOj7P+8h6uyewSUDVBOpG7dusbtnJycgPTkj3PPPVcrV67UyJEjFRERcdz38/LyNH/+fN18881q06aNnn766XKDinDApSgBAAAA1EqpqanGbYfD4XMMfNk/Ups3b+7zh6g/AnlSxGP7cjgcateunem5yp6b4NixHX9om1E2BPE3yDk2nLArUDnllFM0e/Zs7dmzR1988YW+//57/fjjj8eFX0eOHNE999yj9evX66233rKl18oQLgAAAACodTZt2uRzrH7nzp199lw49rYkTZo0STfeeGPI+qtI2b7Wr1+vOnXqBGTuYw8LKSgoUFZWVtgfGhEfHy+n02kcGrF3794q12ZnZ6ugoMAYl716SKg1b95c1113na677jpJ0vbt2zVv3jy9/fbbPiebfPvttzV69Gi/TuYZChwWAQAAAKDWeeGFF3zGF154oc+4Xr16PnscrF+/PhRtndCpp55q3PZ6vdq4cWPA5u7SpYvPeMWKFQGbO1icTqfat29vjNeuXVvl2rLbnnLKKQHrKxBat26tCRMmKDU1Vf/+9799vvfee+/Z1FXF2HMBAADYwp2eYXcLlXIlJfpdE+6PCcBRaWlpmjp1qjGOiorS7bffftx255xzjt5//31J0ueff35cIGHVsZe2PPakhJXp37+/oqKijKsIfPbZZ0pOTg5IPwMGDPAZz5kzR+edd57lec08Tn/06dNHv//+uyQpJSVFOTk5VTrE4fPPPz9unnB122236c033zSuFlL2yh7hgD0XAAAAANQaGRkZGjFihM/u8DfccINat2593LZXXHGFcXvz5s2aNWtWQHs59g/grKysKtXExsZq6NChxvg///lPwM6P0LhxY5177rnG+L333tPu3bstz2vmcfrj2OcjLy9Pb7/99glrcnNzfbbr3LmzkpKSAt5bIHXs2NG4XVxcbGMn5SNcAAAAAFDjeTweffjhh0pOTtbWrVuN+8844ww9+eST5dYMHTpUXbt2NcZ/+ctffM7TUBXHhhhlHfvH7Lp166o853333WfczszM1Pjx4/3eI6Civu68807j9pEjRzRu3DhjLwmzjn2cv//+uwoLCy3NV9bw4cPVvHlzY/zwww9rx44dldY8+OCDPsHJLbfcEtCeqiI9Pb3K23q9Xv3888/GuE2bNkHoyBrCBQAAAAA1UlZWlhYsWKBHH31UJ598sq688kodOnTI+H7btm01b968Cnehdzgcev311xUVFSVJ2rdvn/r06aPZs2ef8HKA69ev1/33368OHTpUuM2xu+Fv2bJFzz//vNxu9wkfV8+ePXXbbbcZ49mzZ+uCCy7Qpk2bKq0rKirSF198ocsuu8wnRDjWkCFDNHLkSGM8f/58XXzxxcddueBYBw4c0OOPP66XXnqp3O8f+zjz8/N1//33Kz8/v9Je/REZGanHH3/cGO/fv18XXnihfv311+O2LSkp0SOPPOJziEvnzp11/fXXB6yfqho/frzOPvtsffjhh5Ve5cLtduuuu+7yOb/GZZddFoIO/cM5FwAAAABUW2PGjFFMTIzPfbm5uTp8+HClew2MHj1aU6ZMUcOGDSudv3fv3poyZYpuuOEGeTwe7d+/X6NHj1b79u01ePBgderUSfHx8crPz9eBAwe0fv16LV++3PhjvLIrOVx66aVq3Lix9u/fL0n6+9//rgcffFBt2rQxAg1JmjBhgiZMmOBT+8wzz+iXX37R/PnzJUkLFixQx44dNXDgQA0YMEAtWrRQdHS0jhw5op07d2rNmjVasmSJsrOzJUk33XRThX29/vrr2rhxo3Fc/8KFC9WpUyedf/75GjBggJo1a6aioiLt2LFDP/30k7777jsVFxdr4sSJFT6HnTt3Nk6K+dxzz+k///mPkpKSFB0d7fN8TJo0qcK+KjNu3Dh99dVX+vDDDyUdPSfB6aefrssuu0x9+/ZV3bp1lZ6erlmzZum3334z6uLi4vTuu+8G7Iob/vB6vVq8eLEWL16sunXrqm/fvurZs6datGih+Ph45ebm6pdfftGnn36qbdu2GXVdu3bV+PHjQ97viRAuAAAAAKi2du3aVeVt69Spo6FDh+rvf/+7+vXrV+W68ePHq3nz5hozZoyx58PmzZurdIhEREREhd+LiYnRu+++q9GjRxvnTcjLyzvuChB79uw5rjYyMlLz5s3T3/72N/3nP/+RdPTQj++++07fffedpb4aNGiglJQUjRw50pirdK+HL7744oRzl+fdd9/VhRdeqH379kmSCgsLj9uzwOqJKd977z1FRUXp3XffNdb48MMPjcChrMaNG2vevHk644wzLK0bCLm5ufr222/17bffVrpd165d9dVXX/mET+GCwyIAAAAA1BhOp1PR0dFq2rSpunTpoqFDh+qee+7Rxx9/rL1792r27Nl+BQulSg8NeOihh3wuUVmeyMhI9e/fX08++aTP/5KX56KLLtK6dev0wAMPqH///mrSpEmV/3B0uVx6+eWXtXLlSg0fPtxnL4DyNGrUSKNHj9bs2bP1/PPPV7ptgwYNtGDBAs2YMUOnn356pds2adJEEyZM0JgxYyrc5owzztD69ev1r3/9S+ecc46aN29+wn795XK59M477+izzz6rNDCIj4/XX//6V/3yyy/q1atXQHvwx+TJk/WXv/ylSpfAbNeunZ566imtWLHihK8/uzi8JzpYCLXCYOdou1sAACCscClKIHAatqyvm18fq77n9LZl9/Ng2LBhg9LS0rR//34dOXJEsbGxaty4sTp27KguXbqobt26Ie+poKBAqamp2rp1q/bv3y+32634+Hi1atVKnTp10imnnCKHw2Fq7h07dig1NVV79uxRVlaWYmNj1aJFC3Xu3FldunQxPW8wZWRkaMmSJdqzZ4/y8/PVuHFjdejQQQMGDPC5PGY42L9/v37++Wdt2bJFBw8eVGFhoerWravmzZsrOTlZp556asCf48LCQm3ZskXt2rULyPuScAGSCBcAACiLcAEInJoYLgDVXaDDBc65AABACPEHa/XB8w4AQNVxzgUAAAAAAGAJ4QIAAAAAALCEcAEAAAAAAFhCuAAAAAAAACwhXAAAAAAAAJYQLgAAAAAAAEsIFwAAAAAAgCWECwAAAAAAwBLCBQAAAAAAYInL7gYAAKhN3OkZdrcQNlxJiX7X8PwBABCe2HMBAAAAAABYQrgAAAAAAAAsIVwAAAAAAACWEC4AAAAAAABLCBcAAAAAAIAlhAsAAAAAAMASwgUAAAAAAGAJ4QIAAAAAALDEZXcDAACgdnKnZ9jdAoLIlZRoqo7XBQBUT+y5AAAAAAAALCFcAAAAAAAAlhAuAAAAAAAASwgXAAAAAACAJZzQEQAAAECtdiAzSzlZ+Xa3US3E1Y9Ro2b17W4DYYhwAQAAAECtdSAzS9ef+4QK84vtbqVaqBMTqakL/xEWAYPH49HGjRu1YsUK42vNmjXKz/8jKPruu+80aNAg+5qsRQgXAAAAANRaOVn5BAt+KMwvVk5Wvu3hwsiRI/X1118rNzfX1j7wB865AAAAAACoVlauXEmwEGbYcwEAAKAaciUl+l3jTs8IQif2rwWgdqtTp466deumHj16KCcnR++9957dLdVKhAsAAAAAgGpl7Nixat26tXr06KGuXbsqMjJSkvTWW28RLtiEcAEAAAAAUK1MmjTJ7hZQBudcAAAAAAAAlhAuAAAAAAAASwgXAAAAAACAJYQLAAAAAADAEsIFAAAAAABgCeECAAAAAACwhHABAAAAAABY4rK7AQBAzedKSvS7xp2eEYROgJqD9wgAIJyw5wIAAAAAALCEcAEAAAAAAFhCuAAAAAAAACwhXAAAAAAAAJYQLgAAAAAAAEsIFwAAAAAAgCWECwAAAAAAwBLCBQAAAAAAYInL7gYAADWfOz3D7hYAoFZwJSX6XcNnNIBAYM8FAAAAAABgCXsuAAAAAACqlTlz5uiee+457v7s7Gyf8ZgxYxQTE3Pcdu+//7569+4dtP5qI8IFAAAAAEC1cuTIEW3evPmE2+3atavc+/Pz8wPdUq3HYREAAAAAaq24+jGqExNpdxvVRp2YSMXVP35PAIA9FwAAAADUWo2a1dfUhf9QThb/k10VcfVj1KhZfbvb0Lhx4zRu3Di728AxCBcAAAAA1GqNmtUPiz+YgeqMwyIAAAAAAIAlhAsAAAAAAMASwgUAAAAAAGAJ51wAAACwmSsp0e8ad3pGEDpBdcfrAoBd2HMBAAAAAABYQrgAAAAAAAAsIVwAAAAAAACWEC4AAAAAAABLCBcAAAAAAIAlhAsAAAAAAMASwgUAAAAAAGAJ4QIAAAAAALDEZXcDAACgdvIMSPa7xpmSFvA+woE7PcPuFgAAsIQ9FwAAAAAAgCWECwAAAAAAwBLCBQAAAAAAYAnhAgAAAAAAsIRwAQAAAAAAWEK4AAAAAAAALCFcAAAAAAAAlhAuAAAAAAAASwgXAAAAAACAJS67GwCCxTMg2VSdMyUtoH0AAMrH5y0AADUHey4AAAAAAABL2HMBAAAAAFBt5ebmasOGDUpPT9fu3buVk5Mjp9Op+vXrKykpST169FDTpk3tbrPGI1wAAAAAUKvtO5ij7NwCu9uoFurVjVaThnF2t6EtW7bo8ccfV0pKin777Td5PJ5Ktx8wYIBuv/12jRo1KkQd1j6ECwAAAABqrX0Hc3T5HVNVUOS2u5VqITrKpZnPX297wLBhwwa98cYbVd4+JSVFKSkpuuSSS/TBBx8oLs7+gKSmIVwAAAAAUGtl5xYQLPihoMit7NwC28OFYzVu3Fh9+vTRqaeeqsTERNWrV0+FhYXavn27Fi9erMWLF8vr9UqS5s2bpyFDhui7775TRESEzZ3XLIQLAAAAAIBq5aSTTtJjjz2mSy+9VF26dKl025UrV+qKK67Q5s2bJUmLFy/WlClT9Je//CUUrdYaXC0CAAAAAFCt9OjRQ/fff/8Jg4XSbb/66itFR0cb973++uvBbK9WIlwAAAAAANRoHTp00MUXX2yM16xZo8LCQhs7qnk4LAKSJFdSot817vSMIHQSOM6UNLtbOKGa+LwDAAAA4ahjx44+4wMHDqhFixY2dVPzsOcCAAAAAKDGy87ONm47nU4lJCTY10wNRLgAAAAAAKjRSkpKNH/+fGPcvXt3xcbG2thRzUO4AAAAAACo0e6//379/vvvxviuu+6ysZuaiXMuAAAAAABqlMLCQu3evVupqal65ZVXlJKSYnzvpptu0hVXXGFjdzUT4QIAAAAAoFp7+eWX9de//rXSbZo0aaKHH35Yt9xyS4i6ql0IFwAAAAAANVrv3r31yiuvqHv37na3UmNxzgUAAAAAQLWWkJCg9u3bG19NmzZVRESE8f1ly5apR48eGjFihPbs2WNjpzUX4QIAAAAAoFq7+uqrtWnTJuMrMzNT2dnZWrBggUaMGGFsN3fuXPXp00fbt2+3sduaicMiIElyp2fY3UKtxPNefbiSEv2u4eeLQDHz+pN4DQIAareYmBide+65Ovfcc/XOO+9o/Pjx8ng82rZtm8aMGaNFixbZ3WKNwp4LAAAAAIAabezYsbrjjjuM8eLFi7VgwQIbO6p5CBcAAAAAADVe2atJfP755zZ1UjMRLgAAAAAAarw2bdooISHBGG/atMm+ZmogwgUAAAAAQK1Qp04d43ZJSYmNndQ8hAsAAAAAgBovJydH+/fvN8bNmjWzsZuah3ABAAAAAFDjzZ0712dvhZ49e9rYTc1DuAAAAAAAqDaKi4tVVFTkV83u3bv1wAMPGGOXy6U//elPgW6tViNcAAAAAABUGzt37tTJJ5+sl156Sfv27Tvh9l9//bX69++v7du3G/f99a9/VatWrYLZZq3jsrsBAAAAAAD8kZGRodtuu0133HGHzjzzTJ1xxhlq3769EhIS5HA4lJWVpV9++UULFy487qoQAwcO1OTJk23qvOYiXACAKnCnZ/hd40pKDMk68FUTn/dw7w8AALuUlJRo6dKlWrp06Qm3dTgcGj9+vF588UXFxsaGoLvahcMiAAAAAADVRvPmzfXCCy/ooosuUnx8/Am3r1u3rsaOHaslS5Zo6tSpqlu3bgi6rH3YcwEAAABArVWvbrSio1wqKHLb3Uq1EB3lUr260fb2EB2t22+/Xbfffrs8Ho9+++03/fbbb9q+fbuOHDkir9er+Ph4NWrUSF26dNFpp52miIgIW3uuDQgXAAAAANRaTRrGaebz1ys7t8DuVqqFenWj1aRhnN1tGJxOp0499VSdeuqpdrdS6xEuAAAAAKjVmjSMC6s/mIHqiHMuAAAAAAAASwgXAAAAAACAJYQLAAAAAADAEsIFAAAAAABgCSd0BIAgcadn2N1CrcTzjurIMyDZ7xpnSlrA+wAAwCz2XAAAAAAAAJYQLgAAAAAAAEsIFwAAAAAAgCWECwAAAAAAwBLCBQAAAAAAYAnhAgAAAAAAsIRwAQAAAAAAWEK4AAAAAAAALCFcAAAAAAAAlrjsbgC1jysp0e8ad3pGEDoBACA8OFPS7G4BYcbMv5ck/s0EwD7suQAAAAAAACwhXAAAAAAAAJYQLgAAAAAAAEsIFwAAAAAAgCWECwAAAAAAwBLCBQAAAAAAYAnhAgAAAAAAsIRwAQAAAAAAWOKyuwHUPu70DLtbCDjPgGRTdc6UtID2AQAAaoaa+O8lADUb4YJFXq9Xv//+u9avX6/t27crOztbdevWVaNGjdS9e3d16tRJTqe1HURKSkqUkpKiLVu2KDMzUw0aNFCrVq00cOBAxcXFBeiRAAAAALVTZnaOjhQU2N1GtRAfHa1m9fgbBMcjXDAhOztbn376qT799FMtXLhQ+/fvr3DbZs2a6cYbb9Sdd96phIQEv9YpKirSv/71L02ZMkWZmZnHfT82NlajRo3S008/raZNm/r7MAAAAIBaLzM7R4NfnaYCt9vuVqqFaJdL39w8noABx+GcC37Kzs5W06ZNdfXVV2vmzJmVBguSlJmZqcmTJ6tLly5atGhRldfZvXu3+vTpo0ceeaTcYEGS8vLy9M4776hr165avHixX48DAAAAgHSkoIBgwQ8FbnfY7OXhcDhMfU2ZMsXu1msk9lzwU0lJiQrKvJlOOeUUnX322Tr55JPVuHFj5ebmavXq1froo4905MgRSdLOnTt18cUX65tvvlG/fv0qXSMvL0/Dhg3T6tWrjftatmypq6++Wu3bt9eBAwf05ZdfGmHF3r179ac//Umpqanq2LFjgB8xAAAAAACVI1wwqX79+rr++ut1/fXX67TTTit3m2effVbXX3+95s6dK+loaDB27FitX79ederUqXDuBx98UCtXrjTGo0aN0nvvvedT849//EPTp0/XuHHjVFxcrEOHDumqq67SihUr5HA4AvQoAQAAACD8NW3aVPXq1avStvXr1w9yN7UT4YKfXC6X7rvvPt19991q0KBBpds2aNBAM2fO1Pnnn68ffvhBkrR582Z98MEHuvbaa8utycjI0CuvvGKMu3XrpunTpysyMvK4ba+66iplZGTovvvukyStWrVKs2fP1ujRo80+PAAAAACodp588kmNGzfO7jZqNc654Ke4uDj961//OmGwUMrlcumJJ57wuW/evHkVbv/qq6+qsLDQGD/11FPlBgul7rrrLrVs2dIYv/DCC1XqCwAAAACAQCFcCIHevXurbt26xnjz5s0Vblt6CIUktWnTRhdccEGlc7tcLo0fP94Yp6amas+ePRa6BQAAAADAP4QLIeBwOHzChdzc3HK327Jli3799VdjfP7551fp/AmDBw82bnu9Xn355ZcWugUAAAAAwD+ccyEEcnNztW/fPmPcvHnzcrdbu3atz7hv375Vmr9Xr15yuVxy/+8SOmXnQfA5U9LsbgEAgBPyDEg2VcfvOQDAibDnQgjMnTtXXq/XGFcUGmzYsMFn3L59+yrNHx0drRYtWhjjjRs3mugSAAAAAABzCBeCzOPx6LnnnvO57/LLLy93261bt/qM27RpU+V1jt12y5YtfnQIAAAAANXb+++/r7POOktNmzZVVFSUGjZsqI4dO2rMmDGaOnWq8vLy7G6xxiNcCLJnn31Wq1evNsbDhg3TGWecUe62R44c8RlX9YoUkpSQkGDczs7O9q9JAAAAAKjGvv32W6WkpGjfvn0qLi7WoUOH9Ntvv2n69Om64YYblJiYqJdfftnuNms0woUgSklJ0QMPPGCM4+Pj9dJLL1W4fU5Ojs84Ojq6ymvFxMRUOA8AAAAA1HR169ZV69at1bx5c0VGRvp878CBA/rrX/+qK6+8UiUlJTZ1WLMRLgTJli1bNGLECBUXFxv3/fe//630UIeCggKfcVRUVJXXq1OnjnE7Pz/fj04BAAAAoPqJiorS5ZdfrhkzZigjI0M5OTnKyMjQ7t27lZOTo8WLF+vqq6/2uQLfhx9+qL/97W/2NV2DcbWIINi9e7cuuOACnytEPPLII7riiisqrSu7p0JRUVGV914oLCw0bh+7FwMAAAAA1EQ7duxQkyZNyv1eVFSUBgwYoAEDBmjMmDEaOXKkcd6Fl19+WVdddVWVr86HqmHPhQA7cOCABg8erM2bNxv3/f3vf9c///nPE9bGxcX5jMvuyVCZY/dWKDsPAAAAANQ0FQULZV100UV68803fe6bPHlyMFqq1QgXAigrK0sXXHCB1q9fb9x3880369lnn61SfXx8vM/40KFDVV778OHDxu169epVuQ4AAAAAarorrrhCvXr1MsYLFy7kcPIA47CIAMnOztZFF12kVatWGfeNHz9e//nPf6o8R9u2bX3GGRkZx91XkW3bthm327VrV+U1AQA1lysp0e8ad3pGEDpBuHCmpIVsLTOvP8nca5DXOoCqGDFihJYvXy7p6F7iaWlpHBoRQOy5EAC5ubm65JJLtHTpUuO+q666Sm+88YbPyUNO5LTTTvMZb9q0qUp1BQUF2rVrlzHu1KlTldcEAAAAgNqgY8eOPuO9e/fa1EnNRLhgUX5+vi699FItXrzYuG/UqFF655135HT69/R269bNZ5yamlqluuXLl8vtdhvjrl27+rUuAAAAANR0ZU98X3qCRwQG4YIFhYWFGj58uBYuXGjcd+mll2r69OmKiIjwe7527dr5pGnffvutvF7vCeu++eYb47bD4dCQIUP8XhsAAAAAarLMzEyfcePGjW3qpGYiXDCpuLhYo0eP1tdff23cd/HFF2vWrFmKjIw0Pe/w4cON29u2bdP8+fMr3d7tdmvatGnGuE+fPmrevLnp9QEAAACgJkpJSfEZV/X8dqgawgUTSkpKNGbMGH322WfGfYMHD9acOXMUFRVlae4JEyb4zHHPPfeouLi4wu2feeYZ7dy50xjffvvtltYHAAAAgJpm//79+uCDD4xxUlKSOnToYGNHNQ/hgp+8Xq+uu+46zZo1y7jvnHPO0SeffKLo6GjL87dp00Y333yzMV67dq3GjBmjwsLC47adMWOGJk6caIyTk5N1+eWXW+4BAAAAAMJVcXGxzznnTsTtdmvs2LHKzs427hs7dmwwWqvVuBSln1JSUvTOO+/43Pfbb7/5fRLFyq4E8dhjj2nRokVavXq1JGnWrFlasmSJrrnmGrVr106HDh3SF198oR9++MGoSUhI0PTp0/26OgUAAAAAVDc7d+7U+eefr7vvvluXX365GjRoUOG2v//+u2644QYtWrTIuK958+a66667QtFqrUK44KeSkpLj7jv2sIRAqFu3rj777DMNGTJEa9euNdZ44oknyt2+cePGmj17NpegBAAAAFArbN68WRMmTNBf//pX9e3bV8nJyWrbtq3i4+Pldru1e/dupaSkaOHChfJ4PEZdbGysPv30U9WrV8/G7msmwoUw1bJlS/3000+aPHmyXnvttXKvwRoTE6ORI0fqmWeeUbNmzWzoEgAAAADsU1xcrEWLFvnsmVCRk08+We+//77OPPPMEHRW+xAu+GnQoEFVujxkIERFRWnSpEn65z//qZSUFG3ZskWZmZlKSEhQ69atNXDgQBK3SngGJJuqc6akBbQPAKHlSkr0u8adnhGETuxXUx8XqodQvv54rcOK+OhoRbtcKvDjGP7aLNrlUnwAzjVnRcOGDXX77bcrNTVVaWlpKioqqnT7zp07a8KECbruuusUGxsboi5rH8KFasDlcmnQoEEaNGiQ3a0AAAAANUqzenH65ubxOlJQYHcr1UJ8dLSa1Yuzt4f4eL3wwguSpMLCQqWlpWnr1q3as2ePcnJy5HK5lJCQoBYtWqh3797s5R0ihAsAAAAAarVm9eJs/4MZ5tSpU0e9e/dW79697W6l1uNSlAAAAAAAwBLCBQAAAAAAYAnhAgAAAAAAsIRwAQAAAAAAWEK4AAAAAAAALCFcAAAAAAAAlnApStRYzpQ0u1sAYIOiVg39rnGmZwShk+rJlZTod42b56/aMPPzlfgZAwBOjD0XAAAAAACAJYQLAAAAAADAEsIFAAAAAABgCeECAAAAAACwhHABAAAAAABYQrgAAAAAAAAsIVwAAAAAAACWEC4AAAAAAABLXHY3AABAIDlT0uxuoVpzp2fY3UKtlD65r981SQ+m+l3DzxcAECzsuQAAAAAAACwhXAAAAAAAAJYQLgAAAAAAAEsIFwAAAAAAgCWECwAAAAAAwBLCBQAAAAAAYAnhAgAAAAAAsIRwAQAAAAAAWOKyuwEAAAAAsNPe/CM6UlxgdxvVQnxktJrGxNvdBsIQ4QJQhisp0e+aw71amForbuZSU3UAgJol6cHUkKxj5necJLnTMwLcCRA+9uYf0cULXlJBSbHdrVQL0RGR+vK8v9oaMDgcDstzTJw4UQ8//LD1ZmDgsAgAAAAAtdaR4gKCBT8UlBTXiL08EhIS7G6hxmHPBQAAAABAtdG+fXu/a7Zs2SKv1ytJioiI0OjRowPdVq1HuAAAAAAAqDY2bdrk1/br169Xly5djPFFF12kli1bBrqtWo/DIgAAAAAANdbUqVN9xtddd51NndRshAsAAAAAgBqpuLhY7733njFu0qSJhg0bZmNHNRfhAgAAAACgRvr000+1b98+Yzx27FhFRkba2FHNRbgAAAAAAKiRyh4Scf3119vUSc1HuAAAAAAAqHF27typ+fPnG+O+ffuqU6dONnZUs3G1CKAMd3qG3zVxJmoAAOHNlZTod42Z3yFmhXt/ocRz8Qczz4VZNfU5RM3x1ltvqaSkxBiz10JwsecCAAAAAKBG8Xq9mjZtmjGOi4vTFVdcYWNHNR/hAgAAAACgRvnhhx+0efNmY3z55ZcrLi7Oxo5qPsIFAAAAAECNwokcQ49wAQAAAABQY2RlZemjjz4yxqeeeqr69etnY0e1A+ECAAAAAKDGmDFjhvLz840xey2EBuECAAAAAKDGePPNN43bkZGRGjt2rI3d1B6ECwAAAACAGuHnn3/WTz/9ZIyHDh2qpk2b2thR7UG4AAAAAACoETiRo30IFwAAAAAA1V5RUZHef/99Y9yiRQtddNFFNnZUu7jsbgC1jysp0e8ad3pGEDqxH88FgNrMMyDZ75qoHQdNrWXmszPcP2/Dvb9Q4rn4A88FarNPPvlE+/fvN8bjxo1TRESEjR3VLuy5AAAAAACo9o49kaPD4dD48eNt7Kb2IVwAAAAAAFRrO3bs0Pz5843xwIED1aFDBxs7qn0IFwAAAAAA1dq0adPk8XiMMSdyDD3CBQAAAABAteX1evXWW28Z4/r162vkyJH2NVRLES4AAAAAAKqt7777Tlu2bDHGV111lWJiYmzsqHYiXAAAAAAAVFvHnshR4pAIuxAuAAAAAKi14iOjFR0RaXcb1UZ0RKTiI6PtbsOQlZWlOXPmGONu3bqpR48eNnZUe7nsbgAAAAAA7NI0Jl5fnvdXHSkusLuVaiE+MlpNY+LtbsNQv3595eXl2d0GRLgAG7jTM+xuIWyE6rlwJSWaquNnBSCYnClpfte4A98GwoyZ31nh/vsq87Z+ftc0e3FJEDpBRZrGxIfVH8xAdcRhEQAAAAAAwBLCBQAAAAAAYAnhAgAAAAAAsIRwAQAAAAAAWEK4AAAAAAAALCFcAAAAAAAAlhAuAAAAAAAASwgXAAAAAACAJYQLAAAAAADAEpfdDQAIPnd6ht0thA1XUqKpOp5DAAgNM5+3OZf38bsmbuZSv2vMavbiEr9rPAOSTa3lTEkzVQcAVrHnAgAAAAAAsIRwAQAAAAAAWEK4AAAAAAAALCFcAAAAAAAAlhAuAAAAAAAASwgXAAAAAACAJYQLAAAAAADAEsIFAAAAAABgicvuBgAglNzpGXa3AAAIsLiZS+1uIeA2XRNpqu6UlAA3AgBVxJ4LAAAAAADAEsIFAAAAAABgCeECAAAAAACwhHABAAAAAABYQrgAAAAAAAAs4WoRAAAAAIBqbf/+/Vq8eLF27dqlI0eOqEmTJkpMTNTZZ5+t6Ohou9urFQgXAAAAANRq2cUHVFCSY3cb1UJ0RJzqRTayuw3D4sWLNXHiRH3//ffyer3Hfb9evXq64oor9Pjjj6tx48Y2dFh7EC4AAAAAqLWyiw9oyqYb5PYW2t1KteBy1NGEDm/YHjB4vV499NBDeuyxxyrdLjs7W2+88YY+++wzzZw5U2effXaIOqx9CBcAhAVXUqLfNe70jCB0Ur5w7y/ceQYk+13jTEkLeB8VCeXPl9cSEB7MvBel0L0fT7npp5CsA6mgJIdgwQ9ub6EKSnJsDxfuvfdePf300z73XXjhhTrvvPPUqFEj7d27V19//bW+//57SVJmZqYuvfRSpaSkqEuXLjZ0XPMRLgAAAAAAqo2vv/7aJ1hISEjQnDlzdM455/hs949//EOff/65rrzySuXm5iorK0ujR4/Wzz//LJeLP4UDjatFAAAAAACqjYceeshnPHPmzOOChVJDhw7VW2+9ZYx/+eUXvfHGG8Fsr9YiXAAAAAAAVAu//PKLfvrpj8OGLrzwQg0ePLjSmlGjRqlXr17G+Nlnnw1af7UZ4QIAAAAAoFr47rvvfMajR4+uUt3ll19u3N60aZPWrl0b0L5AuAAAAAAAqCbS09N9xt26datSXdntPv3000C1hP8hXAAAAAAAVAuHDh3yGTdo0KBKdQkJCT7jNWvWBKol/A/hAgAAAACgWoiJifEZ5+fnV6mu7Hbr168PWE84inABAAAAAFAtNGnSxGe8devWKtWV3W7z5s0B6wlHES4AAAAAAKqFnj17+oy//fbbKtUtWLDAZ1xUVKSioqKA9QXJZXcDQG3mSkr0u8adnhGETuwX7o8rVP2ZeU2YFcrn3JmSFrK1zAjlcxHur3XUbGY/Y8y8bj0Dkk2tFarPC7PvRX53A/YaMGCA6tatq9zcXEnSO++8owcffFBNmzatsGbbtm2aNWvWcfdnZ2erUaNGQeu1tmHPBQAAAABAtRAXF6cbb7zRGGdlZenPf/6z8vLyyt0+KytLV1xxhQoKCo77XlXP14CqIVwAAAAAAFQbDz74oNq0aWOMFy5cqB49euj999/Xnj17VFxcrJ07d2ratGk644wztGzZMklHg4lj1atXL6R913QcFgEAAAAAqDYaNWqkuXPn6qKLLtLevXslSb/88ouuvvrqCmuGDh2qBg0a6N1335UkOZ1OxcfHh6Tf2oI9FwAAAAAA1coZZ5yhn376SRdffHGl2zmdTt19992aPXu29uzZY9zfsGFDORyOYLdZq7DnAgAAAACg2klMTNQXX3yhVatW6dNPP9XSpUu1d+9eud1utWjRQn369NE111yj9u3bSzq6d0OpM844w662ayzCBQAAAABAtdW9e3d179690m127dql7du3G+Mzzzwz2G3VOhwWAQAAAACo0ebNm+czPv/8823qpOYiXAAAAAAA1GhTp041bnfo0EGDBg2yr5kaisMiABu50zPsbgFhhteEda6kRL9rQvm851zex++ahOW7gtBJ+XgN1myh/Pk6U9JCtlYo8R75gz+ftxFN68rh4k8P2OOjjz4yLkcpSTfffDMncwwC9lwAAAAAANRIv/76q/7yl78Y486dO+vWW2+1saOai3ABAAAAAFCtPPHEE1q7dm2l28ydO1eDBg1SZmamJCkqKkpTp05VVFRUKFqsddg3CQAAAABQrbz11lu67777dPLJJ+vss8/WaaedpgYNGignJ0fbtm3TvHnzfC49GRkZqVmzZql37942dl2zES4AAAAAAKql33//Xb///nul27Rq1UpTp07VBRdcEKKuaicOiwAAAAAAVCtXXnmlOnXqVOk2bdq00QMPPKCNGzcSLIQAey4AAAAAqLWiI+LkctSR21todyvVgstRR9ERcXa3oYcfflgPP/ywdu/erbS0NGVmZmrv3r2KjIxU8+bN1bFjR3Xv3t3uNmsVwgUAAAAAtVa9yEaa0OENFZTk2N1KtRAdEad6kY3sbsNw0kkn6aSTTrK7DYhwAQAAAEAtVy+yUVj9wQxUR5xzAQAAAAAAWMKeC0At4EpKNFXnTs8IcCe1i5nn3exzHsq1PAOSTdX5y5mSFpJ1Qi1u5lK/a9xB6AMArPLn90hJcX153XyaATUZey4AAAAAAABLCBcAAAAAAIAlhAsAAAAAAMASwgUAAAAAAGAJ4QIAAAAAALCEcAEAAAAAAFhCuAAAAAAAACwhXAAAAAAAAJa47G4AQPC50zPsbiFsuJISTdWZeQ5D+byHci1nSlrI1jKD1ztQ+2Te1s/vmmYvLglCJ4GTc3kfU3VxM5cGuBMAqBr2XAAAAAAAAJYQLgAAAAAAAEsIFwAAAAAAgCWECwAAAAAAwBLCBQAAAAAAYAnhAgAAAAAAsIRwAQAAAAAAWEK4AAAAAAAALCFcAAAAAAAAlrjsbgAIN54ByX7XOFPSAt4HgsOdnmF3C0HhSkr0uyaUz4WZ/opaNQxCJ+XjPQxUb81eXGJ3CwEXN3Op3S0AgF/YcwEAAAAAAFhCuAAAAAAAACwhXAAAAAAAAJZwzgUAAAAAtZq3JFPyHLG7jerBGS9HRDO7u0AYIlwAAAAAUGt5SzLl3TdYUoHdrVQT0VKTb8IiYPB4PNq4caNWrFhhfK1Zs0b5+fnGNt99950GDRrk99wFBQVKS0vzmfuXX35RSUmJsY3X6w3Ew6gxCBcAAAAA1F6eIyJY8EfB0efM5nBh5MiR+vrrr5WbmxvQeffu3asLLrhA69evl9vtDujcNR3hAgAAAACgWlm5cmXAgwVJysvL05o1awI+b21AuAAAAAAAqLbq1Kmjbt26qUePHsrJydF7770XsLkTEhLUvXt39ejRQykpKUpNTQ3Y3DUN4QJQhjMlze4WEESupERTde70jAB3Elg1sT9nmD8mszwDkkO2Fp9n1YeZ14WZn29N/QysifhZAZUbO3asWrdurR49eqhr166KjIyUJL311luWwoW6devqzjvvVM+ePdWjRw916NBBDodDkjRu3DjChUoQLgAAAAAAqpVJkyYFZd4mTZromWeeCcrcNZ3T7gYAAAAAAED1RrgAAAAAAAAsIVwAAAAAAACWEC4AAAAAAABLCBcAAAAAAIAlhAsAAAAAAMASwgUAAAAAAGCJy+4GAPjHlZTod407PSMInQRWqB5XdXguaqKa+ro1w5mSZncLCCIzr3VJcofodWH2fZV5Wz+/a5q9uMTUWqFi+mcVos+mmvoZCKDmYs8FAAAAAABgCeECAAAAAACwhHABAAAAAABYQrgAAAAAAAAsIVwAAAAAAACWEC4AAAAAAABLCBcAAAAAAIAlhAsAAAAAAMASwgUAAAAAAGCJy+4GAPjHnZ5hdwtBUVMfF47i54vaIpSv9XN/zvW7ZmHXuqbWavbiElN14YzPJQAILMKFaqCkpEQpKSnasmWLMjMz1aBBA7Vq1UoDBw5UXFyc3e0BAAAAQEjNmTNH99xzz3H3Z2dn+4zHjBmjmJiY47Z7//331bt373Lnvvfee/XRRx8dd//evXt9xh06dCi3ftOmTRX2XZMRLgTJmjVr1LNnT7ndbuO+gQMH6vvvv6/yHEVFRfrXv/6lKVOmKDMz87jvx8bGatSoUXr66afVtGnTQLQNAAAAAGHvyJEj2rx58wm327VrV7n35+fnV1iTmZlZpbmrsk1twjkXgqCkpEQ33HCDT7Dgr927d6tPnz565JFHyg0WJCkvL0/vvPOOunbtqsWLF5teCwAAAAAAKwgXguD555/XihUrTNfn5eVp2LBhWr16tXFfy5Ytde+99+q///2vHn/8cZ199tnG9/bu3as//elP+vXXXy31DQAAANQ6znhJ0XZ3UY1E/+85s9e4cePk9XpNfw0aNKjCud966y1Lc9dWHBYRYFu2bNHEiRMlSU2aNJHH49GBAwf8muPBBx/UypUrjfGoUaP03nvvqU6dOsZ9//jHPzR9+nSNGzdOxcXFOnTokK666iqtWLFCDocjMA8GAAAAqOEcEc2kJt9IniN2t1I9OOOPPmdAGYQLAfZ///d/ysvLkyQ999xzevDBB/0KFzIyMvTKK68Y427dumn69OmKjIw8bturrrpKGRkZuu+++yRJq1at0uzZszV69GiLjwIAAACoPRwRzST+YAYs4bCIAHrzzTe1YMECSdL555+vq6++2u85Xn31VRUWFhrjp556qtxgodRdd92lli1bGuMXXnjB7zUBAAAAALCCcCFAMjMzddddd0mSoqOj9eqrr5qaZ+7cucbtNm3a6IILLqh0e5fLpfHjxxvj1NRU7dmzx9TaAAAAAACYwWERAXLrrbfq0KFDkqSHHnqowmueVmbLli0+J2U8//zzq3T+hMGDB2vy5MmSJK/Xqy+//NIncADMyrm8j981cTOXBqETAEBZC7vWtbsFVJErKdHvmg33mdtF/5SbfjJVBwBWsedCAHzyySeaPXu2JKlz5866++67Tc2zdu1an3Hfvn2rVNerVy+5XH/kRGXnAQAAAAAgmAgXLMrKytItt9wiSXI4HHrttdcqPUdCZTZs2OAzbt++fZXqoqOj1aJFC2O8ceNGU+sDAAAAAGAG4YJF99xzj3bt2iVJuvHGG9W/f3/Tc23dutVn3KZNmyrXHrvtli1bTPcAAAAAAIC/CBcsWLRokV5//XVJUrNmzfTkk09amu/IEd9r6zZo0KDKtQkJCcbt7OxsS30AAAAAAOAPwgWTCgoKdOONN8rr9Uo6egnIY//ANyMnJ8dnHB0dXeXamJiYCucBAAAAACCYCBdMeuSRR/Tbb79Jki688EJdeeWVlucsKCjwGUdFRVW5tk6dOsbt/Px8y70AAAAAAFBVhAsmrFmzRs8884yko3sMvPrqqwGZt+yeCkVFRVWuLSwsNG4fuxcDAAAAAADBRrjgp5KSEl1//fVyu92SpIkTJ6pt27YBmTsuLs5nXHZPhsocu7dC2XkAAAAAAAgmwgU/Pf/881q5cqUkqWvXrrrzzjsDNnd8fLzP+NChQ1WuPXz4sHG7Xr16gWoJAAAAAIATctndgFnbt2/X2rVrlZubq5NOOkk9e/YM+uEAe/bs0cSJEyVJTqdT//3vf+VyBe4pLLsHREZGRpX3iti2bZtxu127dgHrCbVb3MyldrcAALWCKykxJOtkPG9u78YWwzcEuJPaxZ2e4XfNaY+bXMtcWciUngwdgP0C/X60PVw49vKLderU8TkxYXl+/vln3XrrrUpJSfG5Py4uTjfeeKMee+yxE85h1p49e5SXlydJioiI0NVXX33Cmp07dxq3ly1bpg4dOhjjwYMH+5yv4bTTTvOp3bRpkwYOHHjCNQoKCrRr1y5j3KlTpxPWAAAAAKFSlF8sT4lHHo/H7lYA/E/p+9HpDMwBDbaGC9OnT9c111xjjGfMmKHLL7+8wu1XrFih8847Tzk5OcelLNnZ2Xr++ee1aNEifffdd6pbt27Q+pak4uJibd682a+agoICn5ouXbr4fL9bt24+49TUVF1//fUnnHf58uXGOSCko4drAAAAAOGiIKdQ7uISFRcX290KgP8pfT9GREQEZD5bz7nw0Ucfyev1yuv1qlmzZho5cmSF2xYXF+vKK69Udna2JMnhcMjhcPjc9nq9Wrlypa677rqQ9B9o7dq1U8eOHY3xt99+W6VdVb755hvjtsPh0JAhQ4LSHwAAAGCGu6hE29buUG5urt2tAPif3NxcxcbGBmzPBVvDhUWLFhnBwNChQytNTKZOnaotW7YYgUJpINGnTx81btxYXq/XCBhmz56tH374IeD9JicnG2FIVb/atGlj1A8cONDnex9//PFxawwfPty4vW3bNs2fP7/Sntxut6ZNm2aM+/Tpo+bNm1t/sAAAAEAAbV6xrdw9kAGEntfrVU5OTkCvNGhbuLB161YdOHDAGF9wwQWVbv/f//7XCA8k6YknntCuXbu0ZMkS7dq1S/fcc48RMEjSK6+8Erzmg2jChAmKiooyxvfcc0+lu48988wzPud1uP3224PaHwAAAGDGllUZKikp8fkbAIA9Dhw4oJKSkpoRLmzatEnSH2eoPP300yvdNi0tTdLR3f4vuugi3XPPPcb3IyIi9MQTT2jQoEHGXgHz5s1TUVFR8B5AkLRp00Y333yzMV67dq3GjBmjwsLC47adMWOGcfUK6eieFZWdswIAAACwy6FdWWrWrJn27dunw4cPswcDYAOv16vDhw9r3759atasWUAvhmDbCR0zMv64JI/D4fC5ikJZCxYskCRjz4Rbb7213O1uvfVWff/995Kk/Px8rVu3Tt27dw9c0yHy2GOPadGiRVq9erUkadasWVqyZImuueYatWvXTocOHdIXX3zhc+hHQkKCpk+fbuy5AQAAAISbhg0byu12a/fu3Tpw4IDq16+vmJgYRURE8O9YIEi8Xq9KSkqUn5+vrKwsFRUVqVGjRmrYsGFA17EtXMjKyjJu161bt9IPk0WLFvlse/7555e73VlnnSVJxlwbN26sluFC3bp19dlnn2nIkCFau3atpKOXtHziiSfK3b5x48aaPXs2l6AEAABA2GvatKni4+N1+PBhHTx4UCUlJXa3BNQKERERio+PV8uWLRUdHR3w+W0LF/Lz843bJ3pgqampRmDQr18/RUZGlrtdkyZNFBsba8xdnY/natmypX766SdNnjxZr732mvbu3XvcNjExMRo5cqSeeeYZNWvWzIYugerHlZRoqs6dnnHijQDApFB9xrQYfuJtEB6qw++df25ZZbo2OjpazZs3V7NmzVRSUkLAAARZRERE0PcQsi1cOPbYjsouSbNnzx6lp6cbT0L//v0rnTc2NlZ5eXlyOBzKyckJTLMWpKenm66NiorSpEmT9M9//lMpKSnasmWLMjMzlZCQoNatW2vgwIGqV69e4JoFAAAAQsjhcMjlcsnlsu3PEgABYtu7uH79+sbt/Px8HTx4sNxjPr777jtJf5xvYcCAAZXOWxosSKpwD4fqxuVyadCgQRo0aJDdrQAAAAAAcBzbrhbRvn17n/GyZcvK3e7TTz81bkdGRqpv374VzllUVKS8vDxjzP/qAwAAAAAQfLaFC6effrocDoexl8HUqVOP22bfvn365JNPjO169uxZ6fkZfv31V0l/XN6yVatWQegcAAAAAAAcy7ZwoVGjRurXr5+ko2HA3Llz9cILLxjfz8/P1/XXX6+CggIjLBgxYkSlc5ZeurFU2b0jAAAAAABA4NkWLkjShAkTjHMpeL1e3XnnnWrdurUGDBig1q1ba968ecaeDTExMbrmmmsqne/bb781bsfGxqpjx45B7R8AAAAAANgcLowZM0YDBgzwCRh27typ1NRUHTx40NjO4XDozjvvVJMmTSqcy+126/PPPzcOoTjzzDPldNr68AAAAAAAqBVs/+v7448/1umnn24EDKV7KpSGDV6vV0OHDtXEiRMrneeTTz7R4cOHjfF5550XzLYBAAAAAMD/2B4uNGzYUMuXL9fjjz+uU0891QgUvF6vunTpopdffllz58494V4IpedrKD0/wyWXXBLs1gEAAAAAgCSHt/Sv8TBRWFiogwcPqn79+oqNja1STUlJiebNm2cECw6HQ5deemkw26xxBjtHh2ytnMv7+F0TN3NpEDpBbeRKSjRV507PCHAnQPCZeb2H+2ud9zBqi/TJFV9+vTJJD6YGuJPA+sYzy+4WAASJy+4GyqpTp45OOukkv2oiIiIIEwAAAAAAsInth0UAAAAAAIDqjXABAAAAAABYQrgAAAAAAAAsCbtzLkhSWlqafvjhB6Wmpmr37t06ePCg8vLyJEmbN2+2uTsAAAAAAHCssAoX5s6dqyeeeEIrVqzwuf/Yq0BUpEePHvr9998lSd27d9f3338ftD4BAAAAAMAfwuKwiNzcXF1zzTUaNWqUVqxYIa/Xq2OvkFlZqFDquuuuU05OjnJycrR48WL99ttvwWwZAAAAAAD8j+3hQkFBgS688EJNnz7dJ1CQdFzIUJlrr71WderUMYKImTNnBrxXAAAAAABwPIe3qn+9B8mf//xnffjhh0Yo4PV6ddZZZ+nPf/6zevTooa+++koTJ0482qzDoZKSkgrnGjZsmObNmyeHw6GzzjqLQyP8MNg52u4WAABADfLPLatM1U1q193vGldSot817vQMv2tCycxjksL/cX3jmWV3CwCCxNZzLixatMgIFrxer+rWratp06Zp1KhRxjarVlX9F9PFF1+sefPmyev1aunSpSouLlZkZGQwWgcAAAAAAP9j62ERjz76qKSjeytERERo9uzZPsGCv5KTk43bxcXF+vXXX622CAAAAAAATsC2cCE7O1uLFi2Sw+GQw+HQVVddpQsvvNDSnF26dJH0xwkgCRcAAAAAAAg+28KFH3/8UcXFxcYJG2+66SbLc8bHx8vl+uNIj71791qeEwAAAAAAVM62cGHnzp3GbYfDod69ewdk3vj4eCOwyM7ODsicAAAAAACgYraFC/v37zduJyQkKCIiIiDzFhUVGYdFAAAAAACA4LMtXIiOjjZu5+fnB2TO4uJi5eTkGONGjRoFZF4AAAAAAFAx28KFJk2aGLcLCgp0+PBhy3OmpaVJknFYROPGjS3PCQAAAAAAKmdbuJCYmOgzXrJkieU558+f7zM+9tKUAAAAAAAgOFwn3iQ4evfurbi4OOXm5kqSpk2bpiFDhpier7i4WFOmTJHD4ZDX61WbNm3Upk2bQLWLAPIMSPa7xpmSFvA+AsmVlHjijcrhTs8IcCeBxc/qD+H+swLKY+b1zmvdGrOfMYd7tfC7JmH5LlNrmWHmdTGpXfcgdFI+XrcAYD/b9lyIjIzUueeeK6/XK6/Xq48//liLFy82Pd99991nXIHC4XDo0ksvDVSrAAAAAACgEraFC5J0zz33SDoaBpSUlOiKK67Q+vXr/Z7n8ccf13PPPWfsteByufT3v/890O0CAAAAAIBy2Bou9OvXT8OGDZPX65XD4dCePXvUt29fPfXUU8rKyjph/dKlSzV48GA9+OCDkmTMc8MNNxx3TgcAAAAAABActp1zodS0adPUu3dvbdmyRQ6HQzk5Obrvvvs0ceJE9erVS26322f7SZMmadOmTVq0aJG2b98u6Y9Qwev1Kjk5Wc8995wdDwUAAAAAgFrJ9nChYcOG+uKLL3TBBRdo27ZtRkhQWFiolJQUn229Xq8eeeQR47Z09JCK0ppTTjlFc+fOVZ06dUL+OAAAAAAAqK1sPSyi1Mknn6zVq1cbh0hIR0ODUqUBQmmIcOx9pSeEvOiii7Rs2TIOhwAAAAAAIMTCIlyQpISEBH3yySdasGCBLrjgAkkygoNjv8re37t3b33xxRf64osvVL9+fTsfAgAAAAAAtZLth0WUdc455+icc87RwYMHtWjRIi1dulR79uzRwYMHVVRUpIYNG6pJkyY644wzNHjwYLVs2dLulgEAAAAAqNUc3tLdAVCrDXaOtruFWsmV5P9hPO70jCB0EjhmHpMU/o8L1oTytV4T31fpk/uaquvwxk6/a8w8F2bf92aE+88q3PEZXfOF+2fgN55ZIVsLQGiFzWERAAAAAACgeiJcAAAAAAAAlhAuAAAAAAAASwgXAAAAAACAJYQLAAAAAADAkqBcinLSpEnH3ffPf/6zStsFUnlrAgAAAACAwApKuPDwww/L4XD43FfeH/rlbRdIhAsAAAAAAARfUMKFY3m93hMGCF6vN2DrORyOKq0JAAAAAAACw+EN5F/2/+N0+p7KweFwqKSk5ITbBVJFa6J8g52j7W4BAFDL5Fzex++a3Obm/u3QZFWeqTp/OVPSQrKOJLmSEv2ucadnBKETBINnQLKpulC+Bs34xjPL7hYABElQ9lyYOHFiQLcDAAAAAADhi3ABAAAAAABYwqUoAQAAAACAJYQLAAAAAADAEsIFAAAAAABgCeECAAAAAACwhHABAAAAAABYEpSrRVRVYWGhnnrqKXm9XklSjx49dMkll5ia6/PPP9eqVaskSU6nU/fff7+cTrITAAAAAACCzdZwYfbs2Zo4caIcDockaeHChabnqlevnh5++GFjrs6dO2v48OEB6RMAAAAAAFTM1nDh/ffflyR5vV516dJFAwcOND3XwIED1blzZ61fv14Oh0PvvPMO4QJQw3kGJPtdk9ci2tRacTOXmqoDUDEz76u4IPSB6u/cn3P9rlnYtW4QOgkcZ0qa3S0AgF9sO26gqKhIP/zwgxwOhxwOh0aPHm15ztI5vF6vFi5cqJKSEstzAgAAAACAytkWLqxbt075+fnG+RYGDRpkec5zzjnHuJ2Tk6N169ZZnhMAAAAAAFTOtnBh48aNPuMzzjjD8pzJycmSZJx34ddff7U8JwAAAAAAqJxt4cK+ffuM29HR0YqLs34UZb169RQTE2OMMzMzLc8JAAAAAAAqZ1u4kJeXZ9yOjY0N2LyxsbHGoRY5OTkBmxcAAAAAAJTPtnAhPj7euH348OGAzXv48GHjsIhj92IAAAAAAADBYVu40LhxY+O2x+NRenq65TnT09N9rhBx7BoAAAAAACA4bAsXkpKSJP1x8sVvvvnG8pzz58+XJOOwiFatWlmeEwAAAAAAVM7hLf1LPMTcbrcaNmyo3Nxceb1edenSRWvXrjU9n9frVbdu3bRhwwZ5vV5FR0fr0KFDqlOnTgC7rrkGO0fb3ULYcCUl+l3jTs8IQieBY+YxSeH/uABUb6H8vE2f3NfvmqQHU02tBZSVeVu/kK3VZFXeiTcqw5mSFvhGKvCNZ1bI1gIQWrbtueByuTRw4EBjL4P169fr2WefNT3fs88+q/Xr10s6ujfEWWedRbAAAAAAAEAI2BYuSNIdd9wh6WgY4PV6de+99+qNN97we57//ve/uvfee415JOlvf/tbIFsFAAAAAAAVsDVcOPfcc3XWWWfJ6/XK4XDI4/Hopptu0qhRo7R69eoT1q9evVojR47UzTffLK/Xa8zTt29fXXzxxSF4BAAAAAAAwGV3A++8847OPPNMHThwwNjzYO7cuZo7d646deqkfv36qUOHDkpISJDD4dChQ4e0adMm/fjjj/rll18kyQgVvF6vGjVqpHfffdfmRwUAAAAAQO1he7jQpk0bzZ49W0OHDlVubq7PoQ0bNmzQxo0by6079jyUpTVxcXH66KOP1LZt25D0DgAAAAAAbD4sotTZZ5+tZcuW6eSTTzb2Qij9Kj3coexX2W06deqk5cuX66yzzrL74QAAAAAAUKuERbggSZ06dVJaWpqef/55tWzZ0ggRSpUGCaVKv9+6dWu9+OKLWrlypU499VQ7WgcAAAAAoFaz/bCIY0VHR+v222/XX/7yFy1btkzff/+9Vq5cqX379unAgQOSpMaNG6tJkybq0aOHBg0apN69eysiIsLmzgEAAAAAqL3CKlwo5XK51L9/f/Xv39/uVgAAAAAAwAk4vMcee4Baa7BztN0tAACqKc+AZFN1e+4s8rum+bNRptYyw5mSFrK1QiV9cl9TdUkPpga4E9RW33hm2d0CgCAJm3MuAAAAAACA6olwAQAAAAAAWBKW51wolZeXp8zMTB08eFB5eXnyer06++yz7W4LAAAAAAAcI+zChY0bN+q1117TDz/8oHXr1snj8Rjfczgccrvd5dZ9/PHHxrYtW7ZU7969Q9IvAAAAAAC1XdiEC3v27NFNN92kzz//XJLk73kmp02bZtQ2a9ZMO3bskNPJUR8AAAAAAARbWPz1/cMPP+j000/X559/boQKDofD5+tEbr/9dnm9Xnm9XmVmZmr+/PnBbhsAAAAAACgMwoU1a9Zo2LBh2rdvn6SjoYLX61VERIROPfVUtW3btkp7MZx77rlq0aKFEUR8+umnQe0bAAAAAAAcZWu4UFRUpMsuu0w5OTlGqNCqVStNnTpVBw8e1Pr163X33XdXeb4//elPxt4LCxYsCGLnAAAAAACglK3nXHj55Ze1bds2Y2+Dvn376rPPPlPDhg1NzXf22Wfr1VdflSRt2rRJBw8eND0XwotnQLLfNc6UtID3URFXUmLI1jKjqJW590Eon0Mz0if39bsm6cHUIHSCEzHzHnGnZ4T9WqFi9jMmVI/L7GdFi5TA9lEZU6+LEK1jlpmfL5+BAIBgsXXPhSlTphh7LDRt2lSffPKJpTDg9NNP9xlv3LjRaosAAAAAAOAEbAsXNm/erE2bNkk6ep6Fu+66S40bN7Y0Z/v27Y35StcAAAAAAADBZVu4sGrVKkl/XHJyxIgRlueMjIxUbGysMT58+LDlOQEAAAAAQOVsCxf27t1r3I6KilLbtm0DMm9sbKwRWOTk5ARkTgAAAAAAUDHbwoUjR44Yt+Pi4gI6b+lhEXXr1g3YvAAAAAAAoHy2hQvHnrgxKysrIHMeOHBARUVFxrhRo0YBmRcAAAAAAFTMtnChSZMmxu2SkhLj5I5WpKYevbxS6WERLVq0sDwnAAAAAAConG3hQteuXSX9cWWHb7/91vKcM2fONG67XC717t3b8pwAAAAAAKBytoULJ598spKSkiQd3dPgpZdeksfjMT3fpk2b9OGHH8rhcMjhcKhHjx6ccwEAAAAAgBBw2bn4qFGj9Mwzz0iSfvnlFz388MOaNGmS3/Pk5eXpyiuvVHFxsaSje0OMGzcukK3CZlE7Dvpd4w5CHxWulZ4RsrVcSYl+15h5/qTQPodmJD2YancLqKJQvkdCuVa4M/N5EcrnzzMgOWRruVPSQrNOmP8+MMvM4zLb3+Fe/h/WmrB8l6m1zAjVz9js88dnIAC72LbngiTde++9qlevnhwOh7xerx577DE9/PDDfu3BsHXrVp199tlatWqVcYjFSSedpPHjxwerbQAAAAAAcAxbw4VGjRrpkUcekdfrNQKGRx99VKeffrqmTJmirVu3lhs0FBcX67vvvtOECRPUqVMnrV692qh3OBz697//rcjISBseEQAAAAAAtY+th0VI0t/+9jetX79eU6dONQKC9evX6y9/+YskGedQKL0CRLt27bR9+3YjdCgNFEr9/e9/18iRI0P/QAAAAAAAqKVs3XOh1JQpU3TrrbcaQUFpmOD1euXxeIxgwev1Kj09XSUlJcb3j9327rvv1lNPPWXzowEAAAAAoHYJi3AhIiJCL774ombPnq22bdsaYUJp0FDRl3Q0cGjdurVmzJihJ5980mcvBgAAAAAAEHxhES6UGjFihH777TdNnz5dw4YNU/369Y29Esp+RUVF6bzzztOrr76qTZs26YorrrC7fQAAAAAAaiXbz7lQltPp1JVXXqkrr7xSXq9Xv/76q/bs2aODBw+qqKhIDRs2VJMmTdSpUydFR0fb3S4AAAAAALVe2IULx3I4HDr11FN16qmn2t0KAAAAAACoQFiHC0Apd3qG3S2EDTPPhWdAsqm1nCF83l1JiSFZx+xryUx/oXzdhur5k6SiVg39rnGmpAW+kQqYeS4O92rhd03C8l1+15hVUz8DQ/m6wFHV4TMwzkxdmH9Gm1EdfoeE+3MIILTC6pwLAAAAAACg+iFcAAAAAAAAloTtYRE5OTlavny51qxZowMHDujQoUOSpAYNGqhRo0Y6/fTT1atXL8XFxdncKQAAAAAAtVtYhQsej0cff/yxXn31VX3//ffyeDyVbu90OjVw4EDdcsstuuyyy+R0siMGAAAAAAChFjZ/ja9Zs0Y9e/bU6NGjtXDhQpWUlMjr9Vb6VVJSou+++06jR49Wjx49lJaWZvfDAAAAAACg1gmLcOHdd99Vr169tGbNGnm9XklHL0NZ+lVW2e95vV6tWbNGvXv31jvvvBPS3gEAAAAAqO1sPyzigw8+0Pjx441DIBwOhxEwOJ1OdezYUUlJSapfv768Xq+OHDmi9PR0/frrrz41klRcXKzrr79ekZGR+vOf/2zPAwIAAAAAoJaxNVzYuXOnbrrpJnk8Hp+9EPr166e//OUv+tOf/qTY2Nhya/Py8vTJJ5/olVde0Y8//mjsyVBSUqIJEybo7LPPVsuWLUP5cAAAAAAAqJUc3tLdBGwwduxYvffee8beClFRUXr11Vc1fvx4v+Z58803dcstt6i4uFher1cOh0NXX3213n777SB1XvMMdo4O2Vo5l/fxuyZu5tIgdIITcSUl+l3jTs8IQicAwtm5P+eaqlvYtW6AOwHCk5nfpxvua2ZqrVNu+slUXah845lldwsAgsS2cy7k5+dr7ty5RrDgdDo1Z84cv4MFSbruuuv00UcfSfrjsIo5c+YoPz8/0G0DAAAAAIAybAsXFi1apNzco//T4XA4dO2112rIkCGm57vkkkt07bXXGudryMvL06JFiwLSKwAAAAAAqJht4UJGxtFdp0vDgJtuusnynBMmTJD0xwkeS9cAAAAAAADBY1u4sG/fvj+acDrVs2dPy3P27NlTTucfD2n//v2W5wQAAAAAAJWzLVyIiYkxbtevX98nFDDL6XQal6wsuwYAAAAAAAgO28KFtm3bGrezsrLk8Xgsz+nxeJSVlWUcFpGUlGR5TgAAAAAAUDnbwoW+ffsaIYDH49GKFSssz7lixQp5PB7jcpT9+vWzPCcAAAAAAKicbeFCs2bNdO655xrj119/3fKcr732mqSjJ3Q899xz1bRpU8tzAgAAAACAytkWLkjSo48+apxrYdq0afr6669Nz/XVV1/prbfeksPhkNPp1KOPPhqoNgEAAAAAQCVcdi7ep08fTZ48Wffff7+8Xq+GDx+u119/XWPGjPFrnvfff1833nijcSLHyZMnq3fv3sFoGQEQN3Op3S2gitzp/l/ONefyPqbWSli+y++aolYN/a5xpqT5XQMEkisp0e8aM+/FUFo0rJOpOs8A/9/DZpl573sGJIdkHbPC/bVkpj8p/F/vZph5TFH7WgahEwAIHlv3XJCkf/zjH3r++ecVGRmpgoICjR07VoMGDdLs2bNVUFBQYV1BQYFmzZqlc845R2PHjlVBQYGioqL0wgsv6N577w3hIwAAAAAAoHazdc+F6667zrjdtWtXrVq1Sl6vV4sXL9bixYsVERGhU089VW3atFF8fLwcDoeysrK0bds2/fLLLyopKZEk4wSOXbt2VVpams+8lXE4HJo6dWpQHhsAAAAAALWFreFC6TkSSpXeLj28we12a926dVq/fr1PXen3y9atWrVKq1atqtLapYEE4QIAAAAAANbYGi5U5NjAwcz3AQAAAABA6NgeLpTdCwEAAAAAAFQvtoYL06ZNs3N5AAAAAAAQALaGC9dee62dywMAAAAAgACw/VKUAAAAAACgenN4OekBJA12jra7BQBAgLmSEv2ucadn+F1Tb3Fjv2skKf+aWL9rzPQnhe65gD08A5L9rnGmpAW8j0Ay85gkKa9FtN81uc3N/X9jsxeX+F3zjWeWqbUAhD/2XAAAAAAAAJYQLgAAAAAAAEsIFwAAAAAAgCW2Xi2iqnbu3Kk333xTCxcu1O+//64DBw6obt26atq0qbp3765hw4ZpxIgRioyMtLtVAAAAAABqnaCGC8XFxTr2fJFRUVF+1Xs8Hj3wwAN64YUXVFRUJEnGfIWFhTp48KB+/fVXzZgxQx06dNDLL7+swYMHB+4BAAAAAACAEwraYREHDhxQbGysYmJiFBMTo/j4eO3atavK9W63W5dccomeeuopFRYWyuv1yuv1yuFw+HyV3v/7779ryJAhmjFjRrAeEgAAAAAAKEfQwoX58+erpKTE+ON/xIgRatGiRZXrb7/9dn399dfHBQqSjDnLfq+kpETXXnutli1bFqyHBQAAAAAAygjaYRHffPONcdvhcOjWW2+tcu3y5cs1ZcoUI0wo5fV61aJFC/Xs2VOxsbHasWOHli5dKrfbbQQMbrdbt9xyi1asWHFcPQAAAAAACLyg7bmwfPly44/7li1bql+/flWuffDBB33O1eD1elWvXj1Nnz5dO3bs0Mcff6zp06dr0aJF2r17t6655hqf7dPS0jRv3rzAPRgAAAAAAFChoOy5kJeXp19++UXS0b0WRowYUeXabdu2acGCBT6HQERGRmrevHnq37//cds3atRIb7/9tmJiYvTf//7XqHvvvfc0dOjQADwaIHhcSYl+17jTM4LQif3C/bkw018omXkuzD6mUK1l9ucbqrXMPn9FrRr6XeNMSTO1VqjeI9ln7Q/JOlaE+2enZ0Cy3zVmXxdmhPtntJnnIpSf64d7Vf3Q4FIJy6t+rrJjRe3wvybO5M/KzOsWQM0VlD0Xfv/9d3k8HmNvgvJCgYp8+OGHRl3pORWuu+66E87x3HPPGed08Hq9+uqrr0x2DwAAAAAA/BGUcCE9Pd1nfOaZZ1a59rvvvjvuvr///e8nrIuNjdV1111nBBPZ2dnasmVLldcFAAAAAADmBCVc2L17t884MbFqu515PB79+OOPPidi7Nq1q04++eQq1V9yySU+43Xr1lWpDgAAAAAAmBeUcCE3N9e4HR8fL6ezasusW7dOOTk5kv44JOKcc86p8rpdunSRJCOc2LdvX5VrAQAAAACAOUEJFwoKCv5YoIrBgnT0ChNl9enTp8r1devWVWxsrDE+cuRIlWsBAAAAAIA5QQkX4uLijNvZ2dlVrlu2bNlx9/Xo0cOvtWNjY43zLuTl5flVCwAAAAAA/BeUcCEhIcG4XVJSoq1bt1apbtmyZT7nW6hfv746dOjg19pZWVnGHMfuxQAAAAAAAIIjKOFC27ZtfcY//vjjCWsyMzO1fv16SX+cb6Ffv35+rXvkyBEVFxcb43r16vlVDwAAAAAA/OcKxqQ9evSQ0+k0Dk94++23dfXVV1daM2vWLCNUKDVw4EC/1v39998l/RFOtGjRws/OEQqupKpdPeRY7vSMIHRSPs+AZL9ronYcNLVWKB9XqJj5+Zpl5me1r7u5PZqavbjEVF04C+XrryauZXadfZe28rumWYqppVCNOFPS7G6hUuH++8rM7wN3CJ/zODPPn8nfp5tuaOl3TYc3TC0V0ucQQPgLyp4LdevWVc+ePSUd/UN/4cKF+uSTTyrcvrCwUP/+9799ggVJuuyyy/xat+weElW9hCUAAAAAADAvKOGCJN1www3GHgRer1dXX3215s6de9x2BQUFGj9+vDZv3izpj70OzjzzTL/DgUWLFhm3o6Ki1K5dO2sPAgAAAAAAnFBQDouQpKuuukqPPvqoduzYIYfDodzcXI0aNUpdunTR2WefrYSEBO3cuVNffvml9u7de9xeC3fffbdf62VnZ+vLL7805unRo4ciIiIC9ngAAAAAAED5ghYuxMbG6rXXXtOQIUPkcDiMPRh+/vlnrVu3ztiu9LwMpaGAw+FQnz59NHLkSL/W+/DDD5Wfn2/MM2DAgAA9EgAAAAAAUJmgHRYhSRdddJFefPFFY3xsyFD6VXqfdDRoaNKkiT788EO/13r11VeNuSVp8ODBgXkQAAAAAACgUkENFyTp1ltv1YcffqiTTjrpuEDh2FDB6/UqOTlZqampatXKvzNpf/rpp1q9erUxrl+/vgYNGhTIhwEAAAAAACoQtMMijjVq1ChdfPHFev/99/XZZ59p/fr1yszMlMPhULNmzdS7d2+NHDlSI0aMOO7cC1Xx3nvvqX379sZ4yJAhnG8BAAAAAIAQCUm4IB29POX//d//6f/+7/8CPvfMmTMDPicAAAAAAKiaoB8WAQAAAAAAaraQ7blQGxQVFWnJkiXKyMjQnj17FBUVpWbNmumkk05ScnKyEhIS/J6zpKREKSkp2rJlizIzM9WgQQO1atVKAwcOVFxcXOAfRAi40zPsbqFSzpQ0v2vcJtdyJSX6v1YInz/PgGS/a9wmnj+znCaei2YpQWgE8EPLT3f4XWP2M6YmMvO5JElROw76XbPphpZ+1yQ9mOp3Dawz8/M1+74y8xrc1z3W7xoznxWSlPhVvt81h3u1MLVWXJj/mw5AaBEuBMDmzZv1yCOP6JNPPtGRI0fK3cbhcCg5OVn333+/Ro0adcI5i4qK9K9//UtTpkxRZmbmcd+PjY3VqFGj9PTTT6tp06aWHwMAAAAAAGZxWIRFTzzxhLp06aJ33323wmBBOnpFjNWrV+v7778/4Zy7d+9Wnz599Mgjj5QbLEhSXl6e3nnnHXXt2lWLFy822z4AAAAAAJax54IFf/vb3/Tvf//bGEdERKh///4655xzdNJJJ8npdGrv3r1KS0vTd999pwMHDpxwzry8PA0bNszn0potW7bU1Vdfrfbt2+vAgQP68ssvtWjRIknS3r179ac//Umpqanq2LFj4B8kAAAAAAAnQLhg0mOPPeYTLJx11ll67bXX1KlTp3K3Lykp0cKFC08YMDz44INauXKlMR41apTee+891alTx7jvH//4h6ZPn65x48apuLhYhw4d0lVXXaUVK1aYupQnAAAAAABWEC6YsH79ek2aNMkYX3zxxfr4448VFRVVYU1ERIQGDx5c6bwZGRl65ZVXjHG3bt00ffp0RUZGHrftVVddpYyMDN13332SpFWrVmn27NkaPXq0vw8HAAAAAABLOOeCCbfeequKiookSU2aNNF7771XabBQVa+++qoKCwuN8VNPPVVusFDqrrvuUsuWf5zJ+oUXXrDcAwAAAAAA/iJc8NP69et9Tsp4//33q2HDhgGZe+7cucbtNm3a6IILLqh0e5fLpfHjxxvj1NRU7dmzJyC9AAAAAABQVYQLfnr99deN21FRUbrmmmsCMu+WLVv066+/GuPzzz+/SudPOPZQC6/Xqy+//DIg/QAAAAAAUFWcc8FP33zzjXG7V69eatSoUUDmXbt2rc+4b9++Varr1auXXC6X3G53ufNUlSsp0e8ad3qGqbXMMNOfWaF8XGbWCuXPypmSZqquJgrV8/7ba2f6XSNJHd4t9rsmasdBU2uFSijfi6g+zH4uuU3UJD0Y3r/nwv33cE38fSpJbhOvwWYpJtbxv0SS5DTxXMSZXCt9ctX+vQqgdmDPBT9kZ2frl19+McZ9+vSRJBUUFOidd97RRRddpMTERNWpU0dNmjTRGWecoTvuuEM//fTTCefesGGDz7h9+/ZV6ik6OlotWrQwxhs3bqxSHQAAAAAAgcKeC35Yu3atPB6PMe7YsaNWrlypa6655rg/6vfv36/9+/crLS1NL7zwgoYPH66pU6eqQYMG5c69detWn3GbNm2q3FebNm2UkXE0pd6yZUuV6wAAAAAACAT2XPDDvn37fMZ79+7VOeec4xMsNGjQQK1atTruKg9z585Vnz59lJmZWe7cR44c8RlXFEKUJyEhwbidnZ1d5ToAAAAAAAKBcMEPhw8f9hk//PDDxh/zN9xwg3777TcdPHhQ27dv15EjR/Thhx8qKSnJ2P63337TFVdc4bP3Q6mcnByfcXR0dJX7iomJqXAeAAAAAACCjXDBD2X/cC8uPnoCteeee06vv/66Tj75ZON70dHRuvzyy7Vs2TKf+3/44QfNmjXruLkLCgp8xlFRUVXuq06dOsbt/Pz8KtcBAAAAABAIhAt+KG9vgvPOO0933HFHhTVNmzbVtGnTfO7797//fcK5i4qKqtxXYWGhcfvYvRgAAAAAAAgFwgU/1KtX77j7brvtthPW9e/fXz179jTGy5cvP+4cC3FxvhcBKrsnQ2WO3Vuh7DwAAAAAAAQb4YIf4uPjfcYOh0MDBw6sUu2gQYOM2yUlJVq7dm2lcx86dKjKfR17LojyAhAAAAAAAIKJS1H6oV27dj7j+Ph41a9fv0q1iYmJPuOyV55o27atzzgjI+O4+yqybdu2CnusKnd6hqm6UAn3/kKJ58IeoXreT7npJ1N1rqTEE29URihfS2b6q6l4D9vDMyDZ7xpnSlrA+6hIUauGftdU/exM1mU87/+ekYl3mHvfm3oudhz0uybc34tmPzfNPK70yX1NrZX4lYlzfd1vaikA1QB7LvihQ4cOPidPPPb2iZQ9p0LZwx5OO+00n/GmTZuqNG9BQYF27dpljDt16lTlngAAAAAACATCBT9ERESoS5cuxjgrK0ter7dKtQcOHPAZN2rUyGfcrVs3n3FqamqV5l2+fLncbrcx7tq1a5XqAAAAAAAIFMIFPw0bNsy4XVhYqI0bN1apLi0tzWdc9pCHdu3aqWPHjsb422+/rVJw8c033xi3HQ6HhgwZUqV+AAAAAAAIFMIFP40aNcpnPHPmzBPW5OTk6IsvvjDGrVq10sknn3zcdsOHDzdub9u2TfPnz690Xrfb7XOZyz59+qh58+Yn7AcAAAAAgEAiXPBT586ddeGFFxrjf//739q5c2elNY888oiys7ON8bXXXlvudhMmTFBU1B+nZ7rnnntUXFxc4bzPPPOMz9q33377CfsHAAAAACDQCBdMeOqpp+R0Hn3qDh8+rAsvvFBbtmw5bjuPx6Onn35azz77rHFfw4YNdccdd5Q7b5s2bXTzzTcb47Vr12rMmDEqLCw8btsZM2Zo4sSJxjg5OVmXX3656ccEAAAAAIBZXIrShG7duumFF17QbbfdJklav369OnfurJEjR6p3796KjY1VRkaG5syZo3Xr1hl1TqdTH3zwwXEnczzWY489pkWLFmn16tWSpFmzZmnJkiW65ppr1K5dOx06dEhffPGFfvjhB6MmISFB06dPl8PhCNIjBgAAAACgYoQLJv31r39Vdna2/vnPf6qkpEQFBQV6//339f7775e7fb169TR9+nQNHjy40nnr1q2rzz77TEOGDNHatWslSTt37tQTTzxR7vaNGzfW7NmzuQQlAAAAAMA2HBZhwf3336/U1FSdd955xmESZUVHR+v666/Xzz//rKFDh1Zp3pYtW+qnn37SQw89pKZNm5a7TUxMjK6++mqtW7dOAwcONP0YAAAAAACwyuGtyvUOcUJ79uzRkiVLtGvXLmVnZ6thw4Zq3769+vfvr5iYGNPzut1upaSkaMuWLcrMzFRCQoJat26tgQMHql69egHrf7BzdMDmqu5cSYkhW8udnhGSdcw+plD1F0qhfC5C+Vo63KtFyNZKWL7L75pwf/7MMPv+8AxI9rvGmZJmai38wczryczP2MzPV5LyWkT7XRM3c6mptcww87iidhw0tVZN/N0TSuH+75hvPLOC0AmAcMBhEQHSvHlzjRgxIuDzulwuDRo0SIMGDQr43AAAAAAABAKHRQAAAAAAAEsIFwAAAAAAgCWECwAAAAAAwBLCBQAAAAAAYAnhAgAAAAAAsIRwAQAAAAAAWEK4AAAAAAAALHHZ3QBqH1dSot817vSMIHQSODsvbWWqrtmLoXlcoXz+zPx8pfD/GZsRyscUF8K13KFapwa+JiRpX/dYv2ta7gjv91Uo3/eeAcmm1ioyUeM00Z8zJc3ESlKCmecwhL9PzTyuUH1WSFL65L5+1yQ9mGpqrVD9Oybztn5+10hSsxeXmKoDAKvYcwEAAAAAAFhCuAAAAAAAACwhXAAAAAAAAJYQLgAAAAAAAEsIFwAAAAAAgCWECwAAAAAAwBLCBQAAAAAAYAnhAgAAAAAAsIRwAQAAAAAAWOLwer1eu5uA/QY7R/td40pKNLWWOz3DVJ2/0if3Dck6kpT4Vb6pOmdKWmAbqUC4/6xCyexzESpFrRqaqttzZ5HfNS2GbzC1lhmZt/Xzu6bZi0uC0EngVIf3lZkea+L7HkD4+MYzy+4WAAQJey4AAAAAAABLCBcAAAAAAIAlhAsAAAAAAMASwgUAAAAAAGAJ4QIAAAAAALCEcAEAAAAAAFhCuAAAAAAAACwhXAAAAAAAAJY4vF6v1+4mYL/BztEhW8uVlOh3jTs9IwidBI5nQLKpuj13Fvld02L4Br9rzDznZpn9WWXe1s/vmmYvLvG7xuxzUdSqod81zpQ0U2vVROH+vjfzHjb78zXzXJh5/ZnF6/YP4f66ranMvB+jdhz0u8bszypUnxdm/20R7mt945llai0A4Y89FwAAAAAAgCWECwAAAAAAwBLCBQAAAAAAYAnhAgAAAAAAsIRwAQAAAAAAWEK4AAAAAAAALCFcAAAAAAAAlhAuAAAAAAAASwgXAAAAAACAJS67G0D15UpKNFXnTs8I2VpmmOnPmZJmaq0WKf7X5Fzex++auJlL/V8oxFp+usPvGreJdcz8fCVJrRqaq/OTZ0CyqbqoHQf9riky+ZjMrLXhvmZ+15xyk7mflZnn0Mx72Mx70Syz72Ezn51m3lc1VU38fRVKpv+dYOL9GMrX7b7usX7XNDPx+97svy3MCOVaAGou9lwAAAAAAACWEC4AAAAAAABLCBcAAAAAAIAlhAsAAAAAAMASwgUAAAAAAGAJ4QIAAAAAALCEcAEAAAAAAFhCuAAAAAAAACxx2d0Aqi93ekaNXMuVlOh3jdn+zKwVN3OpqbXCXah+xmaec0nSjoN+l8Qsbux3ze6Xov2uOaqh3xX7useaWqmJiZr66yNNrRUqngHJfteYfS/mXN7HVB1qtlD+njMjlL8bw13LT3f4XeMOQh8AEG7YcwEAAAAAAFhCuAAAAAAAACwhXAAAAAAAAJYQLgAAAAAAAEsIFwAAAAAAgCWECwAAAAAAwBLCBQAAAAAAYAnhAgAAAAAAsIRwAQAAAAAAWOKyuwEg3LjTM/yucSUlhmytnMv7mFrLjITlu0K2VlGrhn7XRO046HeNmefcrOyz/K9JSIo1tZaZ56/lpztMrWXmOWyiZFNrmeFMSfO7xsx72O13xVFm3ldm1wrV51ko31dmP2/NvEfMcJt4/UmSZ0Cy3zVmXutmhfJnbOb3XNzMpX7XhPK1FGViHbPPudnHZUao3lcAqgf2XAAAAAAAAJYQLgAAAAAAAEsIFwAAAAAAgCWECwAAAAAAwBLCBQAAAAAAYAnhAgAAAAAAsIRwAQAAAAAAWEK4AAAAAAAALHHZ3QBQE7jTM0K2VtzMpSFbyx2ylSSniefQTH+upEQTVeYUtWrof43JtaJ2HDRZGRoZF8X4XZOUYm6tUP6Mw52Z52LDfc38rjnlptB9Bpr9vI0K4Vpm5LWI9rsmLgh9VMQzINnvGmdKmqm1QvV7zsxntCRtuibS75rTHje1lCmhfN2aeV8BqLnYcwEAAAAAAFhCuAAAAAAAACwhXAAAAAAAAJYQLgAAAAAAAEsIFwAAAAAAgCWECwAAAAAAwBLCBQAAAAAAYAnhAgAAAAAAsMTh9Xq9djcB+w12jra7hbDhSkoM2Vru9IyQrRXuPAOSQ7JO1I6DpupC9bMy+/o73KuF3zUJy3eZWquoVUO/a8w877w/UJ7fXjvTVN1pj2f6XRPK12CofvdUh/fVP7es8rtmUrvuQeikfGZ+VptuaOl3TdKDqX7XVAffeGbZ3QKAIGHPBQAAAAAAYAnhAgAAAAAAsIRwAQAAAAAAWEK4AAAAAAAALCFcAAAAAAAAlhAuAAAAAAAASwgXAAAAAACAJYQLAAAAAADAEsIFAAAAAABgicPr9XrtbgL2G+wc7XdNzuV9TK21v5vD75oOb+z0u8adnuF3Tai5khL9rqkOj8uMUD0X5/6c63eNJC3sWtdUXah4BiT7XeNMSQt4H6idzLx/JamoVUO/a8y+bs30GMr+zMi8rZ/fNU1W5ZlaK2rHQb9rzP6+4vPsqOrwvjLjG8+skK0FILTYcwEAAAAAAFhCuAAAAAAAACwhXAAAAAAAAJYQLgAAAAAAAEsIFwAAAAAAgCWECwAAAAAAwBLCBQAAAAAAYAnhAgAAAAAAsMRldwOovuJmLjVVl7A80e8ad3qGqbXM8AxI9rtm0zWRptbq8G6x3zXOED4XZph5/iTJnZIW0D4qsmhYJ5OV4f28O0P0/MG6zNv6+V3T7MUlQejEfnktov0vurxP4BupgNnfc2a4kvz/3Vh3j8fvmj13FvldI0kthofuM9DM55mZ5y+U/7Yww2x/UWbWMrWSuecdQM3FngsAAAAAAMASwgUAAAAAAGAJ4QIAAAAAALCEcAEAAAAAAFhCuAAAAAAAACwhXAAAAAAAAJYQLgAAAAAAAEsIFwAAAAAAgCWECwAAAAAAwBKH1+v12t0E7DfYOdruFlBDuJISQ7aWOz0jZGuZsWvuaX7XxM+IN7fWeSV+10Ttc5laK+nBVFN1qLk8A5JN1TlT0gLaR6CZ+TwL988ls5/R9y/82O+aSe26m1or3Jl9vfsrasfBkKxjRVGrhn7XLFj0QBA6ARAO2HMBAAAAAABYQrgAAAAAAAAsIVwAAAAAAACWEC4AAAAAAABLCBcAAAAAAIAlhAsAAAAAAMASwgUAAAAAAGAJ4QIAAAAAALDEZXcDQFW4khLtbqFSh3u1MFWXsHyX3zWbbmjpd03iV/l+10iSMyXN7xp3eoaptcz8jM3UhLK/FsM3hGSd/63md8X+biaXMiHn8j5+18TNXGpqrczb+vld0+zFJX7XeAYk+10jmXtfmX1dmHm9m3pfmXhM1YHZzwszQvV5ZvYxTWrX3e+aUL5HQimvRbTfNbG7CvyuCeXrz7RWDe3uAEAYYc8FAAAAAABgCeECAAAAAACwhHABAAAAAABYQrgAAAAAAAAsIVwAAAAAAACWEC4AAAAAAABLCBcAAAAAAIAlhAsAgP9v787Doyrv/o9/JgwhGxAoEExiiBCggGBkDQgE2Uq1YuEB3NCfWmzRutHWrUrRLlJ3HrDuIipCi1IqVrQoixAJggGKgEW2ECAQdrIRsp3fH16dh4GE5L5PMtner+viunJPzud875lzz0n45swMAAAA4ArNBQAAAAAA4IrHcRynpieBmjciaHxNTwGV5I2PM84Up2cErJYtmzmWDkw0zhzpGWackaSomWuscgi8QD5H8L1AnisKY1ta5TJGhRpnWm02/xUpYsFa44xk9xie7BttnAnk/GzZ3K/MYSXGmU6/WG+ckeweC5t1O/zlL40zkrS8e7hxJpDH95PdzwWsFoDA4soFAAAAAADgCs0FAAAAAADgCs0FAAAAAADgCs0FAAAAAADgCs0FAAAAAADgCs0FAAAAAADgCs0FAAAAAADgCs0FAAAAAADgiremJ4CGp3RgonHm0K8LjTNxU3KNM5K07ZEo40z0skZWtSIWrLXKmcqdkGSVs5mfzfGVpKD0DOPMkZ5hxpmYxfuNM5JUbJVCTSi2WEv1lc1z3+Z5b/uYe+PjjDM2z3tJivs03ziTHx1iVcuGzWMYEcC1bjM/258HYZkFxpmu048bZ2zP6zaPhc3PuMV/GGackaQIBe45DABn48oFAAAAAADgCs0FAAAAAADgCs0FAAAAAADgCs0FAAAAAADgCs0FAAAAAADgCs0FAAAAAADgCs0FAAAAAADgCs0FAAAAAADgiremJ4DawRsfZ5wpTs+ohpmULXrMNuNMsWWtrtPNM4WxLS2rmbN53CNta1lkgvcfD1itqJlrjDODv8mzqCQt7x5ulauPAnW+sKljWyuQSgcmGmeCUjZZ1Ypcl2mcsXku2twnSZLF+SJh/HdWpXaqk3Em/FCpVa1Aqe0/u61/HljMcecf+xtn4h+r3eeKoz08VrmwzMSqncgF2J6bANRPXLkAAAAAAABcobkAAAAAAABcobkAAAAAAABcobkAAAAAAABcobkAAAAAAABcobkAAAAAAABcobkAAAAAAABcobkAAAAAAABcobkAAAAAAABc8TiO49T0JFDzRgSNr+kpVLnMRV2tctFjtlXxTKqWNz7OOFMY27IaZlLzglI2BaxW1r0DjDNRM9dUw0zKZrMuitMzqmEmZbN5Pto+F3MnJBlnIhasNc7YrAlJilm83zhje6xs1oWNQK6lQArk+fZIzzDjDOcYd2yfwzZab8g3zgTyZ5yt0oGJxpllqx6t+okAqBW4cgEAAAAAALhCcwEAAAAAALhCcwEAAAAAALhCcwEAAAAAALhCcwEAAAAAALhCcwEAAAAAALhCcwEAAAAAALhCcwEAAAAAALjicRzHqelJoOaNCBofsFqlAxONM0Epm6p8HrWBNz7OOFOcnlENMylbII+VzWNhI5CPH9BQNF3dyio3JWapceaXM+62qhV+qNQ4c9E9O40zOYOOGmcku/OtjebT91vlbO6X7Xmd8/T3Mhd1tcpFj9lWxTOpWp+Vvl/TUwBQTbw1PYH64PDhw1q/fr327t2rkydPqnHjxmrRooW6deumxMREhYaGWu+7pKREKSkp2r17t7KystSiRQvFxsYqOTlZERERVXgvAAAAAACwQ3PBhU8++URPP/20Vq5cWe424eHhuu666zR16lTFx8dXet+FhYV68skn9corrygrK+u874eFhWncuHF65pln1KZNG4vZAwAAAABQNXjPBQslJSX62c9+pquuuuqCjQVJysvL0+zZs3XppZfq/fcrdxnYwYMHlZSUpCeeeKLMxoIk5efn65133lH37t21evVq07sAAAAAAECV4coFC7/85S81e/Zs39jj8Wjo0KEaOnSoLrroIp05c0bbt2/XwoULtW/fPknfNxluuOEGtWzZUsOGDSt33/n5+brmmmu0ceNG320xMTGaOHGiOnTooGPHjumTTz7RqlWrJH3/koxrr71Wqamp6ty5czXdYwAAAAAAykdzwdBXX32lV1991Tdu0aKFFi1apOTk5PO2feaZZ/TQQw/p+eefl/T9FQ933nmntm/fLo/HU+b+H3vsMaWlpfnG48aN09y5c9WkSRPfbQ8//LDmzZunW2+9VUVFRTpx4oRuvPFGff311+XuFwAAAACA6sLLIgy98847fuM333yzzMaCJHm9Xj333HP6yU9+4rttx44dWrt2bZnbZ2Rk6KWXXvKNe/TooXnz5vk1Fv7rxhtv1O9//3vfeMOGDfrggw+M7gsAAAAAAFWB5oKhs68qaNOmjX76059WmJk8ebLfeNOmTWVu9/LLL+vMmTO+8dNPP63GjRuXu9/f/OY3iomJ8Y1nzJhR4VwAAAAAAKhqNBcMHTt2zPd1hw4dKvUyhISEBL/xiRMnytxu0aJFvq/btWunkSNHXnC/Xq9Xt912m2+cmpqqQ4cOVTgfAAAAAACqEs0FQy1btvR9nZeXV6nMuduV9dGRu3fv1vbt233j4cOHV6pxMWLECN/XjuPok08+qdScAAAAAACoKryho6H+/ftr3bp1kqStW7fq8OHDZTYLzrZ8+XK/8aBBg87bZvPmzefVqYy+ffvK6/WquLi4zP3URkEpmwJSp3RgolXOZn5Z9w6wqhU1c41VzlTuhCSrXOS6TPNQfJxVrcLYlhVvdI5ArSXJbj0F7z9unClOzzDOSFL6Hyt3zjhbwhsHrGrZzLHp6lbGmZxBR40zkvTdq32MM8FHzH8cdk/eYZyRpIOzEire6BxhmQVWtWzWoI2cQXbr9vfqaZyJUmDOm5KUs8A847U9B1pkbM6BOef/CgJDNsf4ZN9o40z0mLLfo6s6BPT3BAD1FlcuGPrFL34hr/f7X0JLSkp0//33y3GccrdPT0/X008/7RuPHj26zI+M3LZtm9+4Q4cOlZpPSEiIoqP/7wfWt99+W6kcAAAAAABVheaCoS5duujJJ5/0jefPn69Ro0ZpzZo1Kikp8d1+6tQpvfHGG+rXr5+OHDki6fuGwdkfY3m2PXv2+I3btWtX6Tmdve3u3bsrnQMAAAAAoCrwsggLDzzwgCIjI/XAAw/o1KlTWrp0qZYuXarQ0FC1bt1ahYWFysrK8l3R4PF4NG7cOL344ovlvoQiOzvbb9yiRYtKzycyMtL3dU5OjvkdAgAAAADABa5csHTHHXcoPT1dkyZN8r3x4unTp5WRkaFDhw75GgstW7bU7NmztWDBggu+N0Nubq7fOCQkpNJzCQ0NLXc/AAAAAABUN5oLlj7++GMNHDhQb7zxxgXfc+H48eO67bbb1KtXL6WlpZW7XUGB/5t1BQcHV3ouTZo08X19+vTpSucAAAAAAKgKNBcsPPHEE/rJT36irVu3SpI6d+6s1157Tbt27VJBQYFycnK0adMm/f73v/e9vGHDhg0aMGCAPv300zL3ee6VCoWFlX/f6DNnzvi+PvsqBgAAAAAAAoH3XDA0f/58Pf74477xtddeq/nz5/v9p75Jkya67LLLdNlll+n//b//p6FDh2rXrl0qLCzU9ddfry1btig2NtZvvxEREX7jgoKCSr804uyrFc7dDwAAAAAA1Y0rFwwUFxfrwQcf9I0vuugivffeexe8WiAuLk5/+9vffO/LcOrUKT311FPnbdesWTO/8YkTJyo9r5MnT/q+btq0aaVzAAAAAABUBa5cMLB69Wrt37/fN7799tsVHh5eYa5Xr17q37+/1qxZI0n6+9//rlmzZvltc8kll/iNMzIyzrutPHv37vV93b59+0plGoKglE0BqxU1c03Aannj44wzEQvWWtUqtsjYzE+SgvcfN84Ecn6h0/dXvNE50rZV7jl8tuAjMcYZSeqevMM4M+XGpVa1bp/3S+NMq1nlvzdNecIGxla8URmab21snIlZbH58D25OMM5IUuS6TKucjeL0DONM7oQk40yERZ36KvTdfKtc8SDzx7B0YKJxJpA/GwPJ5txu8/ywZftzOFAC+XsCgPqLKxcMbN682W/cq1evSmd79+7t+zozM9PvagNJ6tq1q994586dldpvQUGBMjP/7xfVLl26VHpOAAAAAABUBZoLBvLy8vzGJu9vcO4VDud+qkOPHj38xqmpqZXa77p161Rc/H994+7du1d6TgAAAAAAVAWaCwb++8kP/3Xw4MFKZ8/dtmXLln7j9u3bq3Pnzr7x559/fsGPuPyvzz77zPe1x+PRVVddVek5AQAAAABQFWguGEhI8H997dKllXu9cklJiZYtW+Ybt2vXTk2aNDlvuzFjxvi+3rt3b4X7Ly4u1ltvveUbJyUlqW3btpWaEwAAAAAAVYXmgoFBgwYpLCzMN/7b3/6mjRs3VpibNWuW9u3b5xuPHDmyzO0mT56s4OBg3/jBBx9UUVFRuft99tlndeDAAd/4vvvuq3AuAAAAAABUNZoLBkJCQjR58mTfuLi4WFdffbVWr15d5vaO4+ill17SAw884LutUaNGuv/++8vcvl27drrzzjt9482bN+umm27SmTNnztt2/vz5mjZtmm+cmJioCRMmmN4lAAAAAABc46MoDU2dOlVLlizRf/7zH0nfv5fC4MGDlZycrGHDhikmJkZFRUXatWuXFi9erO3bt/vlH3300fM+GeJsf/rTn7Rq1SrfFRHvv/++1qxZo5tvvlnt27fXiRMntGTJEn3xxRe+TGRkpObNmyePx1MN9xgAAAAAgAujuWAoMjJSS5cu1ZgxY5SWlua7/YsvvvD7D/+5goKC9NBDD+mJJ5644P7Dw8P10Ucf6aqrrvJ99OWBAwf05z//ucztW7VqpQ8++ICPoAQAAAAA1BheFmHh4osv1tq1a/Xiiy9e8CoESfJ6vRozZoxSUlL05JNPVmr/MTExWr9+vaZOnao2bdqUuU1oaKgmTpyoLVu2KDk52fg+AAAAAABQVTxOZT7vEBeUkZGhr7/+WpmZmcrOzpbX61WLFi3UsWNH9e7dWxEREdb7Li4uVkpKinbv3q2srCxFRkbq4osvVnJyspo2bVpl92FE0Pgq21dtkTshySqX19a85xazeL9VrZN9o40zEQvWWtWyUTow0TgTvP+4VS2bx+JoD/OXAsU/lmqckaSsewcYZ1pvyDfOBKVsMs7Ysjm+kt0xLk7PMM7Yzi+Qj6ENb3yccWbnpBirWq02m/+ID8ssMM7kR4cYZ2xrHekZVvFGZYiaucY4Y3OsbNa6ZL/eTQXy+WFz3pTszp02ArlubdiudZvfSWzXrc1z5JPdz1nVAlD78bKIKhAXF6e4OPOTa2V4vV4NGTJEQ4YMqZb9AwAAAADgFi+LAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArngcx3FqehKoee1ef9o403V6llWtj9csNs50nn2ncSb+sVTjjK2sewdY5UquPGmcyT0cbpzp9Iv1xhlJarq6lXHm9M1hVrUKY1saZ4JSNhlnSgcmGmdsa6HusFkXtmvCGx9nnClOz7CqZSOQ87OpZcvmHBO8/7hxJpDHymbdHulpd44OP1RqnIlcl2lV62TfaONMxIK1VrUCJZBr3WYN2s7P5nm1bNWjVrUA1H5cuQAAAAAAAFyhuQAAAAAAAFyhuQAAAAAAAFyhuQAAAAAAAFyhuQAAAAAAAFyhuQAAAAAAAFyhuQAAAAAAAFyhuQAAAAAAAFzx1vQEUDt0nZ5lnClOz7CqdfWA0caZuNjTVrVqu7gpucaZ4vRt1TCTsm0/2sY402h0pFWt1hvyjTPe+DjjzM5RocYZSYpPsYqhBtisi+KUTVU/kXIUxrY0D9lkLNk8Ft+92seqVkSbPONM4dbmVrVCD3uMM60t6gRZ/mz83e4NxpkXDrQyztg9elLOoKPGmdDV5vOTJN2caRwpHJhonAmyfN6XWtSy+dnTarNjnJGkCMs1aMP2MQRQP3HlAgAAAAAAcIXmAgAAAAAAcIXmAgAAAAAAcIXmAgAAAAAAcIXmAgAAAAAAcIXmAgAAAAAAcIXmAgAAAAAAcIXmAgAAAAAAcIXmAgAAAAAAcMVb0xNA7VCcnlGrawVZZLzxccYZyW5+p9s4VrUKY1saZ46MjjXOhB8qNc5IUtyUTONMxgtWpZTRprlxprB1lHGm+VaPcQb+bJ5bgTzH7JwUY5Eyz8Q/lmpRx07w/uNWuQMW54uY/ebHN+HdIuOMJGWMMn/e24pZvN84k/FChHGmrRKNM5L04MNJxpm8tuZ/I7L9eRWvo8aZg7MSrGplv5BtnGn7nHkd698TUjYZZ+Is1sWhXxcaZyQpYoFVzErpwMTAFQNQ63HlAgAAAAAAcIXmAgAAAAAAcIXmAgAAAAAAcIXmAgAAAAAAcIXmAgAAAAAAcIXmAgAAAAAAcIXmAgAAAAAAcIXmAgAAAAAAcMVb0xNA7TD0mzzjzPLu4Va1cickGWciFqy1qhUorTY7VrmglE3GmagU8zre+DjzkKSdk2LMQ1utSlnp1XWPceabIx2rYSYNS3F6Rk1P4YLiH0ut6SlcUH50iHEmKMXuMW+9oaVxxub4Nn833zgjSQk3hxlnrM5LlrmEKQeMM4Wx5o+5JOW1Nf97T9TMNcaZ9D/2N87YyhxWYpXrNGabcSaQv8fYsPl5r193tar1r0zzWpd81MeqVqdfrLfKAaifuHIBAAAAAAC4QnMBAAAAAAC4QnMBAAAAAAC4QnMBAAAAAAC4QnMBAAAAAAC4QnMBAAAAAAC4QnMBAAAAAAC4QnMBAAAAAAC4QnMBAAAAAAC44q3pCaB2WPyHYcaZCK21qpXX1rynNfqbPOPM53e2NM5IUn7faONM5rASq1oJmYnGmebT9xtnth+NMM5IUvyYVOOMNz7OqtZJi8e9z7V7jTOn3wgzzkjStlf7GGe6Ts8yzhSnZxhnJPvH3UZhrPlzKyhlU9VPpBylAxONMzbzs33Mbc4XXdfZ1Sq0yNjcr1OP2J1vg9I3GWfiPrWrFbz/uHHG6vlo8fyQpJjF5ud2WRyr0MMe8zqWmm9tbJX7zuJ8q+7rjSO5E5LM68ju9xib4xs9ZptxRpI6//FO81DrYqtaAHA2rlwAAAAAAACu0FwAAAAAAACu0FwAAAAAAACu0FwAAAAAAACu0FwAAAAAAACu0FwAAAAAAACu0FwAAAAAAACu0FwAAAAAAACueGt6AqgdItdlGmeKLWvFLN5vnFm1uItxZvhHXxpnJGn2h8ONM7267rGqtbNnJ+PMkffNM42ME9/zxscZZw6MjrWqFX6o1Dhjc6w0yTwiSdHLHLtggBTGtjTOBKVssqqV3zfaOBM2MNGqlo2MUaHmoVH9jSPxj6Wa15EUvcz88StOz7CqlTEpxjgT/5h5rWDjxPcKLdbFkZ5hVrVaW2SOWJzPomausahk9zPV5hxtc66VpFKLY5Uw/jurWjstfs7lTkgyztj87iNJYRbnWxs2x1eSQg97jDPxj623qmWzLgDUX1y5AAAAAAAAXKG5AAAAAAAAXKG5AAAAAAAAXKG5AAAAAAAAXKG5AAAAAAAAXKG5AAAAAAAAXKG5AAAAAAAAXKG5AAAAAAAAXKG5AAAAAAAAXPHW9ARQd/1u9wbLpHnuhQMjjTOL/zDMOCNJcZmnjTPfqKNVrYTF+61ytVmM5X3a9kiUcSZ6WSOrWjYiFqw1zhRXwzzKE5SyKWC1bB6LQIpPMc944+OMM7bHNyyzwDiTOyHJqlbcp+bns/qq+XTzc9NnHT43zvxoZqJxxpbNebPr9MxqmEnZcgYdtcqdevUS48zpNua/0kauM45Ikoa//KVxZv3JdsaZtG3mj4MkJbybb5WzEbz/eMBqAaj9uHIBAAAAAAC4QnMBAAAAAAC4QnMBAAAAAAC4QnMBAAAAAAC4QnMBAAAAAAC4QnMBAAAAAAC4QnMBAAAAAAC4QnMBAAAAAAC44nEcx6npSaDmlR7qGLBa3b+6MSB1Gq2ItMr95f4XjTMpeZ2tai3vHm6c8cbHGWcOjI41zkhSzOL9xpni9AyrWqUDE40zzaebzy9t2yXGGUnq1XWPcSZn0FHjjM3xlewfdxu2czQVyPuUde8A40zUzDVWtXInJBlnMoeVWNVqvrWxccb2fgWK7fob/NG3xplAnaMlaeekGONM/GOpxplAnmNszuuSlB8dYpyJWLDWqlZ9ZHM+Cz9UalUrr6353yk3z5hiVQtA7ceVCwAAAAAAwBWaCwAAAAAAwBWaCwAAAAAAwBWaCwAAAAAAwBWaCwAAAAAAwBWaCwAAAAAAwBWaCwAAAAAAwBWaCwAAAAAAwBWaCwAAAAAAwBVvTU8AtcOPohONM974OKtazfo2M85Erss0zvx2+VzjjCRN/vdE40znVoetannjw4wzxekZxplT3aKMM5IUNdO8Vvof+1vVKmxdbJyZG7PUOJMS2dk4I0mL/zDMOBOho8YZm+MbaAdGxxpnomauMc7YnmNstN6QH7BaeW3N+/oJ7xZY1Tr06zzz0EzzSNa9A8xDksIPlRpnwjLtHovZHw43zhS+an5eSni3yDgjSa02O8aZ0oGJ5oX2HzfPWGo+fb9Vbue2S4wz0Uoyzhzt4THOSFL8Y6nGmUCez2644zPjzKpruljVirD5mTVjilUtALUfVy4AAAAAAABXaC4AAAAAAABXaC4AAAAAAABXaC4AAAAAAABXaC4AAAAAAABXaC4AAAAAAABXaC4AAAAAAABXaC4AAAAAAABXvDU9AdQOmYu6GmcmJqy3qjV3Z4RxJiyzpXHmlzPuNs5IUufx3xln+kTutaq1Sl2scoGSde8A40zCG/urYSZle6HryIDVCsssCFit2i5q5pqA1ClOzwhIHUna+UiUcaZTil2tkitPmoc2BFvVavuceS53QpJx5nQbxzgjSa03mD+v8qNDrGq12mwzx0YWmSKLjJQ5rMQ40+kXm8wLxceZZyztfL+TVS5hQ755rZvN60Qvszm+dmzOZza/m0nS+pPtrHI2vAFcTwBqP65cAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArngcx3FqehKoed0+nBawWs3mNzPOHO3hMc7cfu3nxhlJWn+ynXFm+9E2VrUC9VgUti42zkhS9LJGxpm8tnY9y9NtzE9FNver6/Qs44wk7ZwUY5yJfyzVOJM7Ick4I0mR6zKNM4WxLa1qBe8/bpUzZTu/nTc3Ns5MHrDSOLPqmi7GGUna9kiUcab5VvP7JEmtN+QbZ2yOr+2xCkrZZJwpHZhoVetIzzCrnKnwQ6UBqSPZPe9P9o2uhpnUvLDMgpqewgVljAo1ziS8ccCqls3zMT86xKqWzeO+bNWjVrUA1H5cuQAAAAAAAFyhuQAAAAAAAFyhuQAAAAAAAFyhuQAAAAAAAFyhuQAAAAAAAFyhuQAAAAAAAFyhuQAAAAAAAFyhuQAAAAAAAFyhuQAAAAAAAFzx1vQEUDu8ctlc48wVIXa9qe660Tizvd8848yXBaXGGUkaGL7dOPOCRlrV0j2HjSOZ2y4xzvTqusc4I0kHlyUYZ8IP2T3uCeN3Gme2H21jnMl4IcI4I0nb+71snOmsO40zrTY7xhlJOjA61jjTekO+Va3BH31rnFn8h2FWtWxEtMk2zqy6potx5mTfaOOMJHWdnmmVq83yo0OscnbPRjtRM9cYZ3InJBlnItfZHd/C2JYByUQsWGuckSRvfJxxxmZ+knSkZ5hxJmLBJuNM6cBE44xkt94T3jhgnClOzzDOSFK+xbkpLLPArpblcx9A/cSVCwAAAAAAwBWaCwAAAAAAwBWaCwAAAAAAwBWaCwAAAAAAwBWaCwAAAAAAwBWaCwAAAAAAwBWaCwAAAAAAwBWaCwAAAAAAwBWP4zhOTU8CNW9E0HjjTOnARKta+dEhxpm8tuZ9sL/c/6JxRpJun/dL88y1n1vVmv3h8IDUWn+ynXFGkna+38k4c6pbkVWt5lsbB6RWr657jDOSdPrmMONMcXqGVS18r+nqVla5g7MSjDM255iYxfuNM5K07ZEoq5yN6GWNjDMRC9YaZ2yPVdq2S4wzNucKSUoY/51xZkrMUuPML2fcbZyRpBvu+Mw4M//1EcYZ23V7YHSscSb8UKlVrbDMAuPM8Je/NM7Y/AyWpFabA/Or80X37LTK9YncW8UzKZ/NGtw8Y0o1zARAbcCVCwAAAAAAwBWaCwAAAAAAwBWaCwAAAAAAwBWaCwAAAAAAwBWaCwAAAAAAwBWaCwAAAAAAwBWaCwAAAAAAwBWaCwAAAAAAwBWaCwAAAAAAwBVvTU8AtcO/MjdZpGwydp461tE4k5LXuRpmUraB4dutcuuT2xlnZn843DjTPXmHcUaSTnUrMs5MHrDSqtbAEeaP4eR/TzTO9Inca5yRpFXqYpULlNwJScaZsMwCq1r50SHGmaM9PMaZhJsPGGckSX3NI1Ez1xhnDtw7wLyQpK7T95vXGh1rVStzmPlzuNMC8zo5g46ahyRN/sb8+WhzrpCk2+f90jiTcq35/GIWmx9fSVq12OIcM9o8crJvtHlIUusN+caZIz3DrGpddI/5Y7jqGvPHL0F255jBH31rnLH5PcHmZ5wknXrE/Hxhc16XpNaZ5usCQP3FlQsAAAAAAMAVmgsAAAAAAMAVmgsAAAAAAMAVmgsAAAAAAMAVmgsAAAAAAMAVmgsAAAAAAMAVmgsAAAAAAMAVmgsAAAAAAMAVj+M4Tk1PAjVvRNB444w3Ps6qVnF6hnEmd0KScSYss8A4I0n50SHGmYgFa61q2dyv7BuyzescDjfOSFL0skbGmYvu2WlV6+CsBONM5LpM48yB0bHGGUna9PBLVrna7MuCUqvc7fN+WcUzKVv35B1WuSkxS40zLxwYaZz5oMPnxhlbV9w/2Spncx4c/vKXxplV13Qxzkh2Pw9slQ5MDEidzxbMscp1nn2nceb2a83X4PLudj8Pmq5uZZw5fXOYVa3BH31rnLFZg6Hv5htnJOnUI+Y/Rx5/Z7Zx5vftexpnJLvfzwpjW1rVsrlfg+J3WdUCUPtx5QIAAAAAAHCF5gIAAAAAAHCF5gIAAAAAAHCF5gIAAAAAAHCF5gIAAAAAAHCF5gIAAAAAAHCF5gIAAAAAAHCF5gIAAAAAAHCF5gIAAAAAAHDFW9MTACrjaA+PcSa0bZhVrZjF+40zJyckWdX6csYrxplxu4abF2plHpGkb450NM48HbPUqtbEYZcYZ472iDHO3H7tZ8YZSbrkozuMM3uued0489Qx88dckh76wQ6rnI3tt79snOn+1Y3VMJOyvXBgpHHmgw6fG2ds1oQkzR3xqnFm9NRldrV29jHOzH99hHFm05qXjDOS3fnsmy/sniOFrYuNMzbH6ssC44gkKbjbKePM+pPtjDPpf7R7/LZ3MH/ed550p1WtjJ0RxplXls81zkz+90TjjCS98s5s44zNeSnr3k7GGUlqvSHfONN8uvnvPpLdY7g13qoUgDqAKxcAAAAAAIArNBcAAAAAAIArNBcAAAAAAIArNBcAAAAAAIArNBcAAAAAAIArNBcAAAAAAIArNBcAAAAAAIArNBcAAAAAAIArHsdxnJqeBAAAAAAAqLu4cgEAAAAAALhCcwEAAAAAALhCcwEAAAAAALhCcwEAAAAAALhCcwEAAAAAALhCcwEAAAAAALhCcwEAAAAAALhCcwEAAAAAALjirekJoHbavHmztmzZogMHDqhJkyaKiYlRv379FBsbW9NTQy1XUlKilJQU7d69W1lZWWrRooViY2OVnJysiIiImp4eyuE4jnbs2KGtW7dq3759ysnJUXh4uH7wgx+oZ8+e6tKli4KC3PWjWRt1S15enrZt26b09HQdPHhQubm5CgoKUvPmzRUfH69evXqpTZs2rmqwJlAW1gUA1FEOcJZ58+Y5Xbt2dSSd9y8oKMgZOnSok5aWVtPThIWSkhJny5Ytzpw5c5y7777bSUpKckJDQ/2O8YoVK6z3f+bMGWfatGlOVFRUmesnLCzMueWWW5ysrKyqu1NwJTs725k7d64zYcIEp1WrVmUet//+i4qKch577DHnxIkTxnVYG3XHrl27nEmTJjk//OEPnaCgoAuuCUnOwIEDnffff9+4Dmui/tm0aZPj9Xr9jmNycrLRPlgXAFC30VyA4ziOU1RU5Nx0000V/iIpyWncuLEza9asmp4yDIwdO9YJDw+v8NjaNhcyMzOdyy+/vFLrp02bNs6qVauq9g7CWHZ2thMSElKpY3b2v5iYGOeLL76odB3WRt3y0UcfGa8JSc7VV1/t5OTkVKoGa6L+KS4udnr37n3e8TNpLrAuAKDu8ziO4wgN3l133aWXX37ZNw4LC9NNN92kxMREFRYW6quvvtLChQtVVFQkSfJ4PJo/f76uu+66mpoyDMTHx2vv3r0VbrdixQoNGTLEaN/5+fkaPHiw0tLSfLfFxMRo4sSJ6tChg44dO6ZPPvlEq1at8n2/RYsWSk1NVefOnY1qoeqcPHlSLVq08LutU6dOGjx4sDp27KhWrVopLy9PGzdu1MKFC5Wdne3bLiwsTJ999pkGDBhwwRqsjbrnn//8p6655hpJUqtWrZSUlKQf/vCHiouLU9OmTXXmzBnt27dPq1ev1urVq3X2rxCDBg3SihUr1KhRo3L3z5qon5599lk98MAD592enJyslStXVphnXQBAPVHDzQ3UAh9++KHfXwS6du3qZGRknLfdpk2bnOjoaL/LEw8ePFgDM4apdu3a+Y5bkyZNnD59+jiTJ092Jk6c6PrKhSlTpvjtY9y4cU5BQcF527333ntO48aNfdv17NnTKS0trYJ7BxsnTpxwJDnNmzd3fvWrXzlbt24td9vjx487Y8aM8TvOHTp0KPM4n421Ufd8/fXXzp/+9Cfnm2++qdS2HTp08DvGL7744gUzrIn6Z9euXU5YWJgjyWndurXzgx/8wPjKBdYFANQPNBcauJKSEufSSy/1axjs2rWr3O2//PJLv9fh3nXXXQGcLWxNnTrVee2115y0tDSnsLDQd/tbb73lqrmwd+9ep0mTJr58jx49/PZ/runTp/vVW7Bgge1dgks5OTnOI4884hw/frxS2xcVFTnJycl+x2/OnDnlbs/aaBh27Njh9/Kayy67rNxtWRP107Bhw3zH6N133/VrZlemucC6AID6g+ZCA/fpp5/6/ZB++OGHK8xcd911fn8Fz87ODsBMUR3cNhcefvhhv/ynn356we2LioqcmJgY3/YDBgxwMXsEWmpqqt/xHj9+fLnbsjYajnOvainvihbWRP3z5ptv+o7P8OHDHcdxjJsLrAsAqD/cfa4Y6rxFixb5jSdNmlRh5o477vB9febMGX3yySdVPi/UDWevn3bt2mnkyJEX3N7r9eq2227zjVNTU3Xo0KFqmx+qVr9+/RQeHu4b79q1q9xtWRsNx7mveT927FiZ27Em6pesrCz95je/kSSFhIT4vW+TCdYFANQfNBcauCVLlvi+7tChgzp06FBhZtCgQQoJCfGNP/7442qZG2q33bt3a/v27b7x8OHD5fF4KsyNGDHC97XjODSn6hCPx+PXXMjLyytzO9ZGw5KTk+P7OigoSJGRkedtw5qof+6++26dOHFCkjR16lQlJCQY74N1AQD1C82FBuzkyZPat2+fb9y/f/9K5YKDg9WrVy/fePPmzVU+N9R+5x73yq6fvn37yuv1lrsf1F55eXk6cuSIb9y2bdsyt2NtNBwlJSVaunSpb9yzZ0+FhYWdtx1ron758MMP9cEHH0iSunXrVuYnRVQG6wIA6heaCw3Ytm3b/MaVuWqhrG23b9+u0tLSKpsX6gbb9RMSEqLo6Gjf+Ntvv63SeaH6LFq0yO+jB8v7jwBro+H47W9/qx07dvjG/71M/lysifrj1KlTuuuuuyR9fzXTq6++qsaNG1vti3UBAPULzYUGbM+ePX7jdu3aVTp79ranT5/m9Y4NUFWtn927d1fZnFB9SktL9fzzz/vdNmHChDK3ZW3UX2fOnFF6errmz5+vQYMG6emnn/Z97xe/+IWuu+66MnOsifrjwQcfVGZmpqTv34PpiiuusN4X6wIA6hdvxZugvsrOzvYbt2jRotLZc19Te/ZrbtEwVNX6Ye3UDc8995w2btzoG19zzTW6/PLLy9yWtVF/vPjii7rnnnsuuE3r1q31+OOP+/6aXRbWRP2watUqvf7665KkqKgoPfXUU672x7oAgPqF5kIDlpub6zc++00aKxIaGnrBfaH+q6r1w9qp/VJSUvToo4/6xs2aNdOsWbPK3Z610XD069dPL730knr27HnB7VgTdV9BQYHuuOMO30ujZsyYUeabd5pgXQBA/cLLIhqwgoICv3FwcHCls02aNPEbnz59ukrmhLqjqtYPa6d22717t8aOHauioiLfba+99toFL19mbdQfkZGRvk8S6tChg9q0aaNGjRr5vv/VV1+pV69eGjt27AVfHseaqPueeOIJfffdd5KkH/3oR7r++utd75N1AQD1C82FBuzcvxAUFhZWOnvmzBm/8blXMqD+q6r1w9qpvQ4ePKiRI0f6fULEE088Ue7r6v+LtVF/TJw4UTt37vT9y8rKUk5OjpYtW6axY8f6tlu0aJGSkpL8PoHobKyJuu3f//63nn32WUnfH4OXX365SvbLugCA+oXmQgMWERHhNz73LwgXcu5fCc7dF+q/qlo/rJ3a6dixYxoxYoR27drlu+1Xv/qVfve731WYZW3Ub6GhoRo6dKgWLlyot99+W0FB3/8qsXfvXt10001lZlgTdVdJSYl+9rOfqbi4WJI0bdo0XXLJJVWyb9YFANQvNBcasGbNmvmNT5w4UensyZMn/cZNmzatiimhDqmq9cPaqX1OnTqlkSNHauvWrb7b7rzzTj333HOVyrM2Go5bbrlFU6ZM8Y1Xr16tZcuWnbcda6LueuGFF5SWliZJ6t69u379619X2b5ZFwBQv9BcaMDO/ctDRkZGpbN79+71fR0aGqq2bdtW2bxQN1TV+mnfvn2VzQnu5eTkaNSoUdqwYYPvtttuu01/+ctfKr0P1kbDcu6nSfzzn/88bxvWRN106NAhTZs2TZIUFBSk1157TV5v1b0XOOsCAOoXPi2iAevatavfeOfOnZXOnn2pdOfOnX2XxaLhKGv9JCcnV5grKCjwfUa6JHXp0qXK5wY7eXl5uvrqq7V27VrfbTfeeKPeeOMNeTyeSu+HtdGwtGvXTpGRkb6/JJf1s4Q1UTcdOnRI+fn5kqRGjRpp4sSJFWYOHDjg+/qrr75SQkKCbzxixAi/92tgXQBA/cL/CBuwyMhIXXzxxb5xampqpXKFhYW+SySl7y+TRMPTo0cPv3Fl18+6det8r92VWD+1xenTpzV69GitXr3ad9u4ceP0zjvvGDcPWRsNz9nv3F9SUnLe91kTdV9RUZF27dpV4b+zj1dBQYHf9w4ePOi3T9YFANQvNBcauKuuusr39a5du7R79+4KM6tXr/Z706Wrr766WuaG2q19+/bq3Lmzb/z555/7Pv/8Qj777DPf1x6Px28NomacOXNGY8aM0fLly323jR49WvPmzfP72MHKYm00LLm5uTp69KhvHBUVdd42rAmUhXUBAPULzYUGbsyYMX7j119/vcLM2dsEBwfzQ70BO3v97N27V0uXLr3g9sXFxXrrrbd846SkJN6vo4YVFRVp/Pjx+te//uW77cc//rHef/99NW7c2Hq/rI2GY9GiRX5XK/Tu3bvM7VgTdU9iYqIcxzH6165dO18+OTnZ73v/+Mc/zqvBugCA+oPmQgM3YsQIv9c8zpo1S3v27Cl3+9TUVL3//vu+8e233867NDdgkydPVnBwsG/84IMPqqioqNztn332Wb/X4953333VOj9cWElJiW666SZ99NFHvttGjBihv//9737H1QZro+4pKipSYWGhUebgwYN69NFHfWOv16trr722zG1ZEygL6wIA6hEHDd6iRYscSb5/3bp1czIyMs7b7t///rcTExPj2y40NNQ5cOBADcwYVeWtt97yO/YrVqww3sd9993nt4/x48c7BQUF5203b948Jzg42LddYmKiU1paWgX3AjZKS0udW265xe/YXXnllU5+fn6V1WBt1C179uxx4uLinJkzZzqHDx+ucPtPP/3UueSSS/yO8ZQpUy6YYU3Uf+3atfMdt+Tk5EplWBcAUD94HKcSL25Dvffzn//c7+UO4eHhuummm5SYmKiioiKtXbtWH3zwgd9fE9577z3deOONNTFdGPr73/+uBx988Lzbc3JydPjwYd84OjpaoaGh52333nvvqV+/fmXuOy8vT4MGDdLGjRt9t8XExOjmm29W+/btdeLECS1ZskRffPGF7/uRkZFas2YN7/Bdg1avXq3Bgwf73RYTE6OQkBCj/VzoU2ZYG3VLenq676MBGzVqpD59+ujyyy9Xhw4dFBkZKY/Ho1OnTuk///mPli9fft6xT05O1pIlSxQWFlZuDdZE/RcfH+/7mMjk5GStXLmywgzrAgDqiZrubqB2KCoqcq6//nq/vxyU98/r9TozZsyo6SnDwLlXKJj+q+iKhv379zs9evSo1L5atWrlrFy5MjB3HOVasWKFqzXx338VYW3UHXv27LFaAx6Px7n99tud3NzcStVhTdRvNlcuOA7rAgDqA95zAZK+f53s/PnzNXfu3HL/CuDxeDRkyBClpqbyGkf4iYmJ0fr16zV16lS1adOmzG1CQ0M1ceJEbdmypVKfY476gbVRd7Rt21YzZszQqFGj1KxZswq3Dw8P1y233KI1a9bozTffVHh4eKXqsCZQFtYFANR9vCwCZdq0aZO2bNmigwcPqnHjxoqJiVH//v0VGxtb01NDLVdcXKyUlBTt3r1bWVlZioyM1MUXX6zk5GTe/LOBY23UHaWlpfruu+/03Xffad++fcrOzpbjOGrWrJl+8IMf6NJLL1XXrl2tPqr0bKwJlIV1AQB1E80FAAAAAADgCi+LAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArtBcAAAAAAAArnhregIAAJjKzc1VWlqa9uzZo5MnTyo3N1chISEKDw/XRRddpPj4eHXs2FHh4eFG+125cqWuvPJK3zg5OVkrV66s4tkDAADUPzQXAAB1Ql5enubPn6/XX39dX3/9tUpLSy+4fVBQkH74wx+qb9++GjFihEaOHKlWrVoFaLYAAAANC80FAECt9+mnn+rnP/+59u3bV+lMaWmptm3bpm3btmnOnDkKCgpSfn6+mjRpUqVzmzNnjtLT033jW2+9VfHx8VVaAwAAoLajuQAAqNVefPFF3XPPPeV+v1GjRmratKlKS0uVnZ1d7nalpaVyHKfK5zdnzhx98cUXvvGQIUNoLgAAgAaHN3QEANRaH3zwge69997zbh86dKjefvtt7dy5U0VFRTpx4oROnTqloqIi7dq1S3/96191zz33KCYmpgZmDQAA0PB4nOr4Mw4AAC7l5uaqc+fOyszM9N0WFhamd999V2PHjq3UPhzH0ZdffqkXX3xRCxcuVE5OjkJCQqp0nkOGDPG7cmHFihUaMmRIldYAAACo7XhZBACgVpo3b55fY0GS3n777Uo3FiTJ4/Fo4MCBGjhwoPbv36/g4OCqniYAAABEcwEAUEstXrzYb3zppZdq3Lhx1vuLjY11OyUAAACUg/dcAADUSlu3bvUbDx48uIZmAgAAgIpw5QIAoFbKysryG0dGRtbMRGpYfn6+UlNTlZmZqcOHD6ukpEStW7dWXFycBgwYoNDQ0JqeIgAAAM0FAEDt5PF4/MYHDhyo9porV67UlVde6RsnJydr5cqV52137ps4nu3sfFmmTZumxx9/vMK5LFmyRC+88IJWr16tM2fOlLlNSEiIRo0apWnTpikxMbHCfQIAAFQXXhYBAKiVoqKi/MaffPKJ8vPza2g2gZOenq5Bgwbp6quv1ueff15uY0GSCgoK9I9//EM9e/bU/fffr9LS0gDOFAAA4P/QXAAA1Er9+vXzGx8+fFi33367CgoKamhG1e+rr75Sv379lJKSUub3w8LCynx5iOM4+t///V+NHTtWJSUl1TxLAACA8/GyCABArfQ///M/+utf/+p329/+9jd9/fXXuu+++zR+/Hi1bdu2Rub2q1/9Stdff70k6fnnn9eOHTt835syZYo6depUbrZ3795l3r5nzx6NGjVKJ0+e9N0WHBysG264QRMnTlS/fv3UtGlTSdLp06e1evVqzZo1S//85z9923/44YeaOnWqnnzySTd3DwAAwJjHcRynpicBAMC5SktL1atXL23atKnM73s8HnXr1k39+vVTv3791LdvX1166aVq1KiRdc3KvufC2c59/4UVK1ZoyJAhRnWLiorUv39/paWl+W7r2LGjPvjgA/Xo0eOC2Tlz5mjSpEm+KxY8Ho/WrVtXbhMDAACgOvCyCABArRQUFKSFCxeqdevWZX7fcRxt2bJFb775pn7+858rMTFRkZGRGjVqlJ566imlp6cHdsIuzJ0716+xcNFFF2n58uUVNhYk6dZbb9X06dN9Y8dx9NRTT1XLPAEAAMpDcwEAUGu1b99eX3/9tZKSkiq1fW5urv71r3/p4YcfVvv27TVixAh99dVX1TxLdxzH0TPPPON323PPPafY2NhK72PKlClq3769b7xo0SIdOXKkyuYIAABQEZoLAIBaLS4uTmvWrNGCBQvUp0+fSuccx9Hnn3+u/v3766677lJRUVE1ztLexo0b9e233/rGbdu21YQJE4z24fV6NW7cON+4pKSk3DeFBAAAqA40FwAAtZ7H49H48eO1bt06/ec//9Gf//xn/fjHP1bz5s0rzDqOo5dfflk/+clPVFxcHIDZmjn7/Rokafjw4VbvG9GrVy+/cWpqqqt5AQAAmODTIgAAdUrnzp310EMP6aGHHpLjONqxY4fS0tK0du1arVixQt98802ZuaVLl+rRRx+tde9HsHbtWr/xiRMn9Morrxjv5+yrHyTp4MGDruYFAABgguYCAKDO8ng86tSpkzp16qQbbrhBkrR9+3Y9//zzmj179nlXKsyYMUN33323Lr744pqYbpkOHTrkN/7444/18ccfu97v8ePHXe8DAACgsnhZBACgXuncubNeffVVLV++XM2aNfP7XmFhoWbPnl1DMytbdTUB8vPzq2W/AAAAZaG5AAColwYNGlTmywuWL19eA7MpX2FhYbXs13GcatkvAABAWWguAADqreuvv17R0dF+t+3YsaOGZlO2li1b+o3feustOY7j+t/KlStr5g4BAIAGieYCAKDe8ng86t27t99tx44dq6HZlK1169Z+4507d9bQTAAAAOzRXAAA1GthYWF+4/Dw8BqaSdkuv/xyv/G5H00JAABQF9BcAADUa/v37/cbt2nTpkr37/X6f/BSSUmJUX7EiBF+4zVr1mjfvn2u5wUAABBINBcAAPXW0aNHtXbtWr/bevbsWaU1mjZt6jc+deqUUT4pKUmxsbG+cWlpqR5//PGqmBoAAEDA0FwAANRK48eP14cffuhqH7/+9a9VXFzsd9s111zjap/natu2rd/422+/Ncp7vV799re/9btt9uzZeu+996znxCdFAACAQKO5AAColTZu3Kif/vSn6tmzp15//XVlZ2dXOpuXl6fJkyfrnXfe8bu9Q4cOGjt2bJXO89z3THj77beVk5NjtI+f/exn6tGjh99tt956q55++mmVlpZWej9HjhzRk08+qVGjRhnVBwAAcMvj8OcNAEAtlJCQoF27dvnGoaGh+vGPf6zBgwfriiuuUMeOHdW8eXPf93Nzc7VlyxYtWbJEb775pjIzM/32FxQUpI8//viC//FeuXKlrrzySt84OTm5wo90PHDggNq1a+f3XgvR0dG69tprlZCQcN4bSvbu3fu8T7CQpL1796pPnz46cuSI3+0dO3bUnXfeqaFDh6pbt25+7/Fw7NgxffPNN0pLS9PHH3+sVatWqaSkRN26ddOWLVsuOG8AAICqRHMBAFArndtcKEvjxo3VvHlz5efnKz8/v9ztGjVqpDlz5mjixIkX3J9Nc0GSJk2apDfffLPC7SRp2rRp5b6nwqZNmzRmzBilp6eX+X2Px6OmTZuqUaNGys7OLvfNI2kuAACAQONlEQCAWumqq67yuzKhLEVFRTp69OgFGwuXXXaZVq1aVWFjwY2ZM2dWycstEhMTlZaWpvHjx8vj8Zz3fcdxlJ2drRMnTpTbWPB4PEpMTHQ9FwAAABM0FwAAtdLMmTN15MgRLV26VA888ID69++v4ODgSmWbNm3qe0PItLQ0DRgwoFrnGhYWpoULF2rNmjW67777dMUVVygqKkqhoaHG+2rZsqUWLFigzZs369Zbb1VUVFSl6o8cOVLPPPOM9u7dq7lz59rcDQAAAGu8LAIAUGcUFRVp9+7d2rFjhzIzM5WTk6P8/HyFhYWpWbNmat26tS699FJ16NChzL/811Xffvuttm7dqmPHjun48eMKCgpSs2bN1LZtW3Xp0kUJCQl+78UAAAAQaDQXAAAAAACAK7wsAgAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuEJzAQAAAAAAuPL/AfLS90HOGCPjAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 539, + "width": 523 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "#| fig-cap: Number of detections for each species at each site along this BBS route.\n", + "#| label: fig-bbs\n", + "\n", + "import seaborn as sns\n", + "import numpy as np\n", + "import pandas as pd\n", + "import pymc as pm\n", + "import arviz as az\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.patches import Patch\n", + "\n", + "SEED = 808\n", + "RNG = np.random.default_rng(SEED)\n", + "\n", + "plt.style.use('fivethirtyeight')\n", + "plt.rcParams['axes.facecolor'] = 'white'\n", + "plt.rcParams['figure.facecolor'] = 'white'\n", + "plt.rcParams['axes.spines.left'] = False\n", + "plt.rcParams['axes.spines.right'] = False\n", + "plt.rcParams['axes.spines.top'] = False\n", + "plt.rcParams['axes.spines.bottom'] = False\n", + "sns.set_palette(\"tab10\")\n", + "\n", + "def invlogit(x):\n", + " return 1 / (1 + np.exp(-x))\n", + "\n", + "# read in the detection data\n", + "nh17 = pd.read_csv('detectionFreq.NH17.csv')\n", + "Y = nh17.to_numpy()\n", + "n, J = Y.shape\n", + "K = Y.max()\n", + "\n", + "# convert the species names to ints \n", + "species_idx, lookup = nh17.index.factorize() # lookup[int] returns the actual name\n", + "\n", + "# plot the detection frequencies\n", + "fig, ax = plt.subplots(figsize=(4, 6))\n", + "im = ax.imshow(Y[np.argsort(Y.sum(axis=1))], aspect='auto')\n", + "ax.set_ylabel('Species')\n", + "ax.set_xlabel('Site')\n", + "\n", + "# add a legend\n", + "values = np.unique(Y.ravel())[1::2]\n", + "colors = [ im.cmap(im.norm(value)) for value in values]\n", + "patches = [ Patch(color=colors[i], label=f'{v}') for i, v in enumerate(values) ]\n", + "plt.legend(title='Detections', handles=patches, bbox_to_anchor=(1, 1), loc=2, borderaxespad=0.)\n", + "ax.grid(False)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "fig-known", + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "clusterprocess (2)\n", + "\n", + "process (2)\n", + "\n", + "\n", + "cluster3\n", + "\n", + "3\n", + "\n", + "\n", + "cluster2 x 2\n", + "\n", + "2 x 2\n", + "\n", + "\n", + "cluster2\n", + "\n", + "2\n", + "\n", + "\n", + "clusterprocess (2) x process_bis (2)\n", + "\n", + "process (2) x process_bis (2)\n", + "\n", + "\n", + "clusterspecies (99) x process (2)\n", + "\n", + "species (99) x process (2)\n", + "\n", + "\n", + "cluster99 x 1\n", + "\n", + "99 x 1\n", + "\n", + "\n", + "cluster99 x 50\n", + "\n", + "99 x 50\n", + "\n", + "\n", + "\n", + "mu\n", + "\n", + "mu\n", + "~\n", + "Normal\n", + "\n", + "\n", + "\n", + "ab\n", + "\n", + "ab\n", + "~\n", + "MvNormal\n", + "\n", + "\n", + "\n", + "mu->ab\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "chol\n", + "\n", + "chol\n", + "~\n", + "_LKJCholeskyCov\n", + "\n", + "\n", + "\n", + "chol_corr\n", + "\n", + "chol_corr\n", + "~\n", + "Deterministic\n", + "\n", + "\n", + "\n", + "chol->chol_corr\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "chol_stds\n", + "\n", + "chol_stds\n", + "~\n", + "Deterministic\n", + "\n", + "\n", + "\n", + "chol->chol_stds\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "cov\n", + "\n", + "cov\n", + "~\n", + "Deterministic\n", + "\n", + "\n", + "\n", + "chol->cov\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "chol->ab\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "psi\n", + "\n", + "psi\n", + "~\n", + "Deterministic\n", + "\n", + "\n", + "\n", + "ab->psi\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "p\n", + "\n", + "p\n", + "~\n", + "Deterministic\n", + "\n", + "\n", + "\n", + "ab->p\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "Y\n", + "\n", + "Y\n", + "~\n", + "MarginalMixture\n", + "\n", + "\n", + "\n", + "psi->Y\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "p->Y\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#| fig-cap: Visual representation of the known $N$ version of the community occupancy model.\n", + "#| label: fig-known\n", + "\n", + "coords = {'process': ['detection', 'occurrence'], \n", + " 'process_bis': ['detection', 'occurrence'],\n", + " 'species': lookup}\n", + "\n", + "with pm.Model(coords=coords) as known:\n", + "\n", + " # priors for community-level means for detection and occurrence\n", + " mu = pm.Normal('mu', 0, 2, dims='process')\n", + "\n", + " # prior for covariance matrix for occurrence and detection\n", + " chol, corr, stds = pm.LKJCholeskyCov(\n", + " \"chol\", n=2, eta=2.0, sd_dist=pm.Exponential.dist(1.0, shape=2)\n", + " )\n", + " cov = pm.Deterministic(\"cov\", chol.dot(chol.T), dims=(\"process\", \"process_bis\"))\n", + "\n", + " # species-level occurrence and detection probabilities on logit-scale \n", + " ab = pm.MvNormal(\"ab\", mu, chol=chol, dims=(\"species\", \"process\"))\n", + "\n", + " # probability of detection. newaxis allows for broadcasting\n", + " a = ab[:, 0][:, np.newaxis]\n", + " p = pm.Deterministic(\"p\", pm.math.invlogit(a))\n", + "\n", + " # probability of detection. newaxis allows for broadcasting\n", + " b = ab[:, 1][:, np.newaxis]\n", + " psi = pm.Deterministic(\"psi\", pm.math.invlogit(b))\n", + "\n", + " # likelihood\n", + " pm.ZeroInflatedBinomial('Y', p=p, psi=psi, n=K, observed=Y)\n", + "\n", + "pm.model_to_graphviz(known)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "1d1936bf", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Initializing NUTS using jitter+adapt_diag...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Multiprocess sampling (4 chains in 4 jobs)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "NUTS: [mu, chol, ab]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9351aad5e068430687cb0feeb90304f8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/compile/function/types.py:959: RuntimeWarning: invalid value encountered in accumulate\n", + " self.vm()\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 47 seconds.\n" + ] + } + ], + "source": [ + "with known:\n", + " known_idata = pm.sample()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "fig-trace_known", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABV4AAAGnCAYAAABPb0xJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB2HAAAdhwGP5fFlAAEAAElEQVR4nOz9ebzk1l3njX8k1XqXvkvvbbvb3d7a+xY7AdskceIAIRAmQBIgkADDM8xAnvySDJMZePiRMMMyD4FhWIdhsgwEskGYEJJAVifGjh3HW9tut9t2791332svLc8fX6mkUkkq1Xqrbn/er9ftvrekko6koyOdz/mez1exLMsCIYQQQgghhBBCCCGEkK6hbnYBCCGEEEIIIYQQQgghZKtB4ZUQQgghhBBCCCGEEEK6DIVXQgghhBBCCCGEEEII6TIUXgkhhBBCCCGEEEIIIaTLUHglhBBCCCGEEEIIIYSQLkPhlRBCCCGEEEIIIYQQQroMhVdCCCGEEEIIIYQQQgjpMhReCSGEEEIIIYQQQgghpMtQeCWEEEIIIYQQQgghhJAuQ+GVEEIIIYQQQgghhBBCugyFV0IIIYQQQgghhBBCCOkyFF4JIYQQQgghhBBCCCGky1B4JYQQQgghhBBCCCGEkC5D4ZUQQgghhBBCCCGEEEK6DIVXQgghhBBCCCGEEEII6TIUXgkhhBBCCCGEEEIIIaTLUHglhBBCCCGEEEIIIYSQLkPhlRBCCCGEEEIIIYQQQroMhVdCCCGEEEIIIYQQQgjpMhReCSGEEEIIIYQQQgghpMtQeCWEEEIIIYQQQgghhJAuQ+GVEEIIIYQQQgghhBBCugyFV0IIIYQQQgghhBBCCOkyFF4JIYQQQgghhBBCCCGky1B4JYQMFffffz8URYGiKHj/+98PAHjxxRfxrne9C9dccw1GR0exZ88evO51r8OXvvSlhu8/9NBD+Imf+AlcccUVyGQy2LNnD9785jfjyJEjoft81ateVdtnM97//vfX1r3//vvbPUxCCCGEEEL6Bt+xCSGkN1B4JYQMNX//93+PW2+9FX/4h3+I48ePo1AoYG5uDl/+8pfxvd/7vfjt3/7t2rrvf//7cdddd+HjH/84Tpw4gXK5jLm5OXz605/GHXfcgS984QubeCSEEEIIIYQMBnzHJoSQ7pDY7AIQQki7PP744/iv//W/IpFI4J3vfCfuuOMOaJqG+++/Hx/5yEeg6zp+5Vd+BXfddRcee+wxfOADH8CBAwfwjne8A4cPH0Y+n8enPvUpfOlLX0KlUsFP//RP4/nnn8f27ds3+9AIIYQQQgjZFPiOTQgh3YPCKyFkaPnc5z6HQ4cO4atf/Souv/zy2uc/8RM/gbvvvhtvf/vbAQDvfOc7cfz4cfzAD/wAPv3pTyObzdbW/bmf+zm8/e1vx1/+5V9iaWkJH/3oR/He976334dCCCGEEELIQMB3bEII6R60GiCEDDV//dd/XfdC6PDTP/3TuOqqqwAAR44cwbZt2/A3f/M3dS+EDv/lv/yXmrfUF7/4xZ6WlxBCCCGEkEGH79iEENIdKLwSQoaW22+/Ha94xStCl991112133/qp34K27ZtC1zvsssuw4EDBwAAzz77bHcLSQghhBBCyBDBd2xCCOkeFF4JIUPLy1/+8sjle/bsaXndlZWVzgtGCCGEEELIkMJ3bEII6R4UXgkhQ0szg/50Ot3yuuVyufOCEUIIIYQQMqTwHZsQQroHhVdCyNCiqvGbsFbWJYQQQggh5GKF79iEENI92EoSQkgXMQxjs4tACCGEEELIloLv2ISQYYXCKyGENME7napSqUSuu7i42OviEEIIIYQQMvTwHZsQcjFA4ZUQQpowNTVV+/3cuXOR637rW9/qdXEIIYQQQggZeviOTQi5GKDwSgghTbj++utrv3/1q18NXe/rX/86nnrqqX4UiRBCCCGEkKGG79iEkIsBCq+EENKE7//+76/9/pu/+ZtYWFhoWOfZZ5/F2972tn4WixBCCCGEkKGF79iEkIuBxGYXgBBCBp2XvexluPfee/G1r30Np0+fxq233opf+IVfwDXXXIONjQ088MAD+Ju/+Rskk0m88Y1vxGc/+9nNLjIhhBBCCCEDDd+xCSEXAxReCSEkBv/7f/9v3HvvvXjhhRdw/vx5/Nqv/Vrd8unpaXz84x/HQw89xJdCQgghhBBCYsB3bELIVodWA4QQEoNLL70Ujz32GD7wgQ/g5ptvxujoKEZGRnD48GH8h//wH3DkyBG87nWv2+xiEkIIIYQQMjTwHZsQstVRLMuyNrsQhBBCCCGEEEIIIYQQspVgxCshhBBCCCGEEEIIIYR0GQqvhBBCCCGEEEIIIYQQ0mUovBJCCCGEEEIIIYQQQkiXofBKCCGEEEIIIYQQQgghXYbCKyGEEEIIIYQQQgghhHQZCq+EEEIIIYQQQgghhBDSZSi8EkIIIYQQQgghhBBCSJeh8EoIIYQQQgghhBBCCCFdhsIrIYQQQgghhBBCCCGEdBkKr4QQQgghhBBCCCGEENJlKLwSQgghhBBCCCGEEEJIl6HwSgghhBBCCCGEEEIIIV2GwishhBBCCCGEEEIIIYR0GQqvhBBCCCGEEEIIIYQQ0mUSm10AIszPz6NarSKZTGLXrl2bXRxykcB6R/oN6xzZDFjvyLBz/vx51t8tDtuprQ+v8cUBr/PFAa8zaQUKrwPC/Pw8SqUSMpkMb1zSN1jvSL9hnSObAesdGXZmZmZYf7c4bKe2PrzGFwe8zhcHvM6kFWg1QAghhBBCCCGEEEIIIV2GwishhBBCCCGEEEIIIYR0GQqvhBBCCCGEEEIIIYQQ0mUovBJCCCGEEEIIIYQQQkiXofBKCCGEEEIIIYQQQgghXYbCKyGEEEIIIYQQQgghhHQZCq+EEEIIIYQQQgghhBDSZSi8EkIIIYQQQgghhBBCSJdJbHYBCCGEEEIIIVuASgGwDCCRBTR2MwghhBBC+EZECCGEEEIIaZ9KATj/GJCbk7+1FLDrWmDHVZtbLkIIIYSQTYbCKyGEEEIIIaQ9TAM4/RBQWnU/MyrAzFOAmgCmD25a0QghhBBCNht6vBJCCCGEEELaIzdXL7p6WTze16IQQgghhAwaFF4JIYQQQggh7bH4Qviy8gZQLfWvLIQQQgghAwatBshFzcc//vG6v3/8x398k0pCSO9gPSeEENIz8gvRy40KkMz0pyyEEEJIp2zMAZUcoCWBbZcCKuMVSWdQeCWEEEIIIYQQQgghFy9GFTj1AFBYdj9LHAEuvxvITm5ascjwQ+meEEIIIYQQ0h4Tl0YvVxnnQQghZAg4/1i96AoAegk48y1JJElIm1B4JYQQQgghhLRHajR6uaL0pxyEEEJIu5gGsH4+eFkl3yjIEtICFF4JIYQQQsiW59y5c3j3u9+Nq6++GiMjI9i+fTvuvvtu/Pmf/zkMo7NIlvvvvx+KosT6WVxc7NIREUIIIaQrbMwClhW+fOFY/8pCthyc+0MIIYQQQrY0X/va1/AjP/IjWF1drX1WLBbx4IMP4sEHH8THPvYxfOELX8D4+PjmFXJoYUQrIYSQIccoRy+v5PtTDrIlYcQrIYQQQgjZspw4cQJvetObsLq6ir179+KTn/wkZmZmcPz4cfz7f//vAQD/8i//gp/8yZ/syv6effZZbGxshP7s2LGjK/sZGqIiiAghhBBCtjiMeCWEEEIIIVuWX/3VX8Xa2hoymQy++tWv4tprrwUA7NmzB7/7u7+LkZER/MZv/AY+97nP4ctf/jLuu+++jvY3MjKCsbGxbhR9OKCHKyGEkGFH0aKXM1Ek6QBGvBLi4+xyAf945AIePrGE9VJ1s4tDCCGEkDZZXFzEpz/9aQDAz/7sz9ZEVy//6T/9J0xNTQEA/uRP/qSv5SOEEELIAJCZiF4+ub8/5SBbEsr2hPj4zullvPuTTwEANFXB7fun8EO37MOP3n4pMskmI2GEEEIIGRj+8R//sZY46y1veUvgOplMBm984xvx0Y9+FF/60pdQLBaRzWb7WcwtDq0GyEVEaR2wDACKHQ3u/q8085AkhGwenL1BegiFV0J8mKb7u2Fa+PapZXz71DL+6Gsv4Fd/4Dr80M37Nq9whBBCCInNY489BgDQNA133nln6Hrf9V3fhY9+9KMoFot47rnncNttt3W870qlglQq1fF2Bp8mnVV6vJKLiXPfBoqrgYtG55dRnOq8bSGEbAZ8lpH2odUAIT6MkA7C3HoZ//fHn8Avf/oplKpGn0tFCCGEkFY5duwYAGDv3r3IZDKh6x06dKjhO+3ywz/8w8hms0in08hms7jtttvwq7/6q5iZmelou4SQISBqoEFh15sQQi5G2PoT4sNqEpnx6cfO4d9+7LGm6xFCCCFkc1lcXAQA7N69O3K9Xbt21X5fWlrqaJ9PPfUUSqUSAKBUKuGJJ57Ab/3Wb+Gaa67B3/7t33a0bULIgBPZP+BUZkIGF87eIL2DVgOE+DCbtKmKArzhpn1Q6ANDCCGEDDT5fB4AIqNdAdR5uuZyuZb3k0wm8aY3vQk/+qM/iptuugmXXXYZkskkjh8/jk984hP4/d//fWxsbOCtb30rvvjFL+K+++5reR/lchnPPPNMy9/rNem1E8isnQ1dvqE/CzM52scSDSflcrn2/yBeZxKPsZlT0Kr5wGUVRdoZXuOtDe/l4USt5jE+E/4sK22kUZ7Xa3/zOl8c3HDDDV3ZDoVXQnyYEaNZqgL8/ptvwQ/fekkfS0QIIYRsfcrlMk6ePNnRNnbs2IEdO3bU/nZmp/R6sPSuu+7CXXfd1fD5zTffjJtvvhmvf/3r8brXvQ6lUgm/9Eu/hKNHj0LTWkvYaVlWLZJ2kEivnkVVr4YuL5VKMA0mJ43LoF5nEo90pQwz7H5IifDKa3xxwOs8XKjVEjLV8GdZuVwOvJ68ziQOFF4J8REW8aoqwH97yy144y0UXQkhhJBu89xzz+HWW2/taBu//uu/jve///21v8fGxgAAxWIx8nve5c53usk999yDX/qlX8IHP/hBHD9+HI8++ihe8YpXtLQNRVGQTqe7XrZOySgVIJkMX55Jw0xGRxwT6dRbljWw15nEI5VMQlX0wGW67fHKa7y14b08nKiagWTEsyydSgGe2TO8zqQVKLwS4uM1h3dh6iduxf3PL+CzT55H1bCgqQr++1tvwRtu2rfZxSOEEEJITJzo17m5ucj15ufna79v3769J2X54R/+YXzwgx8EADz++OMtC6/pdLprU966itUkGdlV1wKZif6UZYh55plnUCqVBvc6k3gkTgPV4IGekwtiQcBrvLXhvTyklDeARLjVAHZfBey6tvYnrzNpBQqvZEtjmhZWChVsH4s/CrVvMot9k1m84aZ9eMd3X45f+Nhj+JXXX4vX37i3hyUlhBBCLm5uueWWrieuPHz4ML7yla9gZmYGpVIp1OvVa3Fw+PDhrpbBwZvAa3V1tSf7IIRsMlo6VHhNlJaBcbPPBSKkhxRXgcXjvg891j7brwBGpvtZIkIGEnWzC0BIL/nyc3P47t/5Gn7l75/GycVGo/tiRceXj87i+dmNwO/fcMkEvvKeV1J0JYQQQoaQ22+/HQBgGAYeffTR0PW+9a1vAZAkW9dee23oep0wOztb+31qaqon+yBky2Oa8jOoNBWZmBmdbCGqRWD1jO/ntPtTCU40N5g08YLv8sAwubhgxCvZ0vzPb55AWTfxN4+cwce/fQbfe90e/F+vPITb9k/hn56ZwW994TmsFXXccMkErtkzHriNTJIJIQghhJBh5Ad+4AegaRoMw8AnP/lJ3HPPPQ3rlMtlfPaznwUAvO51r0M2m+1JWT7zmc/Ufr/tttt6so+BJjcPzD0DFJYBVQOmLgd2XQ8kUptdMjIM5BeB2SNSfwBg4lJg9w1AuvuezB3RJJGf0mvxprAMmAaQHgforUw2mx4ntiRkWKDwSrYsz82s47HTK7W/LQv4p2dn8U/PzmLXeBrzG2Xki2J+f/TCGtaL4VkMCSGEEDJ87Ny5Ez/2Yz+GT3ziE/jwhz+Md77znbjmmmvq1vmd3/kdLC+LmPOLv/iLLe+jWq1ieXkZu3fvDl3na1/7Gv70T/8UAHD11VfjjjvuaHk/Q01+CTj1gBsxZBrA0ktAaR04+D3snJNoSmtSf0zD/WztnHx+xb2AFp4Qp/80q8s9El6Lq8C5R+WcAICiAjuuBvbQe5L0EL0Uvby0JoMkw0B+IXr52llg93X9KQvZctBqgGxZ/s8T50OXzW+U6/42LeA7p5Z7XSRCCCGE9Jnf/M3fxMTEBIrFIu699158+tOfxtzcHF588UW8733vwwc+8AEAwA/+4A/ivvvuC9zGq171KiiKAiVAIMzn87j88svxUz/1U/jkJz+JY8eOYXl5GYuLi/jWt76Fd73rXfje7/1eVCoVJBIJ/Omf/ilU9SJ7BZ97OniaZn4BWL/Q//KQ4WL+uXrR1aG8Aayc7n95omg2iNCLiFe9Apx+yBVdAcAygYVjMsBBSK9oZiVQWOpPOfpBt+5dvQwsvgDMHQVWz9LC4CKBEa9kS2KYFj77ZGsv8g+fXIZlWYGdKkIIIYQMJ4cOHcJnPvMZ/MiP/AguXLiAN7/5zQ3r3H333fjrv/7rtvdRKpXwsY99DB/72MdC19m+fTs+/OEP4zWveU3b+xlKLFOmiYexehqYuKR/5SHDx9q58GVLLwI7ruxfWZqhNBtU6YHIkpsFqoXgZUsvSYIjQsjmszEHnHmofiBp4Rhw8JW03dniUHglW5JHTixhdr3J1Acfs2slHDm3hpsvm6x9tpyv4L99+TgMy8LOsTRu2T+Ju67YgVTiIotUIYQQQoaYe++9F08//TQ++MEP4gtf+ALOnj2LbDaL6667Dm9729vw8z//89C09jzdx8fH8Vd/9Vd4+OGH8eijj2JmZgaLi4swTRNTU1O48cYb8f3f//14xzvecXEm1QqKVPTCiFfSCZXcZpfARxOP114Ir/PPhS8rr0tELEUdQjYXvQycfbjxmVhaAy48Dux/xeaUi/QFCq9kS/LPz842XymATz92tk54LVR0/NXD9VOYto+m8H99zyH8zF0HAwXYjVIV45lB8poihBBCyKWXXoo/+IM/wB/8wR+0/N37778/dJmmaXjb296Gt73tbe0XjpDNpFq0/Q0VYGw3RbpO0FJAMmtHvipiPWD/bqTWYDX1gG2D8kb0cqvJ4Ach7cKZovHJLwJGSE6Z9QuAaQIXmw3RRQSFV7LlsCwLX3luvuXvKQowkqq/JYKE1aV8Bb/9xWP43JEL+J8/9TLsm8wiV9bxT8/M4jOPn8PT59bwyK++pmFbhBBCCCFbjm37oqNWMxP9KwtpnfnngPmjrs+gmgD23QpMHdjccg0rO6+WnwBy5WdglVqbkUfIQLNtX3TE9fi+/pVl0Jl7JnyZZYof7tjO/pWH9BUqQ2TLcXwuh/OrxdDll01lMbdeRsUw6z63LOB/fvMEvnJ0Dm+4aS/ecddBpCOmHT5zfh2v/8MHcMfl03jghQWUqu72/vnZWfyrW4ckgyMhhBBCSLsoERYNioLmWd7JprF2Hph7tv4zUwfOfwdIjwMj05tTLtJleA8Ssuk0S0TWy8j0akkG2FbPiMg7uhPYcwOQvQjtjzYJxjKTLcdXj81FLv++G/bgql1joctPLObxh197Eff+3v340tFoy4LVQhVfPjpXJ7oCwGcePx+/wIQQQgghWxZmbB5YVk8Hf25ZwNrZ/pYlikQmfNnY7v6VY2jhPUh6RTNRn3Vv0zEN4NS/AMsnZGDNMoHcHHDiG81tSkjXYMQr2XLcf2whcvnHv30WubLedDurhSp++W+PtFWGB19cxNx6Cbu3RbwoEkIIIYQMPexYDy1RFhGLLwB7b+5fWdpmgOvfxixQWge0BDCxf7NLQ0j3SY0Bh15d7/Va+10Rv2PLAhaeBxaPA0ZFPtt5GNh+xaYUuW2UDmMWFWVzmquVU0BptfFzUwfmjgL7X97vEl2UUHglW4pS1cCTZ1cj14kjunaKaQGfPzKDn737YM/3RQghhBAymCiudyghFwOWJYLGqQeAwrL7+ezT0MrTALKbVjRCuo6WAEa3R68zc0REV4dqEbjwhNwrO67sbflaIZGu/9uyUFNKLRPYcTWgV+QzyxqeZ1vYzAbAntlA4bUfUHglW4rHz6w0eLduFl95bo7CKyGEEEK2Nk7n09SB3Dzqpp6qKrD0okT+pcaAdLjVEyGhRGVOHyTxQ68Az/2D1PnCEgDFLbuiYKKQQOHSN2xqEUlMlk/Kdazhq4MHvgtIjfa1SENJtVQvunqZPQJMH5LnxCAyfxSo5Ny/S+t1vteqfhmACI/zQcE7AEQ2DQqvZEvx8InBaVgeObmMtUIVEyPJzS4KIYQQQkhvMfVGX1BFlWin1dPAtksovJL2sCzA0H3aly1qWqYsjxJn+4ZlZydf9vxt1X5VDROJ8gow0u/7YBDOzZChl4HSWvhys4eJkLYS6xF5TywTyC8A4wPq0+wVXYOwDAyF8NprqiUgZ+fFGdstVhKkAQqvZEvxyImlzS5CDcO0cP/xebzxlks2uyiEEEIIIb3FCptxZAtP5fXWt1nJS5SR3xjPEbNGdwKJVOvbJcNFYRmYezp4WXoc2HUtML6nv2UKwrKAcg5RRo7Z3GlUpi7rX5lIe0SJroC0Z5lt/SnLMBMlvAKDJbwOUvT8sLD4IjD7lHvuFAXYfSOw8+rNLdcAQuGVbBlKVQNPNPF3DePQzlFcOjWCpzW1q1YFXz46R+GVEEIIIVsYx2qgyftTO9mT12eAmSfDl19xL5CYDl9OtgZDE7Bp2VFwISgKVL3Qv+KQ9mnWXlWL/SkHGVi63iwNm/Cbm298PluWWEhktg3GYNgAQeGVbBmePLuKit66aPra63bjDTfuhaoq+OWX34mf++ijyFe6M33kG88voKKbSCUG1LuGEEIIIYSQYWWQtIqBTbgziGUacJqpagN5nUlPGQg7kwFi9Wz0Mkd4tSyJfF49IzNjRncC01dIYjYAKK7IrAZFAbZdumVnsVB4JVuGR9rwd905nsb3Xb8HqioN6SsObcd/f+ut+Nd/+Z2ulGmjrOORk0u456qdXdkeIYQQQshw0YFAwY4uAWKIXINSTzxZ0IMwdaQKs1AXjwAXdGD7lfQ9HliaKq99KQXpJy1e080S3wfF03rlZPDn1QJw6puSNC0zCeSXgLUz7vKNWWDlNHDFq4ELT4oHvMPMU8CldwATl/ay5JsChVeyZfiXFxda/s7CRhl/8cAJ/LtXXQHFbsBee91u/Pidl+Hj344YxWmBLx+do/BKCCGEkK1JVOczTudwB73gSDOi6tEACWBR90K1hPTGDJCYgFKYA5ZSwNKLwMHvAcZ2bV65Bp26KGLL/QyQ9kXtUXKjZm1XjHOqVdaB098CqnkgkQG2XzU4fqZ9YwAEwp7R6n3VwbkwdGD+WWD5hCR2S48Du64DJgfMLzo3B6yckt+XT0o06+oZYPf1gOqRHsvrwNHPNn7fNICz3wYyE3KMWwgKr2RLYFkWnj7XxAQ9AEUB7r5qR010dfhPr78W//zsHJbzlcjvxnmP+crROXzgh65v2AchhBBCyNDjZDMOwjSAShFQbMslRyTxvkApHjum0pok09KSkh2ZkDgMyju2mgCyU8HLcrPQymtQlEz952ceBg6/QaLDSCMvfCncbzU7BVz5mt7sNzkCIGI2ZZM6lygtY2zjKJD0RO5tzAKX3A5MH+xOGQHAqALFVSnPyPb+3wulNWBjzv3bv3+91N/ydIK/Y69lACO8/JaWAvQel8nh3KP1icrKG8DZR+T5OTEg+WSqJVd0dSitSR1YOSUR/nGwTPF330nhlZCB48RiDqU2/F3fcNM+3HzpZMPn2zJJ/N/3Xon3f+5o6HcVxBvnurBWwovzOVy1e2s1HoQQQgjpI6YOVAoiSmrJzS6Niz8azY+iyNRBALj+XwWvY5rSsVzzzDZKjQLje7tWzK5hWcDaOZlmaeoi/uy4BkiNbHbJti6ViERHpj444k4yI+LCuUfrPzcqgKlDAaBaeuOy0iowwiRxA8X0IbnPw0hkwpcBGFs9CqgBbeKFx2UadTfa8KWXgLlnRHwFpM285PbeR1B7Ka5KMqUwtAC/zuKKRDxCBbYNiGjoZ+lFwH+vOhGriQxw6JUwXzjttj2WBaxfADZm5O9t++SnJUKeofmletHVy+zTgyO8lgOC4HK2KF9abc0iYfYIsHNrzYah8Eq2BB97+EzzlXy8+pqdeE0qPEr2J15+AP/zmydwYS34Zc5sYXbBN19YpPBKCCGEkLbIrr+E8cocoLwoES7Th4A9N22dKLm5p+tFVwCo5IHzj4ugqYZ0WTZjCvXMU9Ipdygsy1TKK15Dv07AFSCMikwVHd3R+TbNiLAyvdQ8A/1mU1qPXr70IjByZw8LMMRWA5H08riaWQ2EB/yo1TxUowKoAeKqZQH5hTZEOR/rM8CFJ+o/q+SBM98a3LbIsoDF4yLCOZx5GMhOAruu3axSBWMPlgSiavXT4C1LjsMrjq6cEoF9/ys6L4v/2eilkpMB2TgDf9WC1D0Abv1WgLln5deJS2WKf7v4o129mIa01cls+9sfcii8ki3Bl56da76Shx1jKfzem2/BP//DS6HrpBIqfu6eQ/jP/xge9aqpCowYCuwDLyzg5+7u4rQSQgghhFw0ZDdOQ0nanXjLFKHGNIBLb9/cgnlRmngt7rwm+HPLkkQbQTgdtcwEAMXuKypu1EwyOuqs6xSW60VXB6MKzDwJXH53f8vTb4wqUC1KtF5QB7q0Dpx+UAQgh9EdwIG7OovwSzYRkVIDJDIFdgua9BUiRDyySTYSI9uBa38QtfZGUT2/R5cpWWjSL1083rnwuhzShzWqEqm763Bn24+LZUQv18vu+dq4UC+6Osw9C4zsAMY2OydKTCHfN+CXyp8HkGtcb+2c+Jx2ai0R9MzxUslFC6+TBySBlV4Ruws/88/J/+ltnQmvJJItMkxOLmZm10o4v1ps6Tsf+KEbMD0aMPXBx1vvuAzbMuHjE3FEVwB45MQyynqTBxMhhBBCSFxWToqn2qAQqkXY70paOnhxaU2ii4IwynaE1Jp02IurMk21sCw/Sp+7Mrn58GUbs8OXxCi9Lfhzy5Rpy4Yn4mvuKHDs8+K5eezzdtIgT/0zTYm284quAJBflMjlThgQC9dYBIlyVuCv/aNf9dI05B5tFuE7DKgqkEgDiZQMGqiafDYofsJBAprD3DP9K4ceng8FgDv1HpC2O856m4XZpK++7lhP1N9PieJi+HeirlPfGbLnUz/QK/KMKkT4OXcJRrySoecfn7rQ0vrfe/1uvP7GPbHWHU0n8CO3X4qPPHiqjZK5FKsGHju9gu++ogvTrQghhBBCAJnauP2KzS1DdlLElnb7dGGiKyDbrAREEm0WzQSNanG4vF6DRKT18yKCaGk5numD4mk4f7RxPaMMHHylbKe4HD7lf/0cYL6sdxnoB4kmupwSeKN0KObtuq7x+vSblVPiN6mX5e/spPiNhiUb6wbUkYYL/6CMl8XjwN6b+leWdggRZpPFBQCXBX8nzJu1FeJm9I76fjfXCyM9Hm37EmYZtFksvSQzVZxzmxoVa4getVmMeCVDT8WMPz1nWyaB//zGG6C00LD8+J372ylWAw+8EDEaRgghhBDSKlERmP1i+1XRy53+Yk8ixQYk+qzGkCtB6+dleqwjMFimncDn2eD1vZFCiy+Eb9eyOoxoa3adB+i8BxWlmRdzp5YZce+t/KJkoM/NA7kF+Tu/JNewkyjVjVng3Hdc0RWQwZhTD3Yelb/ZEaamIWJSpbC55SAkjE4j2mvf7/BeG9sjCTHH9wBju2VQeGy3/IzuGqyBt9Wz4pHsPXeVPHDqX2TAsQcMmOxMSOvsHo//svL/vOE67NrW2svN1bvHcdv+STx+ZrXFktXzwAsLeN/39clvhxBCCCFbn80WJbpRhshOY5MO5SAc/1DjOX+WCay1EZ21/BIwur15giuvKNdtBsniIahO2jYboaUc292z4sC757PflgQ7QYzuAA69qr3Nh4nuekmE/B1XtrfdzcYZdHCi8sd2A/tuHczEVe1gVCXrvGXJ9e9F4qNBujdbIuLZ0vdjUhD9LGxWHvtYWil3ac1+HlgiqI5ub/6dkWn5cdh3q9xDg8hSWJtVlkHC6UNd3yWFVzL0HJuNN0J795U78GO3X9rWPt565/6Ohddnzq9jKVfG9rEQjzNCCCGEkFbolcdpJS8JPaolicbbflWMKfS96IwOWKd9bLcIFWH023O2m5Q20Nb5Xm/N8qtlhk24SY8DE/ulnpi6+IRmp4D0GKpYgm4FRX31awAh6lx2UIaoe2L+aIfCa1S5elg3Vs9IRJyX3Jz4GB96NaD5ZBQnqru0hmRhBqalA+ggoVyvWT0LXHhcxFdABgx2XQfsujb+NvKLwNpZsZjQUhLtmPH5RntFajUh90Qd9jUcj2cD2DeS2cakd6kREajD/MqbMbADhRbqklbOPesm3ALk98kDwGV3bErpuo6hR3u6FpYpvBISxJFza03XSagKPvDG61uyGPDyAzfuxa/9n2dQ1jvLOvrIyWW8/sa9HW2DEEIIIQRAb4S+/BJw8n4REpwpd4vHRWwYbcervoNpjFaz7/W5I3vpyySKz9mvoqCuw5rocMr4ZlLt0Eu32Tt2uwKqooj4P3U56s+7h9HNzobuYfkEsHbG/btaCI8ydehYkIl57qOuQa9EoUgPZwso2wE06W2DJUwtHA/+vLQG5GaBCU8wj6EDp75ZE3PSa6eg5mahT3aYzb5XFFeBc9+urw+WJYJberz+2MJYOweceViEW6eOl1aB6SvroyMV70DDIEWRNmHq8sbPUmOBUeGF7TcCew+g7lngPBu0FsT3sHOgKE0CXpvNDKmtKIOpRlneHZKjcv9tzMrfK6dFkD//HVk9OSL1AQBWT0s062Z7yneDcpOgvZVT8qzvMhReydDz1LnVpuv83D0HccXO9qeFjKYTuPfwLnzxmc4yE36bwishhBBCukaXhQrLkoiu8gawfAqo2slQtBRQzgO3vz1AHIlRBkOXKXzVokcEsgezqxEJVwaNZLY303E3i8hgwlaFkB76sI7tkjoYRHrb4Ez91ivRXrcAgs/TkEe8tkNuXiJKHYuK1Biw75bGyMfSavg2Ss2Db9rCqEbvd/GFenFy5snGCDrLRDp3BjCubKy7my0yrp0NL8PK6ebCq2mKpy/Q+DxYOQGMTHkGBXt8rMVVGewwdREJp68AEiFtRY+oju4BdjTxOgeAPTcC5x8PXx7qgdph26ql7Gf4hoipqRH5iqoC6hSQmZDruHJa6kbe9o4f3eUKr4DMbrgYhNceQeGVDDVzayWUqtFRqBPZJN55b4zGsAk/cNPejoXXh08sdVwOQgghhBAA3ddKSqvSKVk4DphV93OjAsw/K35todOGIzp/C8eAwiKw8FzjMlOvz3ZcsaOnnEjH6cuBvTejdrCj2+0oKqu1aKJhxtDlGqiJvosKXWOzxaZ+kJtFc1/ioM/6JHpuRsRrEKV14PSD9VniKzng9EPAFfcC2cn+lSUIoxq9vODpz1mWRH8GoFimHGtbMwXaoLwhYrSiyH790/4dFp4P30acJHjFZdcyQFGBycs99VoR8dPx+lw4JtY1TWmjfVg5DZx7tP6zxReAK18jAqOpS/niJnUabxIclZlovYxe1E16Xu25UQY6i8u2p6/9uZOgfO4Z+X9yvyu6AvL7tCdqO8pSZJho5kee6s1AHoVXMtT8t6+ETAPx8B+//zDG0p1X9XsP70I2qaFYNZqvHMLzcxtYLVQwOTKkL82EEEIIGRy6bTWwfEJ8+8wQ4eH0g/XCq2lIJGuDb58Xy512GbjYN4BeXAbWPUmeFBWYecr9+5rvB1KjUUextZg7KlYPzjmeulyE6J6Lzi0KIXF1O9MQscrvkdnKxlfPipAPiL2DUbZFRUv+v/aHJJqr36yc2hyBualoavn+D9xIe/tePSMen6YhgwLjlwDZJgLV8ol60bVWTFOStV1ye3tl8ZJf8rRLPqsFLRUvWVAcSqvR7d/a+f4Ir8sngPyC+/cLXwJ2X9+aZ2tcVk65vysqMO5PDme5gt36+ZjCa4tUi8D5xxo/NyrA81+USHgnsnHiMhEfm/mUJz1WMU4yQOfe0ssiuK+eAaAAagKJ4gKSpRISZloGx1pq01qgG4Miq2fR96h2szOLxp5QLUUPPAA9e7+g8EqGFsuy8Nkno7OvjqU1vPlll3VlfyOpBO69dhc+fyTGSGAIlgU8emoF913X6+ylhBBCCNn6xJnmX0Wd95zze1BnzjRCo7cA1Ee8LByXaKaNWckQnBqT7/uji/SyRLONhIgPlTyQ9Q5Ix8zQ3C2qJYnEXTsnL2pju0WsCIsW6yfzxyQ5kZeVUyIuHPjuLuygG+cypodveQM49aAbUTeyHdhzU3sCmF5yvUMV1RVJGsrUZworwOLzMo0ein1K3PtO0RUgEdT9HtKI14XjwOwR18PWKAPlY5KMz5vd3M/Si+HLlk92R3g996i0O0GMTEtkbRT5JdduIOjcGFUZ/AgSkOvWKzUtasfk5upFV4e5Z+U+G9sVbzvOfWRZnYl9/npmmdLOhg3otUN+oXHQzot3OvnaWWl/rnh1/OjX+aON/sSjO22Pb/vPhbNIVatIJpOAfiegNYmU7JUPdrPvVfJ15Q7fTnu7D99eyL1hWSJib8zKoEUyYydmswdsiquy/Oy35Xk8vg/QizLjo2mSz6jyWDIgsXxS6k56XAZF/APYPUqSSeGVDC2fffICik1sBn7hlVdAU7v3MvN91+/pSHgFgEdOLFF4JYQQQkjnxOkcv/AlN0mWn9GdwKFXun87UYPNWHxBBBcv+UWgtNI4XbPbEYDdnBJtGsCpf6n3c3Q87q54TWedvE6xLBG2g1i/IFOKO5362s1zGbUtoyrRaV4xrrAEnHpABLBmIrd/28WIjNTA5tkamLrca6EJpUKSr/U6uZbDpS+zhUKrPkIYaD3KSy9LGxB0rldORguvg4heccUdKOI97URVB2EaIrwGHL+lNpFYup0MrrASvmz9fHPhNbcgg0+VgtSDkWmJEA31em2xvuplYO7p6HVavWdnjjRfx0tpVc7F5P7WvuclsowRy4qrEmW5fEJmL4ztFkG84b4P20aHHq96Jb6YrpelvVbUzv3Mw4Tx9fP1s1qMsjzPdlwNFFfcQYTVM8DZR0Q0336llGlstwzMtPNsPvuIPHMcCosyaLHruviCfAdQeCVDiWla+J0vhryMevh3r+quAfQrr9mJhKpAN9t/oXvkZJOXRUIIIYSQOHQ9MiNGtKllNUZhOlTy0nFLpBu3mZsLmJIaowj+zmK16HboEpnOOkwrp4KT6OhlESK6EXnXLoWl6CnMK6ds79sOiPKybFUIGdvTmGDIIT8PZAOEOFMXIaJZBumNWYneAxAoQlim717YLD9ZK8auPeU3qiIiL5+Uv3slVjrXsrTm+hvWXV8L0NJS79fPy7LxPWJrEXZ/1aLfAw7Y1KUt2ExLkCiRyV+3545KpLITvZreFh1NCYg4NHkZAo9f1QAYAELa5+xU9LZbpRyRZGzpJWDfrfWfTe53r9/8MRkUcaITKzkZWKvkgUOv6o5NQi/8g9uJnl0+0ZnwGkVYe1lcAV76uttGOcmppi4XKwjAPT9hCQQ75YUvA+cflft77az9ob3PZBbYtk/Kt3LKsxyAmpJnTLsCbFA0uNPGBDH7TL2HeW7etnaAzJTYdonU29MPtRa9DMiz6eQDjZ9XC3LMU5fH31abUHglQ8nXjs1jdj06ZH7PtgzULvs7bcskcefBaTz0UvtJsp69sIaNUhXjmYskIQQhhBBCekSMDm0r04ubiW2KIh3JKMGuvBEsvOohUbcN+2wieLz0Nff3y++JJ+aG4XTqglg5FS686hWZLp1fsJPL7JefrkaQNnmH1dLRy+MQlWTE8E/fD8E0RAyPKm9pLVh4BeoTFXm3uXzCFQHXz8s+/B3tSl5EWb0EQJFIwonLNi/iNdZ+7TqSXxI/U1hi07FyUsTrS24FEtnWPGq1hC2O2Nuuq4eKe21yc8HiuHOOvRGOGzPA6mng4KuCyxJlFwDIgMYweDEvHG8cSCqvR1/L7JREnU/66pp9HjOrx6Hl56BoGpBVGwcGOm0nOq3fl90p/y+9JAmqJn22fGtnpU4uHu+SP22c47WPyTSk7S2uyDmbujxkQKKNc5iPiGBuKE7QOW4j4vX8Y66Ir2puG7Z6Gth5TTxLm54kvvOVN7/YmPzLrIgIv+eG9gZ5/VYDpiF1zhFeU2My3V/RpI2p5OVYHf9yb6K34poIr4C0Lbl5YFuTZGiACL3zR0Ws9SYO81JcBbo8FhIEhVcylPzJ15s87CHRqb3g3sO7OhJeTQv4zukVvPqamH47hBBCCCFBJOKIbyEdQssE1mfER03RgKkD4es6KEpjhKjfO66S73IymRY6naYpHdrSmkwZnj4YLf4EiX4OTsc7vyjbc6Zm6xXgzLdkKrJlSbRQbk5+HEGjGzTr6PZhamRsTtwv56Ed/FG9pinTQb0iyeo5Ob8Tl7jnpZKXjnlNLLCkY617IqL7gV5xp6RHJpkDnLqsGGVgeQa1+82oAAvnZCrshcdkWu3uG+x7MgZr58PtRJLZ5uJOflGEYP/U8sKyRIIGJmiy78teitwdbTuq3fBsd7F5ouYGkiOebXi2tXYO2LgAxa5/imWJgLh6prsRdd0652tnw6MPi8siLvcToyrRoV5/1uUTYnuw85r+lqUbUfN6RUS9MHJz3fESb1ofmvhwW6YMwgUNjulFoJwLLqeWqrdVMQ23DRzbLdt02iUncZ63raoWpR0f3ysCSXHJtRAwjfp3i4pvkHDphebCq2mKlVBxpT4hnJ+GQcbetGkUXsnQ8bmnzuOJs6tN17v50sme7P811+7Gf/n8c6HL905k8FPfdQD/7z+FZ8x75MQyhVdCCCGEdEacKJSgTpmpy/TaRNoV8FZOxtlh40e1qYntdlb8iVja/K5eAU58vT6Kc+GYiKGdTC9dPSOdf4flk/WRM+N75bSsnhHhql0BMg6FZTf6s7AkQsXOw61FRzpUSyIUGRXpQDcVDSOo5CWSqVX0slzC0hpqSd+WTtgJ3pT6gQWjLCKGE/1WdHwtLemkl9bkGApLco129yCbu5+ll4DZp91zV1pF8wpsIVFcAEbgXjev+FdYBrYVJTmUloxZnyL2WSdChwgvUVPVc3MhwmuMfXdKHIGxE6/j0lp40qG4iZCc/00D2AgRKnNzEq3nRPL1O7t8GPnF8Ps+N9eBWNxGnbAs8W31iq4Os0+LT223LRq6SVBdDbKx8TLzFLDjqhgbj+nxalkSobr0gtTr5Ciw67An4lYVGw0v6XEgtU0+DxvIzc3GE4gLi67AmZmUdnzetogpLMsgkP+dpVqQa+6/h009enAxFxK96mX1tOc50QSvRVKPBpMovJKh4w+/2jzaFQAO7x3vyf4P7hjFoZ2jOLGQD1w+t17C62/YGym8fvtk+xGzhBBCCCEAYnYQAtZZPSuRLLEiZjukZa/QXUB20s183Kzz6nDhieCp8+e+A4zsaD9Rll+AKfmFAc/x5ea6J7w6+7VMN6py6UU38jY3J5GmxRXg8rta23ZhWb4bFu3WDrn56EjnICFr5ZRtU+D5bOF595rvuFqO1xFjqgUA0/XRUKYuHWyvwHjkk8B3/bv42dzbITcvdc5LjLqu6iWMbJwAxsdF9MhOyfE5yZpMz3EsHOtCfYoh8hWWwq0rWpmeHcT2Kzv4sud8GhVXoM9MuCLm7DPB9T/S49X+vxoguhoVoLQRHQ1ftxH7fyey0TKhVTY8JbfLUVyWKMCusFkexm1iVETYqmG5/3kjtb1Ty/3k5vsjvCpKm8JbG9/ptoXA3DPSfjpUcvL8c0RKNdHYJmYmJdFXNde4vcyk/F8OWAag4Zgboko9bVm1GO4VWy12nigyiJoPdQimLvdttQhszInX+PgeMOKVEACGaWFhI57n1DW7eyO8AsD3XLUzVHg1LeDY7Aau3j2G43PBDdWRc2soVHSMpHgLEkIIISQatZqHqiRt0c+SCMVOMg47wpa34+ck3nAiF5NZ6ZDVibPtdEqbrG+h3gMxmXWPzTLiCa+WFd5pt0zpgE0fjFvgerwROobu6aDa586ouhmjgxLZtI29/cIKsPyidGq90Wl6RYRmLSUefHE7rpYFnHm4swjXIMIiB519AhLh5UxNdQRkLVO/rnO9yzkRERTFnQrqFVsdiiv1goyaFBuI418SsX36oHtNLEuisHJzst2Jy9oXZ1dON36mJjxRjY1oegGG6hyvLSj7I/yKq7bPa0YEctNsL6I5iF54Rcbxhe6U9RlgzevHrIgNw9ju8Pt+9w2eBEyeMihKdBKjaknutyiCxLnKht0OzUIxKm6rl7Svd2nNFV67eR2MqjwX9IokJkqNxrMhMbp0/+tl371v+4Dn7Mz0pgHMHqlP2uSlkhMbgdx8dLlnn+6v3cD43vAy21TGLkVOGUMmlZT71TRQ57PcrcjJONHX1VK96Opl7QxqMwpa3XbcdYK+4z1+vRj+KlAJ0Eua1eE4z7u1c+HLTF2WO88SoyzPp2rBFl+7D1UfMlQ8e2ENq8XmWQwPbB/BaLp31fuuK3fgow+dCl3+0EuLePnB7aHCq25aeOLMKu66spseaIQQQgjZimQ3TiGR0ICEPSV4dDeQSIov48yTkqRi1+HgqaHTh6Rz4QhdgDt1Pun4qekSXaeX3HWqBWC9LNPnHTGpHb0gTt/z3KPAZS+392v7vgF21FmM7OTONPMwZp9uX3j17n/peEBUjyWCGxCejKut3dr7VVURV8KOzzKkAxlXeC2vy7U1qu559k8BreRF1F14XqIyx3a5x9g2iojgcf1Xy+siIllWo3+pExVqGvYU0awdsWm5Hfb8PJDc72bWrnnHLrjbWT4pWca9YrkjokdRXJUoWz8j08D0FaGRVmo131wTswxg8SVgz/VyrswqgIR7/9buY8XNAN5KAr3wHQd8ZEk9OP+41JlERsRqVYsREVorQMz1gopke6TWia52WReel2ufmQi+ZlqqcWp/nOzxcYtbux88X6jk7KhsD+kOAoH0imxTUWUWgINzvSsFsalwrE/KAAqatNnlnO2LaQ8IKQpqidYURTLWNxEWY1FcabwX8vPu7IPYCdZaFCkTaaDShnh8/jERhZ2Blx1XBQ+WKIq0KV7/T999lizOYbRyDmkNwLHVxm2U1mRgYOfh+m2UVqWeKCrw4tfkfhrdIdHhbc1CscJtLgBp+8xq/MFaoyptj/Ms1qp2RLciAvnIDnkuNROWvW29moTbfvlIZBo/Q5PBppHt0cubkV9qfKaW7Uj3TqP8Q6DwSoaKB16IdyMc3tO7aFcAePmhaWiqAsMMbnD+5cVFvPu1V+OvHg54KbN5/PQKhVdCCCGENKUwcQWSiSSwx05+Y+r10XXOlELLahQY99xY/7dlieDkUC2KcBcUsWgZ0rGuRQX2IbtyeaPeb9afaTlwE03EPG8CkFbxCpJBVgZegqYud4qiBiT/ANzpuqYIK7uvj7e91bN2BOFZN1pQ0eQap0btZGKr8nlp1c0gveeGLoivAXirVDknZdKrklEbCO6oO9mynenLWhoY2+GKkqYpSVy27RPxSi/LwIJXdHVYekkiEZ0p/ReeqPf0BTyingJMHmjih9yFKLfKukQkzj0jxxSk1o5sB654dWvbVTRXgAN8YlzAPqp5YOG5en/HoIGHIJzr1lF0p9UoglgmsDErwlVpHRjbCbzwZbEb8Ip8px4IH6zYtg848N0hZY9TXsX9rpNQKJF2BzKCtlc3MBJjH/PHpM46x5CdkqnQmQl338sv2W2DpzyWIff39BUiWKtJeTbkF6SNVzXx/lSU5smzwq5dy5e0B8+NHVc3Wn3Ewfvsmz8q5+Xg99Tf47AHHALbXRfFqEI1q5FR7mKPYbN2Vqwx9CJq5+TMwyKUp7cBl9wGXHFvgPgaI+J11T84UbeCbemi2m2mZ3uqJp+Xc64wWy3JvW9U5Bx43zVOTrhWH3PPRgx4KvEH2YKOT1GA7VfVX5fL73HbrGSQWNsCekAyQidCPvagUmtQeCVDxTeOB7wwBXB4TxcyBEawLZPETZdO4Ikzq4HLTyzksX86elTp8TMxzZ4JIYQQclFjaRlYiaR0jKol6RgERbfOPi2fR/ob2h10oyoCU7Op/OV1V3h1tlvJifhh6hI95I3Gatxh9PbbYWRaOovpMXsXLezDstypy+sXJPrN2V7Quk2nefr+0MvAhSftjrAlAtnu6+yM0fZ0z6iOeg1HHGsS+WOZsp9yToSajRn57sQlwM5rGzuo6+fl2L3nzDLkeo7uCK4PRlmOZ/pQjHIHldHZV9C5dDww14DFYz7xyhOlXbc9W3itJY1xolwX6xNFqaoIhRsXRCTYeThYxNyYjfZSdcqfn5c6H3VNujW9uLiMOkEtkqh1POf84D3Bq4SJJ4sx8mo0Pd5OI16X6z/LL7pRpeU1EV7L68CpB4Gr7osp9EatE+P7elk8Ib/zEWD+OdsjNxU8ZTooynbtLDAe4fe6fEJEdy/FFeD0Q8CVr7WjwAvuedCSvuzyth9uYckWhj2zRS1LIlQvuaP5cXaDbiYqWnhe6qppiN91N8gvSBsxfVAGmGpiYUA9aHUAz3/syycb6zMgCbGmLpe279g/yswJRUXteeFE7YfvKHqxM2BWLTSKivk5ILsdKC5JBHCc7Tlicnk9WlytO/4W64GiuIkUHZx7xmvp0C5RM2SivIY7gMIrGRpKVQOPn44nVl7bo8RaXu6+ckeo8AoA3zqxjKmRJFYKwdYIj59ZhWlaUNVeRI8QQgghZEsSJZQaFemgezssL32tPrOvacjU/rawo6TmnnU/Kq9JB6y2T9vbrZyzfd1MoFoGUnE9aX3vRUFCSmHZFl6d9z1fp664YicEMUX4TNkCbX5Jkkqdf6xejFg7J+KofwqyZTaWpwGvgGmKOPLS1+ojiF/4kkSkJkfkPF1xb5Ntwj1upwMehmmKiH7yG/VT8pdeEpHq0KsBzdPl25h1t5/Mer5j1UeE+qNbcwsyxTSRCpkaGsH2K4ErX2NHBeZqu6s7zpUTgV8NxOns+wXsqEsVJIo5LJ+QaLO6ggVQWG4+xbXpa31cAaLZep7l43uljteEDs+yqGn1UeilphF/seg04hWwrSXsQZCgrPdOArbCMjC6vf67rdKsuEZVIk2XT0qbVs6LmKYmaxnjzZIFwzAATZUBl9RYfV1dOSU7uuS24PPj+Gz7qeRFFBrbIxHR6XFpz9WE7dnqEcHmn5Vr6L9XjYqITssnxAM5yvuiG6Lp4vF468XZ1fxz3femBuSZNn0wIHGij0737dRdZ8ZsTQOwXBG9tAE88/fye3YynlWFFTKF36GWqLHJNuJchDiDkbV1/aKsJYOlCV+blBoTy4dyLnpWxXc+KoMWyawMlO24WrycO41+bSh3DwaLQeGVDBFPnl2FHjK130+vI14B8Xn9o6+Fj7b9zhePRX5/rVjFicUcrtzVe5GYEEIIIVuE/EJ0Z6ywXC+8WqYvujHiXSpomTe6zzTcSKz8okQAFtdsQWTDjkC1pCPrTOVzOpvpMA/SdgUST+fPKbdlSSSUN6rIiWasloDTD8r0VNM3KG6U5Xu7rvMVzWoeceotf3EleJqiZYq4u+NqxI/UcYTXAGFEr0o9qBbkmmRC6kNpTQSWnVd7Pltt3EcUpiGepdWCu/rIdol+9Z4bNelOp7bsyF/LQC2ZkaKJ6KOlAKj1YnC12Fo0Wa1DHyPplD8iuaX1fZRWEWvab6dYlhyjUQrfXsFTx3uRdKi0LiJQeU0GDByxw/GFdgvbZEMdCK/lDREaA6fwB7B8whVevefNqMp9aVnSdkYJR83u98KSiJmlJUDxJGYzq0ByGkiPQy9r0HUDVkITQS/If3nlpIie+26p/9yo1k9P97PwvFhjmLprfWL6RFfAvUf89cfZtqmLMBvbg9W37Y05af8LS7LN7JQ7Rd5fJaxmEZsxUbXuCa+WaduqrElk99TlaFqXO7m3q0W5Z8sb7qCcmpT6mEjJeVw5Ve8PvXEBGN0pthG9mDnisHZO7nPLFOEzkZHfk1kRRdVkm56qvjI7vsv+AbP0uNQfZwZLEM6MCMBOSrghz5TyBnDwld1LQNhDKLySoeGa3WMYSyeQK0c3uNmkhv3T/peC7nPr/klkkipK1bj+JY08dnqFwishhBBCWiNSPG32XhIZ9hLwmUekqBakY7Zypj7hjQWJKHQ84vzCJiAdO38G+iBi6zTeFT1TwYOmcq5fkMzaxeXwKL7yhoge3k6hZQYLvF68H+VtC4ig9bxRx3HwJtfyUi2KWJAaEyGiuCoRyDuucS0fTEPKoCXEWsArvDYVkn04oivgRjsVlmQ7XuuB8d0y1dvhha+4Iq9lAo/8D1eET47Uew8XV91ym4abACisqoZOvW1TUIuyGdgszPb7F4HbMsoiWmkp1KYwO9HUQVFsuQWZhgyI6LF2TgSqS24V4a8ZzoCBaYhYuDEr+9h2iX1fNamHRhU48634oisQPOiRX7Q9e33WGk4yv1ap5OTYTF3K5vXjLCy70fUOUSLv0osS6ecVP5tNKy+vt2GB4v3cdP8vrrQnvC4eB1ZPye96We7z4howdSA4+jCWWNpEWCxHRKwHYVQk+ZgzM6KuHTcletYbBX/mW779bcjgg9MWKYrcR5W8tLuxov49A4LFFfnxnguzWj9DJSgpX34ByEw2TrsvrMosgUrOngGiNEZWe1GU5sKxE/WqaPIsyU6J4KqlZNZC4PoBpMftaN1tQGpctpkajbDYCanL3nq+fq5+WbUg1hCqJoMzE5dEH1uccvcYCq9kaDg+l2squgLANXvG+zJ9P53QcOfB7fhmTN/ZIB47vYK33LG/i6UihBBCyJZGURHZSW0QXn3vRE2nG0bgRFhtnA9eburRU1fjCK8NxHinc8q9HuHN9uLXpPzlnE+0sH9PjYhwM77Hu2GfQBR0fjyfBU2D9tPq1Gs1IWXS7YhQ/bx0xLOT4s3nRI4uvwTsul4EcUfkTWSBycvqkzDVRalqsn1FbZziqagSmZVbcKOXk6MiACTSIghM7ne/Z1SAE98QUXjtnJ14xQBGppoLL1pSRIfyhmxXUeV6hOHU8TinsrgE4MomU3GbXWMbNdm+4NVtTEO8IdfPA7AFzemDjfff8gkRmRxLCVMXwaK4KucvOy3nPjstdQWwRQ3bksKoAmun3e2d+hdgz00ixChKeHSmlpDrdP479RH66xdswfGa6HO5ekbqg5b2RUMr7nWv2ShYaPTDtadv+0VXQOr04nGPp6W33GkpGxT5vneAycEZWFK1+m2bVWD1DBQjCVdmaVJf1locGJm+Inp5DbtcjrWA//5eOyv3t+4biHJERcuQc5Sb9yRXhIh8a3b7r5ekzS3agnclJ9HX2Q4zznsxdbGGAeKL5Wt2AkHnHGhpYPsVbj3cmIm2HgGkHSr4ErupSRkI8w8cNcWSMgW2g5aIuVE+6aVVV3i1LLkuM0+59dCoyrElszJrQ9Xk3sstxHsmBe0v0rc9gon9wLa9cm9lJtyBCb0cPCAbiX1fW2bw9Sosyr5WTrUmvDbdLa0GyEXOPz8bMAoUwOE9/YsgfcWh6Y6FV0IIIYSQKMrZ3bDSaYmmLCwhujPfgjdkq9/NTIhwEhaV1Uw0yC80JmjydnIWXwiOWA3cly/itZKL8KRUZJqiUan3QfUydbCxY2yZ9etnJuOVLW6yoyicqeSKCozvExGqWqyPtPL65uplier17lsvSic9v+ROwVZUd5qtI6QDst3RHfXXcOE4UPGsU8lJGSYukQ51cVW+A8h1nHtWplAD0ik2KhKFPHFJeISYZUk0k7cslikCeXElWACInS277ksRHeomUc01IvZbLYoAMPeMHTHmmXpti4VVYxmGCcAoxCius6+gKGtTEqmtnnbvp/yCnMfLv8eNkl49A5x/3FN8Q77njSItb0hd8A6IFNdkv3oVqKzXTzPWS7J+akyuzcqpkPJbIgormit45ealTJYh5fUKen6WXpRtTAaIo2H460VxBaH34tpZuef9qJpb5xJJIEhXruRd0dlvvWBWkSitQU/tAKCh6f2+cqpeeG3WBiuOwBx3AMeSfaTGgNGg8+1tL8pyzsZ2i1BbXJHBlMvucJM5OomHCisy2OMVbvWiLB/Z4X6malKfnOjRZLZxcGD1jAwSje2MPpTV08D4JfU2JX5y8/KM8mKUpR3cc6OI9U6EfVMCZlUAcg3G96KaLaKqlpA0Y0TjRiUDc86hbluLaKn6c1RcBmDf5+vnZFteEbOwJOd3fLcMoozvkba46mlnyjk7infVvg6j4b7rZjX8OVlHxEDk2tn40dTNqnLYwJ1zfF1PhkXhlVzkfO3Y4Amvd14+3XylCF5ayGO1UMHkSJvG94QQQgjZ8mxbfBxaIgko50XYSo5KJ60mXNhTIZ3oEC8NUWVR0bJBnxkSOaMmgOmrJNKmq3gjxgIEXaMsEU9aSgQB7zHXNmFKkpvIfSiI7OEFiXlOdJHD1AGJ5vTuX0sBkwfk/4Vof/+WCPI89fqz+s9VJS8d+CDx4uQ3gBve5P6dW6gXVAF3CrOTObpSEHsILxYAxZSO/rZ9biQsIPXMEV2ddZ1fNuaBKc8Mr2pBzqsjbIfZMJRWgOyEiDLO9UmOSIdeTUn2dr1UP907LkZFouJKq/J/alQ8eEe3u9NyV0/Xf8eCfY3t+236kNwXG7OybmnNjjA0JGJ0fG+dMGcpCQBx/S4905T9bMzaAw12HckvytRvC8D8MTtq25J7tVoEdh4W8TM3Gzx1v1oQIW3SvkblddlW2ECGWRUxyCv+OAmwaoKRJWJQ1u4rldbr60dpPVp4LW+EL4uitCZ+zpP7gYUX7P1b7rTlzASgZUR800si+pXWRIwa3SGemrXBh5D2Qi+JgGgZ9feA8y3ThKYXgGRa9mlURRxy6nl2SuqGlkTLIo+hhyff8pKZcK1fnCnkyaycl/mjjetbVnj08vnHgW2XiuA5/5zUv7Uz9QkEHUy93n+4tC7H7YhklZxvUAJybpIjwW2Xt/5v2PV35+HwQb6g6fpOuRxROSzatZJ395cet20TnDqgigep48m7+3oUchMolUqAsQxMTkmbml+Saz66U7bhnFMjKtrTESs9z5bstMwWcP52yC81lt+syk8lL22zWa0XXQFpK4yKtKOWabftVv3MAuddITkSfG39ZKca2+7iilgM6EWpg0G2GOWc/fyyj9s05NoWV+W6ZuxcPZbVkUV0OCH3XJCfeheh8EqGgpOLeZxaCh8dvuGSbfjLn305js2u4/LtbXjVtMmNl04glVBR0dv3YXrizCpefTjixYMQQgghFzWJ8ioShgbkFOnU6udF6BnZbvvGVW3PzSukU+pl5ojrAQdIJ8fp4DlRjjVC3mfKazJdU2kiEhi63aex1/NnL25KyPZNXX5WTsr/fk9Oy2o+jTE1CpiZxg5p3To+f0a/GKul3U6hl/ULwO7rXdGpWYbpmshhSdIxj49rMnceeHG2hagsm9KaCDlOpJL3OhSWgeP/DFxxr1wjv+hq2d6FuXlZlhwNOQZbwK4W7A583YHVr2pW6n/3T3d2Ouz5Rc+UcR+mKWJyatSNQtxzo9T1Sk6W6SVXPEhmAGvCLooi2d8ViI9mZsIVSvUycOYhWT+xW4TdhWMi2hx6lRtFqiV9kWo+ccqCCCqOQOuIhU4CHW9EMIBUPgfTNGMkgmlynznZ1x3h1bJcIb6wJPs0Kq7I6lzLYoiwBgBVjyDrRKpVcsG+jM75L625iascATKRcSMeKzkRYQCJcPXiWEDU9l+w64QikdYbs3YE5ppcw+RIhEck3OOcf85t35wp8G7B7QR3sK0xvl4fLVfJiQA9tV/W9Q9++O8JvQygHCj8Jyrr0LNT8p2FY/XtzsaMnLtd16HRCsaq/93Upc1wIlDXz4utRJBdSt2hao3lMsqegQDfsZh6SCS55VpGXPZyOSeFAPGvtl9VoqSjKK5JHY2VEMlXzvKGXKPR7cGrR7Xva2ej/YmXXnLr8cqp+n1rKSB9lfv38gkA0m5VR/cBml7/nM0vSJvlRAq3hCV1V03YiROdZ7fuejUHoZekXpXW7HZzpF6gTmYb76HR3UC6YJfbXldN2CJtk3ZI9W3LMmUgw6kb5ZwMbO28BnXnsrRSHyldLdiR0ctSb73Ca7dIb4thu9CbSFcHCq9koHnghQWsFas4txwd7v7aa3djejSF775iR+R63Sad0HDLZZP49smY0+ICeOz0CoVXQgghhMTE7oQZZcl67GV9RqZ/7vX4zyVS9dNhTd3u9FiNUUOR/Q5bBIhayRshqajREW3tMHm5RF3tvVWiybxla8bGjIhEYR60QZ08Z7p8nZdkAGa1fsr1+F6JhoMlX6nk3XOz+CJw/glXIEikgR1XQa3uAqBBq+aAjZLs04mW08sy7dswPJGuqi3KaPZ6doc8SBBZHAEWnxfRwh+Va1kiEDoiU8UuV24+2jrCiaKLSyUfnN09yhMYVnBSGK9A5N1maqxePFdV8Rrce3P992eONK4LiLB19hERHixLhJq6/frKoQAoejrzTpSY87+pi9Dtmxrd9KytnfP4ZAas7Y9E1ouyTzXlRkXrlYavNQjuXryCcm06O6T+lTdQq8uJlHsell6Uc5bIAmlbrNVLMh16+nL5e+OC2AV4/TL1sojctXZJkX047VkyK2K2UQUKtmBbixANwm4TLdMTNRiE51yunZNIdT+rZ0TcDMywbrn/5xfl+qbGoyOuvcnpvDg+upOXSbudzNqDC/Y+8otSRifqOJGRe9uJStacTPOKCPFBEYoFbzSiU/ZlucedJFEO3ojMoAq6dk6Oty6KNoDMhO0XvF/OZSCmtJlqjEj1sHY5SHhtaCcse4r9uuxTywC7Y0RyypejF5sGFKMMmAaShVnAWm1cZ+0cMHdUnoOxknH5KK+J8BrXF7y8Xi8uKpoIzakRd0aMP5J84wJqHqoJvb7el1Z9A7NwrUmcQShvRGt+SQb+an60hjxXFp73XZsWbDI6wbHViUuPk25ReCUDzZ/d/xIeemkJzXJlvfqazRMu77x8umPhlRBCCCEkFlHvRApEeC3bXpyWCYztrff208uucJPMyrRcr6AQhmUB1XL3g0LqOjtNNr5+HrjkNvFenLjU8zUz+rtGVSLoVE1EgaCObCUn268WZJqolgTOfQc4920gtU0EkkRatuOc29SobC+Rqu/QbtvrHtvyS+75rhZFAPV3BjdmsE2fgpbaidHCKWCjIh31icvsafkvSAfZmR4N2KKJadscNIkEdPB7AwKyPW9knxNN5UxJrcN/jj1/N006FXB9LFME5WQCmDpk50ey3O1NHQR23wAsPFf/vWpBhHTdnlKr2/XSGRgY3SnX6tSDdjKwjJ1ATJP/zz0mwn1QcqXlkxFCml94Vd0kVGHHaVQahddEiLeig6m7AnuUGKCXgdlngNyMK5Q7U/uj/GgDibAk8doTVAtu2apFW+zfkHrl9eOdPyYiXFC9sEw5L+UNW+i37Gn7JTmGmggYQ6xRNXcf6+fl2gP157C2HU8Ua3FF2sVyzvUedQTnalEEqNrggtJ4HM59ohdt31JVIgDHdqOqL8EwDFTGD9Tbg/gprEi0vONJOrZbEpcVV6TdqO3LEO/gREaurxMZPLJDylVYBCoJ+d0RRit5EcKCaDaNPD3a6F0LSNs3eyT6u9lpEcnH90QIr5Br773PnOheJ/lhehyhiSSjzqmX/GL9IIVelkGXUJo8f8Z2Sf1ZOwcsn8C2fBLZahVpqwQcvLoxgVlyROxpHAugtD1I5B84ibK0ABrbAC0dbgOipTyR8PYUfq9Psj9a1klgFxrxDNlecVVEXW+EeG5ByrFtnxxDeV3uxw27TawU3cGeaknKk8w01j/nb0XzncMOXzZUDWKqDbs+W3K8zTbL5FrkYmMpV8bDJ+SBYUbU/+2jKdx4ScAIep+44+A08PX2v//k2VXohomEFme6BSGEEEIuapoJXKV14KlPuCLIhSekY1SbYul5qSrn66d7NutwmAFRdGG003kJ+kol70bcpcZty4FTbuSXs6+o3ZXWbbHHlI5iUPRRcVmEAEeA3X6l7UtpTyNfPyfJtbwRpc5094lLarM0JWu83SEtroiI40SW5RdCO7fJ0iKSpirT601bhFp6QfbZLZ+7QoAQE8fLL4xWLrG/PhRX3M68mhC/wLFdjUnT/B6aliXnvJKXaFK9CFTtLm1h2Z5in3NF8vULsr6WkimvliVCbmbKzrSti9BnWSK2qVpwJGQYozt8dcIXUeaIk/bhxEZLANtvCl/u+CJ6RXfLFBEuv+QTe63oyK9W79WNCzKF2tTtdsa+ZqlxN5FWIiXX2Il+A0RoNEr2YA/qp3M7wkxqTAT1sOnUDXjqS3HZFV4Xj9d7yjqomtQFUwfmnnaFcy1le+PCtlZJSP20DHv684QbXe09XaYu93VmAkgCWD+HZDEHzTShbpwGyhURIoPw2jsAEh174TFpf4yqHYlero+kXj7ZOGV69ayspyZtoa8NnOh2NWEn1wqJRI+KgldUe0CkCJz9tvt5VDIsB70IzDzpiuVqUupYsskghYNRqbezqBYDBE4g8CZssJgJWMeoiBWBEwXv1DMAmY1TwGwZ2Hdr/XcU1X3uju1y/WcrG433o14O9jgvrEgdu+Q2WV5al/bGMmN6W5vBvs6R2PeUXpUBHcuUtjUzUV8vFEidLCzb970l95HTHlqmG+1dWJa2IKgszrkY2yXHNLIdWD4FnH5I6oFliIjv9V4e2S7+35GHoQGwB3Gc+2LpRTmmTYDCKxlYvnx0LlJwdXjlNTuhNguJ7SG3H5iCqkSLw1EUqwaOzW7ghk0UjwkhhBAyLES885hVO2u46QqvpiECx8opERyNKrByRjajJX2iQMBUTcCe7m0CO6+TDm01L6uWV4M7iy0R8QKVX6ifAl0tSbZmv4WBZSAyws8bIVUtRkz7tMtimfVJtQDp8AZNlTertmfhdokcmnlKyl0p2KKhIp6MmW3h2ZctC+n1U0BiBSmzABSr4kk3uh3It9BJ9MwQj40eEjmVGgv3cQTsHXkjXn2CTMP3PeuW1kQEdqaxqwnpcPuzkQP1Fg7OdpzzqNT+CSieb1p4asQVPhzhqmj7y47Y05b1opR5bE+jqBEmTno/Nw3XqqH2WdWNMrYycBX6GCSz4Z6VlZwnetl3DnKz4mWaHJG67PzvZ3QXAEsEvjqfXTW6HhkVETUts/5eqmzY3p22OFPeqBde9aLveDw7sSy3LiwclXqvJKSOBEV0Ox6wqidKbulFicqPnPq/4Eak+49pYxZI2iKcd5DCMuxkYo4YHBD5XVpzvVgtwx5AqUaL2smAvCRrdmT72jm7XfNR3qifZm9Z4dGPYQRtN2xAz5/gyJs4Kwiz6vpM17atoqFx8keHAvXPErMq13PHVY3r+cnNN4rs1RYGlGr2CZ7Ptl0qg21hBEW2h9VVQJ5Zml0vLdPzffvkllaCE3AVFlGzk1h8Xu6L8oZrgZOdjBbDAanLjtVAFJYt7FYLtqfwkswucSivy0wT/7WrFNy6HHZ/ByWL9LN+XoTW/KJdZnuWgmnIM9UZGIFle5GnXSG3uOoeo5qQ9j5w8CDqHHieGcVVaduSbVhEhEDhlQwsX3hmtvlKAO7dZH/UsXQC1++bwNPnIwzrQzi8Zxw3XTqBdILRroQQQgjpkEpeBLuw6ft6SbwfnchVf1Ij53umIVM+nWhDLSXRbFW7g+V0LqvJCOE1pgJY6+tY0smpTU0sBGfZ1kvA0glJFOUvd9ROEs4Ux4iOV9RmLCNcpHTOk2W6EZS1SE1bKHQiAZ3yOttKpIDCMrTKBqA5fn6Wm3Va0YBUzKivSkEEB0UR8SlKgLIst6OvqJ6It6SIRoomgp23w56d8iRUUdzESa1SXBVxxrm+jqAVlsyotO5GBy4cbz1C09TRcN2rRRF3Mr57QK8CM09LFHMiLceshCnanm16r2kICgwoRgWWlQW0kWjBLL9gJ6UJQK+I/YSTVM8vqlZyIj7suVGW7b5e7uHCii3W+o5FTQREPvuPN+i+CfhML7nJucxq6wMz1aK7Xb0ogybZ6cZ9OYK2kxjOdLyQi1L2MAGsvAbkNFsQ9m3TqABqxDVxBPtAkdKqJYxLlMuwLBNqPgmkI/qpYdspLAaLo0CjqBm+8eCPTY9PtGm4QmpoRLR/MC4qctqUNihoYMt/C/kTM4Xtu7TuabsDqOSDI5sbEqu1gKIEC26FRTuqexSB7UFxOTx5l5pwk00qGuoSVaoJNBVFl15ojAJ37Dq8A4JBAqdRkfuhWZyat/1y9lXesGcj7JZyKl4x00n6VUGgL2S54H7ufddw2kqzKtsIEzejmnm9JIMTTl1LeQYxspPAla8NrmNx/HItAC9+RYTeS++IGVncHAqvZCBZK1Tx0IuLTdfTVAX3XLmz6Xq95o7Lp1sWXhUAf//v7kI2FZVUgBBCCCEXO+XRS2AkE8DE9vjT5KoliY7JzUunK8ozr4YlU3iKK/WdPKMiETkzT9Z3/JtF2sTCE2XijaTxRw4CIkYsn5Cp1GM7gUtulwicZlYDgIiEqVE7ktROGKJXgPxc/KJGZZPemJMptaZhCzCq2+m0DBHZFFWOK7/gi1Z0C6+V19zOZHndFtIjyuTtSJqmK/hWC5L0KDthZyHPo+ZZ6QgvRY/o4ggq5TXA6X/7E6Rlp+oFrboOc0yPV8dGwT9d2jTCpzcbFU9k07Jb1qAEUnHRS/X7c2wKVk4Bo8sA7HOUyAK7rq2v66oGN6mMp/4a0VF2WiUH1TJhVpNA2baUSAV4aQJ2EpsFYNf1AVHPlitEGUaw6AFLIrGXT8i5UxTg7MNy/bJT9asWllwB0/Eunj4oEWg1FBGO9EqjYO7fllcE8RUpHHuhX2Bz6ktY9bIMj2WBs1KT6L7SmrSHQVGX5Q2xX7EsEfvVpKznrSuJLIBmGdJ9OAmtADk/tYRHDQckAnk1L8euqLK+I/5E3maWp17CbheN+i85911qPHwaf2RSvSbeweV111O7FqHYAtWiPShiSPkKz9m2ImWpu5kpSTjlEOb3qiYb/axDcc6Pr4KapttuaylpU6sFoJSy7yGfIFdad4XX8oYIg6VVuQ6mYYufQYM4zcRAK+LZU66/5kEE1fO4VPIy2OpcT8uyvYUhA3PFcdt+IWD/1ZzHesR+Vlj2+4VXIK7kgHHnfqrz8QDQhk7i1N/QUxLREHkH9TZmgWOfB254U+tlCIDCKxlIvvLcHPQYc/dv3z+FiZGYCQV6yB2XT+HDDwaMtkVgATg6s4bbD0w3XZcQQgghFy96ehJKMgmMhkTTeLFM6fzOPiV/l+zIyeJqfUKqwO9aItwFdfIsU0Qvp2Mcx3uvWYdQVpL/8vaUSoewDrVli4tG1RUBmiXXAmwvW1U6vwnPlE8vuVlAvTQiAidiH5UNN/qwmrenLHv9J9dEMNiY8ZXV8vyLxnNfLTZ6ENYRcX71IlDxRXRWbPHAmwgpLv7jXz3rRmX6r7OWsjvbihuFCNgRwZXGbUWd24ZFjiWET1SqfW41bs+sipDofFzJi/2D80FxRQRO06jfoV4Ub8cdV8rfqTFXWPSKhNVii0KwZfvbJuun83rZmAX23eZGFjvRx8kR+V7UrVUpSJScZcp2xnbJ74UlaRO0lNwHmQkpy8gOSeDkUFiqRXACkGnSiRQiRaC6wwu6nq0m/HKOJcgXMuiPuFH2lkT0j0w1LjPKgJqV+lL2WGWomivCxk1mB8i9tnK6XgQsr8k1rYuCN6UNXDntDog4FCv2wFGQSO85ZlOXpFzZaTvJUrVxWw6KWu/v3bDNZhYeUVjA6mlg3y1yvtbOugKhg18MNA25/7zXurwm63kj4vNzqKtHayF2AJkJe5p+DPLzEuE+vse1DFg4Zkce2/tSVNlmIm3bUswByUPB2yutyyDlxoxbdsfj1D/oEYfSmtguKJo9iKK2JqY2HXBtgl6WurIxK16p0wfc5Gtzz4pFjBlwbzve2d5nQ2UjOCo3Nyft+fgldrvutfqIUcbyhj2ooLjtc+D3YryPGCWxbBrf0zgrqAMovJKB5GvPx4vmePUm2ww43HagjUYUwJFzFF4JIYQQEhMt0TzK1NTdDhIAV/CqSgcz63nvqOREXEiPueuGeUoCQMnOXq5XRHhNpD3+ffCJbwEdnPUZ4Pzjst7oTvGXdaLnNmZdP0iv4BEHp3NsVN3IztRIe1MENy4AE/tDEsI06QH6ffvqljlWBSHbcDrSfgGzFa9CLemKdE5km1EB4BPJTT04orhVSquuCO/3Yh2ZBmBfz2VPcIKFYAsJWNJ5DxWDvBtoE2+0thO9Vt6Qc2FETIsvr7m2DJWc6107sl0EiPSEeIfGxnKvq1EKF16rBUny5vX0BKSOLj4fvQtvIrfisi0y25i6/FQLIhLpJWDUd94b/CZDzrtegXv/2//oZXeabzIkotdPImOLHJYd4XmZ1N3kiNzTqh1NXrs/IupBnMGeagHAFDB1sH6qupYCstuB1VP1X/FO0W+FShEoz4pgn/YMoJTX5dwDUhfmj8p18HtL19bfsD0nPefT8ZH1Eya2dgPHxsQriIZiieCftqNrw6JlLSvYLgAImF5fFXHaSbZUWHEH1RTF9fyNM6Xc2X5hRSIbE1m7HTYbB/4sU9qtke2yj/I6kPDVwcyk/L/8kj3IY9rtStX1EI6K7A+ibozOaIwmtyyZwRGUODEI57507tU4wmJlQ+xuLKPet9sZyLF8g1Xe5X4RP9SOxZK2xLFj8H7NCqlnWlqOP+ebtVJcDbdpcQavLLsN1otSTi0l59bZ78aMXK9d14WUt3UovJKBQzdMPHA83svLq67ZfJsBANi9LYNLJrM4vxrXd0d4+lzrvrCEEEIIuUhxOn9R6KXwaJhKQaZqenGE1vSYPSUyRjSbXgQwYXuBqu4UdmeKrwLbN9QvIuZdoWD9vFgG6EVZz+kAAfWRdqYuHakalnQez31HzsWhV9nRYkvSGa9FMC6JCOlPxOUlSMS2TOlcZicbz3VLmp/v2J1OatP1/d/TRWzRUrbnqjONUhUxx9uR1xKuYNwsgViYZ2JdkfziRcAJKK3Hi36uFAD9fHjCroJ9vbzbMuy66HgSm6YInI7dhmUGRwPHFV0czIpbrrB7xxHJ6rAkCq60KkJzatz1KG66T/vY9ErDjOX69YLEvhjH57cnyIfUPcsQUS+ubYg/4tEv8qkJAJYImgAw7onSj4qWdMQzQIQ90/7drIoY448yHd0VnPwoavDDj15uvMe1pN0Wthmd68fx8a3kpI5oKU+kvn1tF4+L0FNYjGgjLBHvnPu2sCz1zqkfcep8ZtJzHqPsBOCevnJOhK1KTj60TGD7FSLsl/PR9X3phAwcANHnMx8zMhVwPcqXT8rMhCAvV387Erqtsi8qdSn6e5bpehibBhSzAlgBPsF5T6SsXq5v8/RyuL1I8E6DPzbtmS1GRe4Rr4Cqlz0e4mkRKBXYA56+QZzUKADF9hSPQW5eIlynLpdrsXY2upw1bLEzbPDCnyTO1N1nWd3z34OWFHG06ouIV2AP8IYk13ISdnmP2dTl2k5dDqhOg2zJrIEuQeGVDBxPnF3Feqn5S7+qANfsjpp61V9uOzDVsvB6pI2EXIQQQgi5yLBM6aQvvYhY6p8jPjQIHb7OTXpCxICNmXhiQ37eFfQ2miRB9U7pD2P1pOu96mAajR0wvxisaBJJZFRcT9WNC2g4N+X16DIoqhtBZgG1Kazldemc5f2BACHnvlqUzrVlrxMkCDYROhWzCtUoQPFfg0RaIqg2Zuo/VzXZZ7UATB+S4/BGK3sjRxUNDcl6YglLtqgwcZn8rih28i7VjUxaO1MvrvmxLBGJFEUi34IydzuU1+u9Xy3DFUIdb0DLiIicg9RP55rHisqz8UcO+qfIerdjmbKv3AKwfEqiFVUNbUXjNhXMuiQA6iU5JsdqwjLt7N+jtvWDfz8dRBZ7KeWAxKqINFHJxMKoFKR8zpRyRZNzFibgO+UemXIjEOtQ3EhEo9roNQxI9HZUEitVQ31m+gic+z6REWHeb29QLYllR3m1uVVFaVXqdnFVhPTKhl1Oy76WY/U2Kf7zrWoxoy2dwZmKTLn31tHCkuyrtB4+O0JNyo9lNW9nzGqwlURk2SwRqUOTHZbCfYa9+L3M9YpnFkcI5Q172wH2Fqomy6MsDsrrbpJHpy54ExjGRVHcuuUtr3Nd1IQ7+8ErYraDv5rnF2SbE5d51onRToXdLk79UjWJfLYsEUWz28XDulYfy/XP80o+eKNlezDgwhOybedeVVS7vhWD665lyrF5LZmCbBHahMIrGTi+fiyezcD0aAprRR1To93z3uiE2/dP4nNPXWjpOy8t5JAv6xhN81YkhBBCSDCjK88hoSnAcqsDtr5OSSJdHwlZXnOjPvRK4/pBxO6IxOhIVvIipKRG7YgTT0SXZUk0WqhgaZd19ogIJUECClBvW5AcrY8MUhRATQF6QcqbHpcp2ZYlUT1xiTsNucnpTZWWg6faR4lzzjYTGRFkgoRGb4RVq3qalpZz5niDOhtIZEVwHdkhItjaOVlHS4rg5SSg2phxE9QUluILoX6qRTuLve8AKjk74isJwPREK8UkapDCW4fXzsl+iquuQGwaYplRWnXXTY1FiIJt4PdONM14IkcD9v3kvU+MiviHAraAp7iJbxqEevv8tBpNvHYGKC2H35/e7dcsQ8oS7ayX3ChPx8pidEd9VHKtPbPkkiVHpW6ObBdblYbiKlIHV08D1rh/YTy0VKyIca28AqQ9kbrFpUbhdWNWRFcgnm+nXrajTVcbs9CXVgFlStp5y2oUNJ1BD0WNJ8AWFmXGgOIpl2VKmxqVuEqxZPn8s819xVsSXe396xUZzNGSwX67RqV5BLczs6H+Q6l3zqBSk2eYnpmGWbIFvETG9rItNb8/jQoaIo7TY4DliMWKu+uJS13/Uy/e+9BpuqolV1DUUp7jaILWpM1MJH3tkCJtiTdSOWgQwnseApOKOdvPyHJDF1HUK2rrngGQSs43kBrjYRYksOoRgyqOVVGr7VwMqPaQgePrz8ezGVjMVXDrf/4y9k1kcO3ebfizt92OVKIb2XXbox2vVssCnr2wjjsP0ueVEEIIIeGoRjHem7tlATClI26ZriA4fQUAS6JUatMDPVSLzb1Vq4WuJpsAIIJMZsKNaHOE3VpkUBiejtHsM+Gr6UURKEwDtSzfTsRffsFOVGSLEIWyLBvbXR85CURHtwV17ho6bgraj16M6gR6ymVUgkW/lqa2ejB1ETCKK42eh3pRPHsVTZYVV9x9l9YALSPCjWJPMQ3z6YtLTfAPuA7eqbXpscblUeglAHaiI6+w7MesilgHSBSWIxgF3UtNiWnpkZsHTnxdRETne4YBvPgVEbHHdsv1iTMYopeiRa5KPjyhHSDHn5tvQfS1Iv9s3L7hRgpqqUahKQy/sLf7OtnX+cckUtwyIdOLPX1EJxoyKDIxThRrTI/Ouuh1R9xyIo+1lGzHa6sSF6MaHu1Z3nATQDUss8VvNSECdjPCogLLa02up1cU7FLktH975XUZ5AhLdBYmvJbW7Mj7kHumbqYAwo/T1JFZOQ6rtCrr6SX5CbQkCcLXbocdRyItywzb1iRhWyEoin0MilsfvRHOQfepabj3Q23fOqCaUj9VJ5rc107oZUD3BMZlp6X8XvE97DoXV21f4AwiK40zGFBneWBJe66X7KSM1fgeuTX7I88xGBX5qLgcLayun5cBtXY84iOg8EoGitm1Ep6bidtgCRfW5KV8M0VXADi8dxyZpIpStbWX6iPnVim8EkIIISQaw3Df3E3d9ldV6jtsTqIJJ4uxabnT5WviYkhHfz3Cf7OuHDEjXi3T9uj0RhTaUViWWe+lt3ZWomecTOuWGT3VN5EBshMeETjCB6+44nYQy+siOmQm3eRKluU5JgVQlkRgciwIxnZLZ1xLtZb0Kzdv+9zaP5mJetHaqMoxWqY9LTfq/THg+JL+qbQxInTG9wKpDaCYcqPrcvPB23dQ1XBfYaMsnWLvtTRNoLQUbSkQF2+xapHQEedJ9YsXMc5JrZ4G7Fvxf2DTzpR5D1olB2TsTr3jCdkghNmDBN4oL8uOdi0sy/nNL8q511LNI7RK6yJimNVg0bewVJ+AK4hW7CkcnEjluB6SQLSo10zHmz8G7LzajsjzJBhLZERwUzVPQF2E32QYqiYiVTYTPaXcT82awx5g2napbMvvTxmHqLbR1KXdbzWStI6A468WfVH9EedIL0kkr3cquoNRtcU+NV69jVO2IMKE1/yCPBMcG4riinu9jYrUkWaYBlCcRzI7Ct0wgIQjfOqNkd2hh2e5Im1ypLkVgGX7WxsVdyBNS7nPVcuKrheA1Am/mO742hplILvbjTyNauOcCO06QtoG59mayAYvryOg7RjZYSeos9sPywQQIbw6Am3N+semtB6vDVJUqb9r52RQp4viK4VXMlB843g8mwE/1+1r8qLQB5KaipsvncQjJ1vLJPkMfV4JIYQQEoeg6fdaSkQ9x3ew/gvur4UlW2QM8HurlqKj3drB1IOFCacjM76vcVm1UJ9AJgy9BCy+IJ17ywI25gBY0oH0duTLa41TYp0puc65CYrqcjpugJ3cJx3iFxmBI5I5FE2JogHEt7Kug16CVqnCTIwjMOlNUHKRBpExgkpRvB83ZkQ81kuu0JfMhns1AoBejY4+LK3VC6/l9XDRtZXkU2GE6S7exGMOcTWd4rLP6zdgR94/2xHLoogSNGePyHmzDPFk3nXYHURxouwU1d2GmmhMrOYcm5PxPUh4db4/ujPA29hDIi11IjJ6W3HFrGoBKFdFLB6JCDTx37ehkcueC2HZAyvO9ODUKJAxgLmj9aIr4E4Bz04hvBI5242IRla08OhE/2YUzWMf4E+a10EkaNRUaQBAhA9yHFZOAWN77U3pYrvSqtdlJScR4heekL8tS9pdb6SumrAHpJLuvkzdUxfs/2seoIn686aXbLuBlDzDLMP27c7aQrEZbN3ifTYZ1YhzFdKAlNdj67+ROO1uaCJEm9oxWxLRbJTtNtbqQkSxFd3+x95MlyObAXn2GmXUnewwQd2y5Jo6g4RaSgamRrbb7ztBM1B8OJYHssFGv9cOofBKBopvHI9nM+Dn2r2bL7wCkmCrVeGVCbYIIYQQ0hQF7vR7VbOn+9kkR2yxMqLzUxPDAtbpMIKvJWr+aVb9Z6YTHWs1+loGUcnVi6OOaJuZkO2bZvh03FZ8RqsFiXBSEtJBdyLJEpnYU44BuL6ZQVFRkGnJmp6HpU00fjdIGKj1G73XM+T6l9dE8MxOBS+PotmU74qn025a0aJ5ywleAo4nKGopNRoSqRZTea3zewzxKqzkRcDuJElN1P71Sr0no2HIuU1PuNcgTBD01g8nO7cXNeGKW6nR4MztjkBYiNGPiZqC7dzbTnS4E7HbSgR0tdDcMsKyZECi5Jv2riYaM7c7GBVbQIxIvFQtRkdhGhWgHJLUx4OppmClJ4DRsONwrpl3XzHrq5OVPYzAbO4tknMGtWal3hkVuQdMw25fo9pQ+zgcO5dqvlF0BdxBsOy0fEcvRkfqjuxAneBv6iK8+89HJWdvey2epUKr+O/VSGJe0/yi55x6vlO1p9mnx9xkUmHPtU7xio6tEujx6hVM2/BMrZuN0mQ7xZXGmRmVDanHyTHxHW6GXnIHOZ02spMBDB8UXsnAYJoWvvXSUlvfvW5AhNfb97f+QntiIY+NUhXjmRYiFwghhBBycWGZ0gkDGpOjGOX6qYa1jndIZ8ObYTyRbj5FsZuUN+wEVp4OjfO7U9xWp6k739dLgJ6R6M5udU4d/1AngtWJDlKTrQmvgIjBEZFjqlmFEXjNAjqberk+8q5Zx9YypWPaEF3VbIr6qmtrUfuKGiyMGU0ilb1+lgknOlmxz2kHEVN1lgRlV7gPE4cqLdT3akk679Via9PlW8UvpOneJDO+dbSUiFC1S9LkGlZyroihJqV9UBRfnbEF06beqopEfzv1SVHsbOG+c90QlWlH61mQeptItyfGFJYkis2oBt9LRhkoKOHCbbUIQJXyqUkg5bXJMOSYsgGDH168Udspj4hryT8y21+Vq1LOA2albnnt92RWrEwcFMUztdnrk+prN9REuPCqqDHOa8zz7niCmoZ977YjyBmSqT50EMyIjrD2oihAepttD+AVYP2J4Ey33WrYn21jYxlyH/iFtVhlCRvgas0usYbzfAnavjMTxTJjJXSDotoCdRsUVxvrWmzi1I022/jUSPNz6xddTTvK3mnz/EJ52C3gnGO9JAPaQTY0bULhlQwMz89tYKXQnh/UIFgNABLx2g5fOToPVQWOXljHf/z+w1B6kEmPEEIIIcOL6p1yF9R/cQSn5IiIWultwZ1a/1TwjrwAQ3Ci9MI8Y01TvGiLK3ZyK6dLYvn+DyFqWqNREeG1i5Eq7n691gHL0sHVEvVTvaM30KQDaQULKjUvRKW+w5ga8/jGxnh3rCUo0UUEg9J82rxebhTV1ESwsBW3X+149Nb+TrWXZCiI0lrjtfCW3zQar0EiYw9mJOojX01D7BniJnrqBMv0iHSKfW0TQH4eqIzYNhoJW7w0Wo+8reQa73XVsw3vlO9mJFL1U52D6r5lAtsucT1NAXf/VUi9zU41TitvIODz0mp0VGeUcOQIKtWCPQjhEV71Clqavq2ogZHWZlWFZZpScjMkEZZebBS/tURwVLpeBoqeY4oqn7O95Gj4QIFZFQE76NxqaSA96m4rmZV1EynULCTizpDwJzjqFnHa2qB21KjaHuee7zuiXKvPwaDDakuwRDzrkrh2AIoqx+MMDCqancRtuXm9jiPshuFsO5ENtsLwDgw77Y7/ueKvjlpMf1VTb3ToKa647XY1HxChHON56fjAdwkKr2RgaDfadTSl4bKpNrO1dpnp0RQO7hjFycXWGu93f+rJ2u9vvXM/Du6ImAJDCCGEkNgsLCzg29/+du3n0UcfxdKSvHP8+q//Ot7//vd3dX+f+MQn8KEPfQhHjhzB2toa9u7di/vuuw/vfve7ce2117a1TT01AcvYAFT7fSdIdEhlURMRUqPA2C7paK6fr+9QdSPpUTMSqeCOryNUpMZECHKiSZ0ozLh9dL9vq5dqQSJqw7zg4qClpDPn7+BrqfpzWVqRabJasjX7glbxXtu68qSBEVuoiZr+7cURTeIKDUHHZeoSCZr0RM9aVnwxsJb9W2ns/yZH3PrgFQbT47ZYHEGYCFgtyPcVxRXXvCQy7rF4o3arBem813yB20BNyDE1i9jye9+qGqCN2yL5uv2TC7YJaBfvtS0sAdntQKKJ+KqX4keBqQk550GCjzN1PVDAbyKsmQaACDHcqESLTMUQOwVHAIsrvFqmxzqlEcUoAQizh7Dk+Asx+r/+8x15fpS6/8K3GdKGGhWpY6oGjO+RNs/wib65uWYl9hRHlXrlRPt3Iu7BHnxqBef6OP7ofm9iVWnvmaiosNQEIush0NvnQtj+qiVArbjPQDUp7W1Tb+C4+zAaZ3s490zdPgIid1Nj7j2/MWsvDPJbzfoizyMecM79ML7XLpciCTsdOpn90q6YHgCFVzIwfOtEPOH133/v1bh61ziem9nA0Zk1JDUVqjo4EaK37Z9qWXj18tTZVQqvhBBCSJf4sR/7MXzjG9/o+X50Xcdb3vIWfOYzn6n7/NSpU/iLv/gL/NVf/RU+/OEP48d//Mdb3naisgZFLwCmHX2R9nRIRnagXsBSWku81CuCxAgnGY5RrY+uq3XGW4iOMg0AiuvrWrK975wOYVBSlU4wq3LenYhIR3QZ2w3oEyIKVvLhUb6Am8W6WxSXXOE1NQbsuErEBUfkc853L7DsyEDnMreaNCsskkjzTAvVy3aUlBUujmgp95pHCWbVokxZrUZcH0CiSrWUiLEbs1LPCsvtR1AnR+z9thpRF3As1Xz705njUFwSsTQ7FW2jEZQ0z08phqewXnJFGMWO8nVIb+vsWNP2PdlKxFptsChGOzS6G8jP2SKXI3Al6s6bVs2HR+2VN2Q/XquB2ERFvDZp97yDRF7rg7rNGwBUicBO+ep9q7MyncG2ah7Q1c6E18Ji+/ehqYcklUNzcc2Zuu899tQ4ihPXolqtImMWgGRIpHQ/bXwcCosAbNsKJyK7iwIi8gvSrjmDWQAaBO30hC14ei1qbFsSI2BQU1aw/4uyywj6XLGjwu0ZNCn7mCMHUGLWY7+FQQd0+Y2EkPYwTAuPxBRe33jzJXjd9XvwrtdehT//qZfhj3/ith6XrjVuOzDZ0fefPLvalXIQQgghxGV0dBT33HMPfvZnf7Yn23/Pe95TE13f/va34+mnn8b8/Dw+//nP4/DhwyiVSnj729+Ohx9+uK3tW94OfHlNOj+VgnQMSqviz6ZoEu3p+Bb2ItNwHKyQTiggHcCwiDNHBIjTJ6rk7XOQ8/mPdiGxTBB6WaZ9O16vgN2JtKeGN3hmBhBjiq5qluW66i1GYamamzhJS8afNu5HUeMl4SqvSeRbbhaYfw7YmKtPtNUuTrUp56QjrZcCPBA9jEyLsNm0vOsSdRfk+1haleQ2gNw/k/uB3TfI35V8d2wr4k6bdagWg++htssSsy1wEhZ1I1v6coS3p7Ovck5+Smv2tbaFuY05adPaidLTkpJUKbMNbckdrRx7eU3OV3HF9eB2NhO9E/kvNy91r7Acca58W4q0GmhyvGpSxN6x3cD47uCkdM4ghx52Pzdp58LawY6rVAf3YaAnbkzxrbBoJ+wy5L6sloBKDoniApKlJShmFRjd1brnd0+x3GRR3vOW7FJwV7VQP2sit1D/zCqvST1NpNwfzbY/qOQi3gFUma2TadFGsrgCrJ2X7a6djn4WGXr0AGmPYMQrGQiem1nHeql5KP7BHaO4bHowbAXCuL1Nn1cHCq+EEEJI9/jVX/1V/NEf/RGuu+46aJqGU6dO4cMf/nBX9/Hcc8/hT//0TwGI6PrRj360tuz1r389Xvayl+H666/H4uIi3vve9+LBBx9seR+KX7Qz7SnQ3mn3+Xk7kY7pJuPoaGpnm8SJiIvshMf0XwPkHFQKAaKFYiehaWOqZ0vCy3p9pF5dEZzInWZZwF1UvQSULRFRm037BkS0cTJ366X6Dm2QyNgMLeVJ8BMT3eM/3DF2dGusjrG/nsTxMAxZx6lHibT4QG7MyPqdevxZBmBadh1pJfrYkgjp1Eh90rx2y9PK5XG8gNvBG1lXWpV7ICqzfNB17ooo4hnECT1234JkNn6it1KXIskNj4dy0Y7eb2YnEcdqoO7/Fu/N8rq0A0HWIZWApG+h+D27N2kgMHTfVmvPB6Pi1k2zipQ6C1U3kEhowGrFtiSxIyRjJTnrAzWPYbssVhetD6oFj1WIZfueT7c/6OdsJ4rSqojHDZ6tAWULuk/K68GirDPY6PgSO8Xo4jWk8EoGgodeivGCDuB7rmozS18fuWrXOMbSCeTK7TVsRy+so6KbSCUYkE4IIYR0yn333dfzffzZn/0ZDMNAIpHAb/3WbzUs37VrF375l38Z73vf+/DQQw/hySefxC233BJ7+4nKClSj6kb2KfY/yVHJMA5Ih8Qy60WLQlhUyQBQXu3itjxTkmtJPlKAOi1idDsoSmc6QWay3gO1WmrNJ9TZd3HVIyrXeoPutE3AzVJfLUj0oEO3PP0iy+mpc6rmTvNs1XoAkOnlY3tQN221tBYhjlie4w1JTOalmWhZXgesMZlyv3o2et24VPLtJ7DTi43XcOYpiVbstajTieBcKcr0e8cruRtkp91jdvxRg7yeFQVAm1PaHeE1zsBLjKnbbV2h0pqdrM8WgJJZtNQQNdSLNhuxwqIMXOllj3VJiIeyn7AI9UHTXYH2o2gtA1p5BWqlBDWhAWV7sCoqOn+zcDyunZOQtN8jakkW28QyfbZBljwLslN2Mq2CHSXsmTUQNBhaK5+9Dd1J3OeZWTKy3U125fgQO56/Tp1v1iZW8sGiayLT+mBjG1B4JQNB3MRa33P1zh6XpHM0VcGt+yfxwAvxxGQ/FcPEsdl13HTpZHcLRgghhJCe8A//8A8AgHvuuQf79u0LXOctb3kL3ve+9wEAPvvZz7YmvFbzImRkfJGV6W0STWaawaJeN33duk3QtFrLIyy2jRXye7vbaILjp5uZFH9Qp+xOZ9SyvWdbFoKijsNyRZCNeRHYFVU6o/5owUS6s+QiraCo7uBAO8Kr4+9aWHTPXzPhrpXoyDgioF6SaON+kci0XjeMiisU1MTmAPHB+3si06LfaQdJ+CobErlpeBL8dIqaqPdtbhbxtvC8RJNGiWD+20pL2ond2mw32hHDg0Rery+zY7XhoGrRAwzVgohhodfPsz+jGj0o4PiiNhvQCNzNJqmsyZH6GQjdGqDw36OWCa2Sg2maUHVVLFfiCtP9xtSD7xejC/dmYan+HtfL8jwybPE0PS7WR7l5tyxBGBU3sr8YoAt5BVvLqhdQnbYw0SRSvLoJs388UHglm45hWvjOqebTNZKaglcc2t6HEnXOrfun2hZeE6qCU0sFCq+EEELIELC0tITTp08DAL7ru74rdL0DBw5g7969mJmZwWOPPdblUgR09trpLLdCO4JRU9rsrCcytlgWw2c1NjG3U8mJ1+nItPzt9RvVyxLB1tPOuOkKXEEiV3q8PeF1ZHu8jOthpMbbE1/9daon9SwCp3O/dqZ/+2yVSt4VG4or0YLyyHY7OrTFyNNOhDMnEs5LIm1HZquyvOWIWt/9WFpvvK+ceuLsI4r0tvAot74mRGpmj+G7d+Ncl7iiuVGN0Ta12Z5ahnhpFpbdQcFuTnP3o2pAdns8r+1e0excqgn5sUy5H/sl0ob6S3dJHPcfR92Ab8x9NIsU9rdfasIeJIH8rybrrTEyk7LvwjJqA5VB90VqzN1Oj6HwSjad52c3sBFjWv7LDkxjND0cVfa2/ZOx1z0wPYKbL5vELZdN4ubLJnH9vm3IJAfJnJsQQgghYRw7dqz2+6FDhyLXPXToEGZmZuq+0xm2H+aqTyQyza5m4w0kMwEY2frorE6xLNe7thUUtUNfuTYxdbECCOpcmgZQXEOgKN4LLCtYMCq2WA9U+11bsaeKQ3G1l2ZCTXldzomitJ9oyx/BqqU2x6e4n6gJ1MQBh1rG+YC6FTeSfXyP/J+dtL9nJ5Xpx/n07sOJ+u4Ev5aml8LrYhxBq7wOKJMBCZE6EKPK60AlB61UgmaZ3RcA0xP1tir9oJ3BE8C1uSkui/CXzLRvuREH06iPiO41dRMS7D+a1TtTl3tdUfobGauXxAtcUUUQr5WnhcFZx9JIL/ZmBkWrbZLpSZBl6vJ9p36lRlzrAkWx25+QwRQ1Eexl3AOGQ8UiW5rHTsfzHxsGmwGHWy+Ln2DrT37yNtxwyUQPS0MIIYSQXrG46M5w2b17d+S6u3btAiBRsq1imiY2NupFKbNoQFlelKzKNSxolXUo3fJWDEG3NqBYOrRKZ50wS0265S8ttLeNsg6jYqFOnVEUwDKQKLdePkuR8igtdI6tyjkodkfWUhMw1SS0FjxWLXtflmWiWCrDqgJGVYVWKfiub6vEP34LAMoVYEPEdEtNwky603YVE9AqTYSfUnv1wUiOwiqU4C+vopegtdjRt9QELDUhicraQLc2atHDiTaPJ7BcvmsMAJYGGMmx0O8oeiGwHlll8aCNqqOGYbdNigJLTUPV87HPiQXItfeIh2o1H/uesBQdimUAUKCb+bbuQy86cvDe31qpBKXDiD3DLMBS69tJrVLs8H5DTVSzLKt2nUNXVfVau9EMwyxCrZQ7Om6zasGsitis6kWoPbchKcNSVJjJkY6fFVFYUGAg3HaknXakKaqBpCH3ZrEseoalpRsTYXrLqZoArJ4/n/3o6RFAUZEotTmLoTTX1tcMMw9L0Tq+/6OwVAuK6Q5GmboFsyJthaJDrnvIu4WhrwOqnTDOSUqqqLA0iYI1E1l0S6Wh8Eo2nUdj2AwAwPdcPfiJtRwmRpK4ctcYXpwPfgCoCvDu+67Ga6/djcN7xgPXIYQQQsjgk8+7UTyZTPSUtWxWPMhyufaydpu+LPWmXoFqVuu74WYVmlHpeR4T0zShWCbUDiN3dCUFzap0JqJYJrRS8EB+1FYtqFACIlJNC4CitHZshunuy6hADb0GKkxbmE3owRFglmXCNA05x2bn57gl6oIu1fo6ZwKWKl6BiuWurJqdd6pNC7DMxgjPduqYARUWtJaE87qymKadDN6qiaXdxtmuaZoN97UXxULw8TviXsQ+VE+0op4YhWVUWjoe1SeyV9NTUPUyNCNGNLPl3A8KTNPo+DzKOfKIwJaFTqPJTdOE5dtGt++3ZsdtmvHbGdM0oVpWQ5lbKo+nvmnVPKx+ZLyyTKjl9Z7uydCy0fcRAKAxulm17Q8MLQOtJpjGK6lmuAMilmXCVFMwtAySUQNu9j767YDrtGndbM+qyQmoZjWyPTBNE5ai9KwdBQAYpbrzaZpWrS4oUCPvL7Xa+Aw2lSRMxfbE7WKUNoVXsukcnWk+ZWLHWArX7tnWh9J0j9v2T4YKr6YFvPqaXbh273AdEyGEENIryuUyTp482dE2duzYgR07+jtQa3mmBys99pZTfVMpE9U1WGr967ym57uX0KZpWRKA6RGb7eO3ACg131FnWqUFWGgQWFVNhWK2L5J1hgIFjedKtcutmL3pHmuWDs3Q666Tt2OqKCqQHIGqqlBVBYoZ/3qaWhqK6UQbdoaqqLC8dU5VAYilQ92ZKS2FOkFaaqJpdJelaFBVrX5fNoqpyvlopdyqAktBy99zv6/WMsu3u40gGq6xva/G4/acXTULI+kkjVGglVcAy2zZedOJzOukbVAVFUqL9REANMto+zwaCUl0pvosARQl+N5thYRRAgxvBLAlAzEdXvOg6xyG2sJxqKom7VIHx127p03dfl5tkh8qpG0wEqNQzVLHkbeqqkBOi3M8vuNSM7ACvDy9raSpJ6DqxdiDgP7rrFk6tMpaX56/raKqCqC03pZGkdI3YClK5DZVRYGldne/zVBVtWY7oaCN54eCwGdRp1B4JZvOF991Dz728Gl84HNHQ9fZO5FFSTcwkhqeKnvb/il86jvnQpc/fmaFFgOEEEKIzXPPPYdbb721o238+q//Ot7//vd3p0AxGRtzpwkXi9FTy53l3u/ERVVVjI+NQtRLu1NQqDT6PYYm0ugyo6O2oOrPAO9kV7c7P+WN6KiR7ChQNlv3dY2Lorq+pV5i+WTGeO/sUvKnYqkMyzKhKCqymTQwNimidVlxk4I024+iAmO7xOPXO126XR/eRAbINqmrlgVETPFFIt3cE1BNANABGMCob+CkogIxckHUkRwRb9hSm3VqdFS8Py0TUGJGPKUnxEcwol4VSxVYtgiZzXjvU2cfAYKPIxYpqpRJSW9e5vTRMaCqAZVW96+HJ7JqxnjIQJpS6Pw8xEnC1QYN97K7Q3QW61gGMgHZ6VvBuacreUDt07MiDDUBpNJA1YypSkWdPwuAHXmpJoHRkITczkBp0CBpWQEq8Qeswq/zADI6Ju3HSLqzpIktU5Gfvp4fC0g67xRt7FtRgTbe0ZoxPCoW2bIkNRVnlqOnrBybWUdSG7zRoyhu3R/t8/r46RX89Hdd3p/CEEIIIaQneCNs5+aifdDm5+cBANu3h3QKQ0iWl+3opJwrrm0mI9ulHPkIT9ZExk3q05Q2o67URHPBNjMZLLyW17uTZKhXIpgjDKRHJVFVK1ngVbVeVNFS8RMy1ZUh4N3bNOqPudnxx4lk817D/GLw53FJ2olVFAUwRlo7b979Wma8DPKACBqprIjdkec5SjQKwVtHkyM9EwtjUVjs/77DErp1oxx9P4/9nmAehF2GckDSrOQoEDD1um3SE0A5IrmfqbeWBDI1EnPqd1CyQ1OSMVVtP081IRntk/3JaL/plNcBJeEO5Gx12mn3HSzTTZqpde98UXglA8FXj0Z3VKqmhft+/xu48+A0Xn5wO+48OI1Lp7I9n9LXCVftGsN4OoGNkFH6x8+s9rdAhBBCyABzyy231E3bHxYOHz5c+/3EiROR6zpWCt7vxMObOGoAzpHi98oLXMn3fwjl9dayK3uJI8wV4yVxbZt2BM2mKHJOissi/sUViCwT0P3lUSSbfTfQ0kD+fO+ik4HOt60onWeTbzVCWEuLoOOIOZX2PJwHns0QfMu5mi9mOJ1Gkl5E6GVbVApA1eINZsVCkba9m8T12/SX37JEAPYOApk6UFoFlCk3GrvFdsNSkzHq5oCglwHVaD/y/GLDGfDqYkI2Cq9k0zmzVMCZleZZX08tFXBqqYBPfeccFAV48tdeh4mRZB9K2B6qquCW/ZN44IXFwOVnlgtYzJWxY4wNICGEEDKsbN++HQcOHMDp06fx8MMPh6535swZXLhwAQBw++23t7QPQ8uIb1lqRD7IL0DEuRY6yJmJ1qKLosjPN19HLwOl9eaRJ+2KrlsaS0SBuOcmNSqCSWm9u0KzqYtooXjsIwYdU5fzpsYZHEB3hNJqAag2X61jOoniGlaaCVuqBkCRKGcgnmjebgT4ViEs0r+rQqkthCcy0m4YFTuK3FnWRCjXUtLudCJ8GVURa519B1FcAbJTwbMimqD4E1uSrUcb9SJ0U13bEiFt8o3jMV7efVyze3ygRVeHOHYDpaqBJ8+u4q8ePo3/8LdP4VOPnu1T6QghhBDSDX7oh34IAPDNb34Ts7Ozget88pOfrP3+xje+saXtm4lRmIlRERfS4zLluBXRVU0AySz6++pvDrdQlJ6QDnl2GshuB0Z3oq+JaIwWlLxERq5vUDSTorqfp0aB9Db3mJqWodLb6NZeoJdFTInIcE62EKZhi+1mzEh8dC66prd1VZDpG5tR7vQ2ILPNFl1NAHaixUgUYGS6bUEUgAwYVXIiMjeL1C6uyGBmkP3CVsLUYwzMUR6so4vWDEPYYpCtxjeOR/iDhfDyg9M9KEn3uW3/ZOTyX/n7p7FaqEL3ZM1dLVTx5jsu63HJCCGEENItfuEXfgF/8id/Al3X8Su/8iv48Ic/XLd8YWEBH/zgBwEA3/3d341bbrmlvwU0dYmGBMWo2Pi9CTMDnBA1TMcY3SkRgU6ks3eq7ujOeNsuLIn3Y2o0YkcDhqkPt+hPBptEuvvT6PuBqvU/ar28IYOFLdlUWPbASQcWEsWVNgT2IWnfegrfEerooq0lhVeyqZR1Aw++GDwVP4o7D7aWlGKzuPWy6IjXxVzjA+GZ812aBkgIIYQQLCws4KWXXqr9PTMzU/v93LlzdfYA6XQat956a8M2XvWqV+Eb3/gGAAT60F533XX4xV/8RfzRH/0RPvKRjwAA3vve92LXrl34zne+g/e85z2Yn59HMpnE7/3e73V2QKbpTr9MjQOVmFE6FKI6ZHDzCriCQQvCQVRiND/VvCSOSmQw2OfBg16S6cokGi0NaEkRqYZ5+n1lo/3rnbUDenrtB73pbMK9a5QBs42owTh2NpH7HeK6TAYICq9ki/CdUysoVlsfWblzSCJeJ0aSuHLXGF6cj+8ddWGthIWNMraPpnByKY9DO0YHOokYIYQQMsh8/vOfx8/8zM8ELvvQhz6ED33oQ7W/Dxw4gFOnTrW1n9///d/H+fPn8ZnPfAYf+chHagKsQyaTwYc+9CG84hWvaGv7ACS7fSUn0yjH93g+3+JTJAeGAU7iU96I8EPswnukURExxGxigaCom5OEyU9si4QBvZ79wigDI1NApTjcYpVlhnuXxttAC+sOYb8sMwFMHwKKS5IIDpCke4XWA6BawjJbT1ZHiJdBeaZ0CIVXsqm0YzNwaOcodo4PT0KqWy+bbEl4BYCf/vAjOLdcxEZZxwP/4dW4bHqkR6UjhBBCSDdIJBL4u7/7O3ziE5/Ahz70ITz11FNYX1/H3r178drXvhbvec97cO2117a9fcWsAGVHGLE7/mYcvzzSFUwdAzcN05uNOz0uwlNdQq4u141mwlZ6m5SlW0ncOiWW+DqEIlq3Ka7GjxZ1PDeHzfs3ilasKZLD2idTRFjXK7btDOIds6J6mpEBa/9IDFS0NSNikNgCoitA4ZVsMvc/3/o0gjsvH45oV4fbD0zh04+da+k7z824kStPnVul8EoIIYS0yTve8Q684x3v6Ggb999/f+x13/rWt+Ktb31rR/sLQjXKgOqIRJaIJR1FeJGWqLQ2iN47FEmkpSaBVFbEd6MiUWx1omv9V/qCUe4sC/mWRcVAi1Z6KV5boiaB9JgksdJL3bsn1GTzSOpeEtevNZGRRFHDmrgtPy9tRFyRWdXk2vA5M7wks6gJroNkN5QcGazyhNFFL2cKr2TTuLBaxPG51h/Y91wVMxnAgNCpLcJTZ1fxhpv2dak05KLGNIESp/sQQsjQYepQjAqQ9Mz4Ce0MK5IIaWCEQlKjKwKTJR3WzKRM4Y0ldPZLeR3C6NF+RFOlxxuTtQ0jZrX708azU3ayqlx32ywngreb9gmWCRjVoQ0cbB0FQ3lPd5vkiLTdAGoXP5GGbuVhmiY0xQQwoDYd1XzzdTaDLRLF2goUXsmmsFqo4BttRLtqqoK7r9rRgxL1joM7RrFjLI3FXHsRAE+d2wIvamRzyS8BJ+4HTj8of//sL3Y1SyMhhJDekqyutZCN2hpur8atTD+j+hQFqOTF27F/O+3jvtohwKO3H1FXW0F07RWpMWBkO6Au2VYZXbIwyE7Zthfr3bvGRgUoLHVnW/3Gee8PSA4Z63tRZLa59gVbkWpBbFTUJGqR66YOxdKhWKY8m1NjHOxshYswiprCK9kUfvrD38ZzM6030Lftn8RENtl8xQFCURS8/OA0Pv/0TPOVA3jm/BoM04KmDvrLLBk4ll4Cvv6bwD99sv5Fa+4ZYM+Nm1cuQgghvYXC69ZHUSQSKyzi1bLszu0E+iaI9ntQ1/G4jW1vcNGEKg4PhSXxBK7kLsoouN5jDzaYptgMWCF2JJ3QqpjbbxIZEfQ7EfUtU+qo4bY1WqUM1TKhKCqgDk/+mS3NAHtQxx06J6RrlKoGnptZR9VovZF+1TW7elCi3tOJ3UChYrScnItc5Ohl4CsfAP7kTuCZv2t8IXrhy+1t9+g/0LuNEEIIGQRi2Qz0WQjtlvCqJiTCLN0kWlenp+zQUy2Ij2K3RddqEahefFF1jdh9gPIakF9ozSpCTcSLFi5vNF9ns8hMSlsSN3lcJAMuMJP2BXY1IVHLXaknwTDilfSdo22KrgDwqmuGy9/VoRs+r9fsGe9SaciWZuYI8Pe/AMw/G77Oi18F7nlPa9t98avAp34K2HkY+LGPArvaz8xNCCGkNT71xAoUKEilhmvWD4lPpVKFBavL11kBMhWJgDaqvbc60HKA0QWxS00CKXs7pdWI9RIDGdkURm+u8UWEmhT/asAVakOT3yz2pUhB8DpvMslR93e1KgNC1UKHM0Ea6xOv8xZATYowX1qQvwMiwn+8S7ui8Er6zpNnVtv63q7xNK7bu627hekT1+wex7ZMAuul9l4Onzq3ijffcVmXS0UGmqWXgPOPA4vHpdNhGuKBNXUA2HcrsOMaQPM14Y//JfD59zZ/sTj7sHgxZZrcT6YBnH4IOPlN4Ft/JJ8tHAP+9LuAHVcDh14FXP29wMHvATS+cBBCCCEDiZaSH70M6MUe70yRqb2W0R3LiyhxdYhEV9JFLAvQaadCfCRHRWRVKXENBFqqd/YW3UJRpHyWiV5HNLNWkr7z1LnVtr732ut2QxnShECqquCOy6fx1WOtJxQD2j9nZMgorQGPfRR48uPAwnPR66bGgCvuBa79Qfn/678JfOfD8fZj6sDJb8h3g1ifkW09+dfA+vmAFSxg8Xn5+fafA9suBV7za8BNb2HSLkIIuVhJb4uIPtsMAhIpXXRY8m4B2B3MHntoGiUASnfFXS0DmLTcIkDd/dyNyGqytQgKArFM+TH6mNiQCEPhNd+/fiuFV9J3HjvdgreMhx+8aV+XS9Jf7jzYvvB6bGYDpaqBTFLrcqnIQGDowLf+GHjg9+Nnvq3kgOf+QX4UtfXO1ItfaRRe184D//LfJHLWaMEzbf0c8Pf/BnjsfwM/9EfAjitbKwshhJAtQpfETjXZ3rT49DbUOlKKIp3tar7z8gw19vXoWwKci13s3kJoKUBJAHoMn09CNhvHTsWyXMGV7RGJxOpbPaHwSvrKcr6Ccyutj4LvHE937JO62XRSft208NzMOm7dP9XFEpGBYPmkiJZnH2l/G62Irtkp4NXvAq5/k/vZ2jmP4NrB6OSZh4C/eDXwox8Brnpt+9shhBBSx5tvnYKiqMhm+p05WYkZKakA47sleYvZhWmF7QwoBpIAkO3CdnpPsVSGZWfIrl3nrp2HIUNNSGItVZX6VFze7BJ1hcBrPMhkp4FEKmYitz6gpeQ9trwBVHtkcZUcBVSto+j9obvOw4iaABJpoGIPrGWnxH6ijwNtgdc5Oy0WcRdDu60m5Bk1FJGtzdjR8z1QeCV9pd0p8z9w415o6nBPYb7hkglkkxqK1fY6JE+dXaXwutV48SvAp94BVPqQDTQzAVz/r4AD3w288m3yWbcEVy/ldeBvfgx4018AN/5od7ZJCCFkk7BajJTs0rvaVuq0Kqp0UFt5zioqkB4Hktk2xGwVwJCfP1MHikuSSEnLbHZpiJIAsMnCa3JE7qNKXhIl9QqzOtielFsNLdVeHyQz2WhpMgh2Z1tkkCgWpi7iN4kFhVfSV55o02bgTbdd0uWS9J+kpuJll0/hgRfay7J55FzMKehkODjyKeD//Nv+JIZQNUnGpahAfhG48ATw6P+SMvRilNIygb//BRl9vvI13d8+IYSQwWIQOrxbCcu0E2GVWo8gTqQALe2K150M7qa3ifDejwHiQJR+WvARwE5MZJ93575WN9HqLDniJoM1TRmI6CX9iN5TVHtA6yKfBp8aBRJZCdpo9bzrJTfaFZCobNJ/BiESfkig8Er6Sjui4+E947jxkokelKb/3HXljraF1yeZYGvr8NhHgc+9q3/7Mw3g3LflBwAu9Gh6Vt0+q8Anfwp4x+eAS27v/f4IIYRsHpYJbMz2f7+pMfE8H2Qssz0xR28zeZBeEuE1PSrP/45F000Uhyq5wb++AJDIANnJwZmS3y5qAhgNmHK7mcKrZYrgCtj3xBYQK5OjMkBSWNrskvSW5Eh0dHIlXy+etsQWqAfkokLd7AKQiwfLEp/SVnnLHZdB2SKRFHdf2b5/yImFPNZLzMg49Bz/EvCP797sUrRJi/dhNQ984iclypYQQgjpNn1LGDVs2BYR1Q4zvxsVUOCIgWoPaCdH7ARvPSI1Jh6S2Sk7MrVP9HNffvQSkJ+Xnw58VweKRGqzS9Afqq3ndSFbkNToZpdgIKDwSvrG6aUCSnprnlPphIofvmX4bQYcrtu7DZMj7UcbPk27geFm9mngb38mnnddagx4xb8DfvafgfedAv7jWeCmt/a8iA0kR4A7fh5411NSlnSL0ecbM2I7YA653xwhhAw7vRSENos+JlIZKsrrQG6u82hXNTm84nYi0/o7S7to9rt9Ig2kRnonVBplEcONqhzf6E5gdFdv9uVF1eS9lHSOmpD6MqS3VWtY0oaoCTcRU7doO1KW9B8VGOl98qpBh8Ir6RsPvNC6J8+bbrsEU6NbZ1RQVRXcdUX7DU+7ycnIAFBYBj7+4/GmzF3xGuCdjwHf99vA/ldIZMORTwJHPtH7cvqpFsQP9p9+Rby+3vG51jsyL34ZeOzDvSkfIYSQeCSYpCg2akKSUmYm5Rns/FxsVDZE6Isjug2aMNeuVUOrJLL9i2A0qq79QiUn72jd9CRVfJYC5RxQWBELhWGwfOgXnQjrtXbkolBegdHtYl+hpVpLmpgas39G5ZyNbJdgkE1H2VzrjW6ipeTHSy8GjRQF0BKbGzk/AFB4JX3jy0fnWv7Oz9x1sAcl2Vzu6sBu4Kmzq90rCOkflgV89heBtbPN133lfwTe9nfA+B73sxP3A198X8+K1xwLeP7zwIfuAx7878AP/WHjg7oZX/kAsD7Tm+IRQghpTi8zgQ8UXbCnMnWgtCY/xVX58YtSFwumXi+6qUl5B0ik5UdN2KL+kNuCpbe1/m4DuImfNoNKHiitdm97fkHJqEqU7TD71vaC7HT73y1vAKV1GRhIZORnZHt/Bi4SGTc6u19UCvLT6vNHSwLpMSA9Ln8XlgbjGbZF7A8BBAuv/Uj6fJFC4ZX0jafPtzZN/p6rduDq3eM9Ks3mcc9V7QuvR2g1MJw88j+A57/QfL1DrwJe/Z/qH+pLLwGfejtgtZjVuFc883ciIt/yE619r7wOfPGXe1MmQgi5WHGmcMbpTF8MEWtqAhjf3UVPOcvzQyT50nZgxPYZTW+Tjrpe6kISrx7QyruTlpQI51ZITwyfEKNqIrYoKhrEclMHKkWPPRTrfTAdnBe9JAJitSC/6yW5Fv2IolRUz6BJpj+zIMrr7XnzltZEoC5tSOQ16T7Dkrxwi0DhlfSFYkXHSqG1xFA/e/fWi3YFgMumR7B/ur2pEjNrJcyv92nqFOkOs88AX/q1eOue/CZw9lH379Ka2BN0M5qhG1RywGMfBXZd39r3nvscxi880JMiEULIRYmpy4/he8e6WG0FLBMw9Is3OrXXmDqgV4FyXqafdzN5ZiLdvW05xKkHY7tlllGrkYCJNJAMu88GWIw1DbEnsEw0CIhGBSivAabdnmyWv++WmJKswtLSQDLOIJCCnteZke0SnZ0et61TJgfb99sybYE679bHQcAy5R4i8VAT0q4UVzqIph3g9rQFKLySvvD5p1ubYnzLZZN41dU7e1SazacjuwFGvQ4Phi7RoXFfGCwT+D//VrKAmgbwd/8aWHy+++XqVod0/tmWp0btOfLHUAbpBYoQQrYaqVHpVA+EH16fsUygsDi42c9bncoeS4xU7Wm5fRJRiksS3aqX0bWIyESmu4l3HMpN3plHd7UfsapXgfyC/bMI5Jfa285AswnCa2q09cjjfqEm5QdKDHHYhGKUBy8BoGm40/8LXRw4uYixhm2goNflzUyKR3pqzJ0R0ZFdydaIvB+yWkKGlS8caU14fe/rroYybFN3WuDew7vw8W+faeu7R86t4r7rdne5RKQnfOuPgZknW/vO0gvA138TgAK88KX29nv7zwCwgGpJ/JEqp+Tht20vsO1S4Od+UTqls08DM0eAMw8Bz32uvX1VciLkxpzOlywuYmTtRRgjt7a3P0IIuUixAFecikxSYgFQ+pdc6GJhM0SKoM6qM01c1USwNHQRGP1RzySa1DigdiL2mo0uFIVle9GQX4tKXurVZvk9tpKEqV8kR4FMjyzwKrnuJkmLwtQHd2BqaBmyWMbRHdJW9arOJdIyoOUkAyQAKLySPvFkC1Gad14+jbs7iAgdBu66cjtSCRUVvfUXiyeZYGs4WHwRuP+32/vuQ38M7IshTE7uByYPyAtyYVEiLvQy8PrfrZ8yt/7x+u8pioxEXn63/FQL7QuvQHwPtRt+FMcPvA15ZRwX6SRYQghpC1NNQXX8+QCJugrz1LTsf7otXjhRMooiokyvolC0lOyjWYSMog6mQBNFNzq6lik/6XERX7fCtFelD1OtvaS3AamgiPAO67T3+mopT+SmJZGxw4JR6Z8Q2ICC7rUtTp3qxvZ6GHU3CEmjSDT+2QqJDAyzBNM0oagJAEMy0JkckWjndu/vOM/d/AIwtguAIufNMpm0CxReSR9YK1SxnI9/c2/1aFcAGEklcNcV2/H151t/CTtybg2WZW35czTUmCbwD+/sINrIEn/XO34eePQvglc5/AbgzX9VH61hWeIH24pPmWUBRz7ZZjlbxDKhZ3cCpSF5OSGEkAFBNStQFBXQnWf/JrSjpiGdqJEpQK8AxeXwdbUUkMjaf1i9ibBKjV2ckVv+DuxWeR/UEkDcQFE1IeKpUW0vqZdlNCbs0VLy/jSy3beu/U9mElg5EX8fRgXIz7detouJ7FT9tGfLDiHuaFqyjZaSJHCAeBJ3mvytWhSP1KFli7QTm0VqDEjUi69W2YQFE4qqyuyDYZll0omtS5zBTssUT1dngKuT5GjpbQAsCTIatoFWHxReSc/552dnY69795U78PJD25uvuAW499rdbQmva8UqTi8VcPmObmXsJV3n6U/L9P12SY0B9/0GcO0bgD03Ap9/b/20tV3XA//qzxunyCmKvMS2wsyTwOLx8OUj24FX/CLwzf+38xeKZz+D8YmXozT9ss62QwghJIJeRWZ55lWrCft5E9SZVyQSsxNRNI4X+cUougayRQSVRAaA75oqqrzb1KJ6FXkv0ewubCIF6IXWo34rAb6bqXHZXtjgdWgirZhsFYG8mxRXerftzIT7ezfOfdpnM5AcRc8GlUh3SY11PuW9WRsTxzc1PWEnC9vE6M9qoT8R1noFyCbsd4EWzn1yJHiAw7JavIaK3PeW3w9m8xgyQwoyjHzuqQux133P667uYUkGi9cc3tX2d586t9q9gpDuUs4BX/n19r8/cSnwc18S0RUAbn878PZ/cCMwRrYDP/5x8W7tBgvHoxOwvPJ9wPe8F/jXXwGmD3W8u31P/B7UQUs0QAghW4leZiI3KsDGrEwlLK253qKKKqJVIgUkkjIwqJfcn1bpRmRZdkqiZbRUZ8lEupGIRNWA7HTn2wmkDVGpW0k2u4YidcgvbqkJIDPlJhnTUq7oatrZxftmtdCheKe2MBtpK5AckZ+ghHK9SKTmx6iI+GN2oz1UGhPdpbK2XcWACOqJDJCNCF4qLgO5+d6K3YNIakwStg1CAqxU1h5g6gB10NruOLRwj4QNksTdxOguYGw3ML5b7A7GWtBb0ttaThrdChReSU+xLAuPn4nXwN97eBdu299itN4Qs28yi+v2ttexeOpsfM9c0mce/ANgo7VkcjUSGeDNHwN2X1//+YHvBn7+6+L7+ua/AqYOdFzMGje/Bfj3LwD/6n8Cl95Rv2z6kJ2oCxJ5+/NfBy6/p6PdJYvzuPTY/+poG4QQQmLQww5EzUPWNGQKrxP1ZRoiduid+EN2QShJb3OFEqMSHGEUR/xR1C4Jr0kRpbvZ+S+vA6X19qZQZ7YNphAYJJBodnT16G6JYjRtm4D8fH99UwdEXxsaEmkRXZMjMujgiBrpbcBIB7k8xnYD43tkG9mpRkHUobQmYmN5NV6kXNQATXpc2rRy3v2pFOSn1fYqShxtF0UFspMy6FXzFfbheENvZVJjjc+9Sk7aiU6jTPWifc2L7oCP5fE6jz2Y0GFDMkye3k5b3ZVkgzHOW3ZKBn294q2iRD931YQENSXSgFHuaTKwAZD+yVbmuZkN5CvxGoj33HfxRLs6/MBNe3F0pvUpKkcY8TqYrJ4BHvqj6HXCTMlHtgO/8C/Atn3B35s6APzrr3WYgTeE9JgIsDe/BTjzCPDgfwee/zzw2g/U+xllJ4G3/R3w978APPuZtne38/TnsH7FDwG4oeOiE0IICSGRsadU93GaXSW/yYlibMudRECUnZfRHdLhyi9Gd8hr0Um2fUI7nfdEpn7ac7foyAdT6Y2QmBqViGsn+RcUEb5Lq/G3kZmU9f3nWrUTcBVXN8dLsdMozYvNasAbWRk2fbhdTCt+Ytc494k32Zppicjm1D9nanYnwt3oTvf3XkT7eqMokxkguUd+34hv99d31CSQzHbXqiE5Iv0ky6x/DnVDcPYmnLOrVKJclqqY3gakpuwo67C2qZuJ3jaJ9ISIqLGe8ZZ9Plp9TsVtJ1V5JjgzfBQtfBAmOWrXAe+5t+S7iibLuuEr3QQKr6Sn3P98PFP5+67bjRsu6cFL6YDzQzfvw+/+8/Mtf++ZC2vQDRMJjUHrA8WX///RnQE1AfzwnwH/+G53RE1Rgdf9JnDTm6UjGEUvRFc/+18O7P8bYPZpYHeAMJpIA2/6C3lIHf0/be0iN3U9LC3k4UgIIaRD7M6FlhDBrxXRq126ISqpmh1F5Pu7FTLbGkVXNREumjQrt1F1o3WaCS+KJvsvrdbbPSiaiJA9jKRpmV6IgIkMoKV9FhOKeKZGXQN/ebSEJEUyqv2dHhzrnCgYOuHEsaryi09GtX91surLou5EmLUjdjjCfjenzHunb6uKRNTqJVs4KgbX3eSI3NdGJbQsFhSJwFTU3grvYZtOb2tP2OyHF6lZBcwBjLpvEQUmrFhtgr3OMEcdt1qF/e8ecepjJRcg7FqNFkpawo30bkYqG73c2w75A6S6OHOIwivpKV86Gm+k7V2vuarHJRlMLpsewS2XTeLJs6stfa9UNXF8Lofr9g1zds0txqkHgWf/PnqdO/+NCKxTB4GP/Yi8rP3oh4HDr+9PGVthz43hy7QE8CP/S17an/98/G2O7sK56/4NZne9Eplsk4cgIYQQDy32eJzOQzIDmKPByYT8JDL2FMpuTAtsgURaop9Gd4hvp5qQzpRpyHOmFeE4qP+byIQLTE6EZjkXHEHXyrlIjcixZKckA7qh2yKi7TXbjsgVJDx2SwxpRQBIT8i02qh6FOjna9ULbmH4BXZFlXOZHJHjjbONvhBTeA0UFTch4lVLyTVz6pFebv3+dqbgK2pnQq233ioKoGU6iDLro/idGg8WixJpOQ7HUmHE9XDWkYNpmlBVNTgng5bqcp0OqVvtRpOqqrTFvSZu1LIXRZWfzUxQFYp9HRL+uu2ZYZBINwqLjqVNq3UimZXnVz9mAKRGZX9Gm+8HiYw8I50BjSjiPJuMCrrepqZGJTrWqMh5TaS66qlL4ZX0jI1SFUfONfcife21uy7KaFeHH7x5X8vCKyAJtii8DgimAfzTf4xeZ2Q78Mr/IL9fdgfw9s/Ky/Dld/e+fL1ASwI/9hHgr38MOPmN5uvf9Bbg9R/E6otngNImTBEkhJAhppqeRrKyGm/ljJ1QqtYZa9I5UZPynZGdErmVn3O/pyi9idBRVHmOWAAmLxfRwtvByS+Kn16vRWBniq7ZRFSMwhFR6hJAeaNuPZ3u1Jh9Pu0PyhHvyd7pz16hphvThxUlfjSxmpCIIb0MoEfJMXstrKYnREyKipKsFj3Zt31TUp1tJFL23557yit6JEfsOmW1LypqSen0q5qIAIkUUFhu7xx1el69dRCQ4ysude4zWVjqLAlguwJweqL+nkvb/aiGAQ5P2RJpoBJiE+bg3E9l8VvWKgUolgUrNR68fiLbH+HVwYl6LizF21zfEnC1IZxZpjyviqv1n2en3KjizbL1yE4A49dKnVk5GbxOkNWEM7jRap1QNCAzJvWuredXCxH8zmrZKbHFKyyJj3Lc94OezF7o0gCM0xYlbKsKtcMEaCFQeCU946GXlmIlkvzXdx/sfWEGmB+4cS/+y+ePtvz+ceTcKn78zv29KRRpjSf/Gpg9Er3Ovf+POx1i/QKwdg649gd7XrSekkgDb/5L4EOvAxabWGacfaS9kW1CCCHQqjkosTtILb5QmFXpRGlJnxAYML0vdJ/OLzE7vImM6/k4uqOxo6yXJNFFy1FNvvKGlb/Vc6RqkiCovOGWKWFnNVcUyRYe1rHMTqN2XpL+Dp0bEWqpFkzLjpJLjkj0zfYr3FULS10URGJcJ0WV6+QIBZuRFbwbAkpqTIRjQ5foRQCNXn/2r2YT8SJoWqvXJ9ip03rAgEGcY1FUVyTzkh4X8bUfkZ5huQgA2/JKBdDh+1w7UXPewYx2k/elsm4bp2rugIYjkjvtQjkv7Y8zIJQeF5GpDqX+d8usifCKWYVqmeFnKZWVpHh9m3auSPS9374lO+UmilIUiWjML6JvEcVaSvbZcrsWcC+pifjtxch2t12zLDsBkz3wp1ckKVsreJ8nlbx8v3ZM3kRPqhxvEB21dW1+V1FaeBba600dkEHaxeelTYUVbyCkZpfX5brlXL/ONiL/ad2Lbg2CwivpGfc/Hy/T6GpxEKcK9I89Exncefk0HjnZWiP/5Nnm0cSkD5TWga/+RvQ6u28Abnu7/J5fAv7yh4HF48Ab/hvwsp/peRF7SnYS+MlPAf/jnugpTSungM/8G+Cm/yd4+do5SagRNCWLEEIuclSzHD8pi14BmuSW6j5OgouYq1ftaekW7Og+p0viiGA9FiSMigjNNZoU3IlADPOTG92N0A6lXpbOeDlvT7FOiQgC2NGEElFo6AlYegWALpFMasKNDLQg2dkBEWSjopuSIxLFbDhiktkYSRWno5reVi8Ue4WqtlFcv9tYolMXI9eMqohdYSSaRTmFXN/slC1eOIlajOB7NUpsTI3av4Qcr5YUsaiSE5FXUUX4t4zu+7Q2vS49FOW0VOO5U9TuJubyYlTD311VT/ugxWhQHTuGuGJqaqy7iaUica6Zp34593PC/swRYLt6fVVEtuWqnRCpmQd0w/eSAQNBSsjvAShq+BTyFkU8U0miOrIb2H65W7b5o8ER76oWLry2jC2UJ0dEADWrfUkQVZvBMbpDnk/liDbVS69ye+TmwpdlJqVNVhT3mRtEn8YZKLySnmBZFu4/Fi+x1isOTTdfaYvzI7dd2rLwenxuA8WKgWyqt6MzpAnf/F0g32SQ4ft+Wx62pXXgr3/EjQ79x/+feNfd/e5el7K3lNbjvTC98M/YmTqAswff4n42fwx48L8DT38KuO83gO/6xd6VkxBCLhaiolgiO7ltCl1GRQYWY1sDmB4tQKmfEWFU5e84zxUtJQJhbYqpT7RJjohYWlxBbYeFJREua2JXFxiZlE5vtYiGXlx5tV70y0yEdwItHZpRBCqmrD++p3GdREZsGMJ6i9WC/T1PB7+46vMBbPM6ZyYlmqsTf0VVaxSnvIOu3ung/fRxbBbRa4SUxSvgaElAN4LFm6hjSWSjhQFAlgcJ/4l0/CnkzVATzRO99pIgUT+Ox2K7ibqiqNPxgu4X7/1n27JkJvo4Td9DmPVDIlN/3zvHoWpAZqr+uIqr3bd26ZZXbF2CIwWYvDQ64bCiesRyj9VL7ZcuWxF4nzuJTOu+oHqp9bYuOwmM7pSobGcwr1UbmlYGCpwEeVpK+n2VdXcwsrQekBDLg5ayo4iVDp8dLQr0jj+8470ehmJvW3GeTb1RYpkSnfSElxZymFlv7uN4eM84Jkf6HpYxcLzh5r0YT7c2DmKYFo7OMOp1U1l6CXj4z6LXufYHgYPfI52xT/wEcOGJ+uVfeb/8dOJ1tZmsnAb++kejH7gedh39EMaWn0F26Rng4z8B/OnLgaf+Rh6kD/1x+9PHCCFkC6MnW5wNkEhLJ6KfdKvTXlpv9O8LQ024U2hVrVEgqeZFCCmvS2ROeV06Vn6RLarz6axrWkClKM/z2k9JfkwDmLocuOr7xCcukg47/ZrtyRsWAR2UhdkbbRQ3cvr/Y+/Pw2VJ8rs++BORW+1nP3dfep/umZ7u2UcajaQBSYZh0RgGI1bZYGwM4rUNxq95sS3Zz2uDscDgeV4D9oOEjQ0IbG0ILYA0GiGkkWbpmdH0zPTed79nP7XnFhHvH5FVlVWVVafO7Xt7tvo+z7n3nKrMyMjIyMiMb3x/318R2SSlJebKa5YgLa/fgwVBQbl5ReFgAgzFSWNOOt4U6bHg+9VJ7bJI//ar4wsBC+MU74ClVdh41P4EdWhcXOyaLkQIfZW8Medhkfdj5x48GaV3wumeRkE5SKo0SfC8Se/2+evq5u71KRW3yBajNqaJ/kX7rF9b/J5flCRzfFtvN7BjlROMvLK9il2YGf5UOfF6+BVLSFbWbXLD8uBn1f7MI23vxz1QZBcyKPt+zveMtmTrgGAsGvvnwa/aH+ktoPhnlOiwt2efhflyxhagfPuccgM7Xq1czhTVb3AhzS0tVs8pzLmmxlgbEZ1mC8AP7p5dKl6XeCD4+IJq1295ZNbA9M2Fiu/ykXdc4B988tqp9vvcjSbvurJUDH/V8C/+y5NfxN/xx22yhn/0ffD6vy7e5lf/Jzvof/iH72v2xDcFz/2D+WEeExBG8fgn/zNkUbu1b1vl6zv+6H2s4BJLLLHE1z+M9DCzJsZuySqtBmOxX4HatlVZHufeK4Z+funsCdCic07HzyYqDyLx1v0ML88yH6cR4wlzJhf9c99Jh7GG8KqQ9gFdnAxrkNk8aMDZhiVFO4stRqLSYQi6UCFiUfLaK1uySUWjSfcAcWeasMxfb8d/422cJ3dOEhrmbSQGysA8ioicMQX0xIKsV5kdXu9XR8rHYGWUeV56IPrF+wzrecL7l06Zm4zG8Uekm0qm/TQfCE6RHMcrQ/SAk9W9WZDOeJ+OmpbsWlT56/gnhz7n++lkny2vW1V5kRfoIrYEME7ASfeNhfmPEa8VqzLVibUK0TllvxDW51i+gfs/qNl6xvdRjX5aK4mTFhreiCXKPYyNQuePZezzOGgUW0lId5TUDewYnp7Cz3wwfg/a4F6tRoS0YyTajqlGw8HLgy/teTjebIsUrzRq44EHety1Qpzy6qh+QZbss7RS4JN8AoZjaKZaFiJT2Daz6JIT4Ndn28ucVj17H7AkXpd4IPhnX7iz0Hbvf3hJvA7wh957+dTE6xduHj+YyixxMl75OLzwsydv90//uFUjHLw0f7tP/wisXIQP/oX7U783Cx/6y/ah+Kt/Y+FdCknXAX71b8Izf/iE1eglllhiiW82SLTXABGPk52DSZwQI+LBr9nJ0uRYq9X98xR0y1ZN+kaJ1zGf1QyLKjLnwavMDvuVjq3/JPyaJe7GCBcH6uegdXM2ieYN9pmXjGwGiaPi4TVxkghj9PzzD1ay7Y0lT2QJzMo0ITyTWJeLe6n3j2x7DNRoM+tUz4UTT56/sImE8n/nJ/Kl1YKyjVXk9U8RPi+kXXDwcv63URPcrcwPNYDoDZLNKrEKuln30FgGe2GJPd0b1W/evaLT4nthEmk08kcWzunCuN1gAZL8Pi3++7WMTHpARK9wgIk+7nj2uJNElJCWFHKDEaHvV+3fycnRmYXwKvOJ2SEWVVufgkAvqkt1c9TvhbAh6O07tsz8/Vlen32c00RIDK/vAsTVgFR2XLvfosT0PDieVXwPvJVhfNxUKRy9ln0+aacwqLOZGNOzZ+hJz7QJwm5m0ku/Yof9cGK8kNlYNUAsTrbJ8KtZgrfWaFGtf2R/HxCQ8xJ3DaM2Jq6XACrb9j4trVhSU2s7Dhxdg8YFO46GLejtj+9b2YLuzqhM6VgCfTICsrJh6+iV7XkWRTGciMznfHAeTrAY8eqVbF8Z3Pdxb7QIW9nMEsm9eVgSr0vcd/TilC/eOnlFQwp4/0NL4nWAp843eObSKp+/cbzwPp87xbZL3EeoFH7+Ly22bdI/mXQFOPcsvOdPvaFqfVUgBHzXD9oXv4//f994eQcvwQv/3Fo0LLHEEkssMYSRLlRWrPrSGDuRzasXhbQT2+qWTWg4OSGcO0k+hfedd1Io/SlQNFFcZOIbZCTXgCwob2QkT5aIxw0AY9siCTOSGKt0DeojVWtl057ypBci2LatnRlN9iZJ1cFEd+AVO8ySXUDQ3i8Rr1fOyL+OPaekZ+snXUsmxx1mEysyy9I+mLzOUTOBVYn6NesF6QU2pHWQQTpPZswjZQvrkfOZ9O4lbHQC5bXRfTDZdwbXzK8tNsn2KrOtkxzPHivuTl9j6U+r9rxKlkBO23afd/w0WizpTtS2ZL3K+mrYstdpcN5jYbgZmSekJbjXLsPm43Dnc+Pb5FVo1W3QJygFg7p9D55UknnlERniVawidOD9mPTurzpeCAoTN/lV278HY6R0R2HQlXVLKi3swTrjphWZ3UbnlH6ak/BKdgw3xvbfpHdv6sXKRqYCz4jX/qFdBHBLmVIfq6pceSRTCs5IzOcGlhScl7hvgMFC3yIRb4Pnjkps2wcrNvz/tARcZ3d0P09mspd+5k2cKSNVUlC3k8htM00uFqG8Nt8Pd6yf34eB3y2NLAQmxyatRsczZvbxKhu2vbQaz0tS3YYrH4DbnxkdawApbf+snZkmj8E+S1cuQevWbHWxE5x+MWdWpIB0cotTp1ikcH3bfkHdJrZWg7FWLxWvS3z945OvHqAXuB+evrjKSmWB1d1vIvzh9146FfF67aDHQSdio/aAMgUuUYzP/Cjsffn+lbf5BPzRH39wWVvfDHzHX7T/3w/y9Vf/J3jL776/4aZLLLHEEt8IkGJcLTNQD3mZ2i88nD3RmefFPSAyXX/+duVVO+e5Hz51frWYxHW8+WGiQWPaKiCojSZl1W1b7vHrlnipD8jTCTWpdKG8Yn8vUuKsXrb/zwsXD3IqR69sy3ygKhqThXWujOoe96F9K/u9S6HqtLY1raQVDjCDPAhWLDEkhE0OFmFJmzS0ZPVJiaDSeLo9B2rek1SQ+fDtfKKtUUHT+5z4vrBgf3VLs/u/X7V9rHHeEkgDgiqoWzImf98JsmRY6/Z8KpuZb/EbTABVqHDNndssMiuo27658Rgcvjbaz2S+xTqxf+vUkqpCzB5HBlnoZ4XwDspOo8y3s2T/npcQ7rQYKPN6++NElxC23xYR+kHDXgNnQf/rfJ8ajFXSHd3nY9s6o2stBEa4JG4ZKebcJwNf6gG8bOHEry5Gfg78T4uSBE5eG+HYa6Hm9D83gOQU5Pi9vqNHzSwiI7OBAUuKn1ReXt06CR1bu7Lh30WE2mn73gyidrCA1TtgdD9PLERpZdtcONgFgjl1P6leA7V8UZ9dSHXNnEgXcfJYPnMBIrM7qGxk6uoCFCUDnHuojNDPK3shU9Oujp5h90qYDva7H6rre8CSeF3ivuOXX5if4f3qRoV/8qe/hf32MonOJL732Qv8j7/wIvudxV/MPnv9mO9+6swDrNUSY+gdwsf/u/tX3spl+GM/AdVvAPV3nnz9wH9sVUa/+XdPX87BK1ZZ0zh3f+u3xBJLLPGNhgFBqRI7MQ0yMk7cYxIPJ6Bwwhk07OSvehZcz04s9xeI5piFQSbmIsxUyAhLIE35szKadK5cts+Ozt74fkOFXB4T5+hVbJ1M9l11a1wdNIkpBV92HK9SoCqbMXk97TUq2nzMmqdgg6CWTVgnFILzPIP9BdSX85CGxQTmabJog02kM0W8igJl5yyY0X+On4Va5/bJ7yoc25ZFZG/QGClS3cCqORfBQGnmeJaE6C3o/avzfsL5Sk60nWAxlaTJlJ5Hr2djAzkCPEcKRU1L+p2UBZw8MVvU/hME+yJEiZA54nsBQmmgJl4Ug3L8bJFGRbZPSJeh//BYfXN/l7MQ9FnhzSsXM0Wtyq7bGyCYhVtsmZCHXxn5hM6yJnFLmad35vU6SKw1i4QT2fh6v+xoBnUQMhuz8xYrCaRvQG34pggz5ihkB16jvYKFrs3H7f8qsgr1/PPqXp7JSS/rpycsFhg9e8GyqN8uWhUpi4897HdF10LYeyao28WOqGN/TlI5D/pLeXUUjWGUjbpIc+dwav/e7P7W6g0k6HrjWBKvS9x3fOLF2S+pAvhzv+0xtusltutfnU7/tYyS5/Anvu0qf+3nX1h4n89cO1oSr28mPvE/nCJM6QSsXIbv/ylYuXB/yvtawHf8Rbj0Xnjo2+2D8fqvw90vnK4McZ/CD5dYYoklvhlQXrPhxoPQ5jeC/ORbyJGiSmQTqcqanUCJNxg2PE9xNpn0xq/b47ulOf7fAyIt+39IfIrFJ+lCZOGqGdYftgTI4SuL7T/A5mP2uTeLFJKniPaqn8+F8s84l5M8cQeKOCkX9ASdMSN3g6x/nTBjl5nS06jZ3oWDhHArlxhN3DU0b+bqXStWREs5rqQaq85E+yT9kRJaShuSfBL8siVL0mxy72akx2lJk5VLma9qM1NKVkhLq5g4xNMTREgRsXGS7yMABfYKRUgju13an09aLHqOUtpt88cetHPQKOBiFrgHhbTvxZfebce0pA97X4He0en8fk9CdcP2raPXsvPQxW0oJv7wquMEVi1Hvgd1plSN9+qXK7CJ8yaJVyfIxgJhVddhNheZNb4NlLMDpXlpRrKnPEorlixMepZ8nrdQskhfScPMI3oiom+mX3YlU10X9dEBETpxvtXtHLGbWQ30Dt945MFJzgTSJQ3WkNHxCYXk/7xHwjg8hrBonJ8sr6DCMy1lzH1xQihE/ewoGqR/ZH/mRdKA7Sf5CBIn906zcsEKck5txZGdYP3C6LkhnNF1uNcF6nvEknhd4r7i9f0u1w5m31jPXl7l97/r4ptYo68//NH3X+Fvf/wV2tFiK4GfvXafSMAlTsbuV+A3/tf7U9b6w/DHfxpWL92f8r6W8PB32P/dAD76o/B3v322p1QR+gfwr/4b+D1/84FUb4kllljiGwZ+zarqYHwy28gt6PWPF/MaH6CyCWtXRolIpGsnLKWV0Tb3IwHWLEhnPCO0V1484eKAeO5l4eoDpat0cgTCYNK1QJljE+WTQkIHirqqVcC1bhcr/U4z+ZbuyQTO4DzSZH4dFw3PnEXODghxreYngtJpFio6hziUni0j7w876L+Ob6//ovZLKi5WQQ/qApxagSidadVv0QS9fzR+3w220Wqk6K6dzYWPS4xbQplJm4fsGg4WN+781thhlIE4VZbrNCmBa3CdvMelN9/CIY2wpJScVnKPdXEzIjsGxLN0F7//3PK4FcrwGOIUJIfIPE/D0b73mqU+n9VcupbAGRBAQ2JyTj38qk2ud+5Z2193vzwif4RjFxe8ih0fW7fH9najY4xXAWYks0ujXHuY8fvOcad9px3Ptm11y47FQR2a17MkbhP3tl+zodkD1XLcs4l+B+PiPPgV+6O1jW4I2/dXBVuEgR+rG9g2GRCFbjCylRiovSeHT680HT1xmsWtWVhkQUNIEm8FPblY+ECwQH38ul0gIDcO+VW7WAqZal+cnnCdtNYYw0Rhfm36s5NIV782nfSxsmETqLVuTW/vlrJkhxv2fpz3rAkacP5Z20/izvji3puMJfG6xH3FL7+wO/f773h8602qydcvGiWPP/L+K/ydTyymsPj8zWPiVOO7yyzwDxTGwC/8JRZ68J2EM2+DP/J/f3OE0m8+Cr/rr8NP/unT7feZH4Vn/7BVzy6xxBJLfJNDuWVwnFF4qVEFPoA5ic7AVxFmkFL5bYPp0LvSyjjROrareONWjSeRj/6ckNh5mCQpG+dh7So0b8z3ap3n7Tkkat3p8Ot69hw3ZnRtwBIBjQtwfC3bN3e+Y4lh5jSkX7EJfKYsGTICrZa9Uw8J5Puk3JlF4ElpJ/GLEBInbRO3Ie2Nh3S7gSUO6gtGcZXWrLdjugghdx/apug+GiS7ysMJ7PudX4WzT0N7B0p1ePkXR7VxAijXRom6HHeUJKu7P9ZfUm3oRmp4DrEUdLoxqxWPId3jV60qrgjStX2lktksuPNsJMyIYB947ZZWQWbjg0pGJN/gGg/tG8wcYvWE+728Ydu3ssa0zUl9saRHRaifAb1pyzz/DpugaXBPDjGvzjllnJCw9YQto39oiddSwyYfKkgyJdCYef0uas0Yk7JjllYgdkbeuELaTPKDcdn1watZMi1qZ3YIyhJvA3/mYZHC+oO7/siLduY5Z5DS9hUvtYTV/UyONhcFfqjd+fzCFMQivqnzfFcXgF8lDRxSLYjXn4IzVzKRibAkfC9TeUY5laZXtddhAMcHFrQfyWGYS8cYZN6WosivtbTCvZ+nGB7npE2A0TOwuzsiUhdZ4CxayFu7mtmeFERAuoHt80Zz4tgCdgw5+4y1R5pFvD7IxeQMS+J1ifuKeTYDAN/5xPabVJOvb/yJD1zlR/7Na8TpyQ+5KNV86U6LZy+tPviKfTPjhZ+FV37pjZfz2PfAR39kPJziGx3P/iF49ePwhR873X4/85/Cf/CJBYzfl1hiiSW+seGkfaSWEGWTgyHJl5sQCYonSEVzprz6bFLRdj/CD73KKBMzAnp7b2DivkiYcrbNQP27CIL6qG10Wkw4llZGZUsBMqdsChrjiW0GE8Qh4bFAvUsrw0mn0l201kgpoFS1E0EVz1b6DYnXBS9Yec0SZ8NwzRnefGPenROdx8+IHhXPv56nsr0YHGOB8yivjYjB+lmb8Ks3J/Jr0Db3g5P2CghLP3uX87MQ6bxVUtKDG79h61hagVKDtBSRKoUnFLhmpPgdkGHD8HE5rHYvHpGuBoGWPmBo9RM2vazVnCzhVZGq2auOfy7kSK05BWPrL117jXU63r+S/vQCRZ6QnqW8FcISuAh73AHhOCi7cc620ZmnwM0Us290HBrYmQz68xsiVrJ9pWsXcxrnGfdMvpeyZ5zg4OOgPporGJ2pWCdU4NUsKZV05yvERY5ErswjXgswCPmeDPNeNER78jS1mT02SMfKu4fHmBhjBtY39Qt226hVcACsVUMtv4BjxhM2CceqeU9SYuZR3rD7rF4Zjtk6PkBp0F7NjgFuYOvUvG7v5TQcbzevDOQWB90y+PHI2uEEGCBMFIkyGGNQqYvvaioi64Fji3oZFun3c8n4IogZvw8qespnfb6OQlqbltWrs63qBknuwI5v85419XPw8HfabWpn4czT0N2x9R5YsCBGCRInrQjuox/Dcja7xH1DP1b82iuzPXhKnuSwG9OJUmrBsuvNw3ajxL/z7ov8n5+8vtD2n7l2tCReHySSEH7uv3jj5bznT8Hv+KvfnETih3/YTkCOXl98n50vwm/8HfjWH3hg1VpiiSWW+IZEbbDQLaB7kj/ivUwsMs/AQu84TheefBJ0DN3jiQ9zda5mBGRlo9gTlILJ08aj4yRtd7/Yy3VALkyFOotxhetYlSbO2/FtwqYkss//+vbIf7C2PcwIrT1I8JBeCar+6fzspAdiTqg5WMVufcOqsYoIB69ir6lXsW0jXavky28rZEY6Ydtm8vvhOXt2/wF5vAhUPD+hk5CWIBhMigfh1nu5vAgDgi8N7c8wRPYNMq/ByjSBUV63BE/nbkagzgg3HvQht4T2Kmih0EIDnZFiWjrjxIfjAQKlNSZHcCmnNKyHNoZUGzywiwLlVUsuDdpbSEvWTVomzLOuGByrsm7rsGhOA2MsoVpgwZlVxpYnBDCpbst26B5A8/bIliDuW19HY0Clp393zkeVDdr5VB6bE4takxiocxcJ3z8VhF3EmZfATTj2+97BYgscwskthJ0SpZXROJ+PshDC+qsOxvnBeAAj0jPp2yRTY1CzxwQ98V2+Lw9I17wNyKwIc68yfq39ek5dbOw449dtGPui5KtOAY9Jf3KhFW5/D9xHrSf30Wuw9jAcX59veTBYiDgFwkSNibKMMXSNj5EB9ZJj27p+fmStY7S9du27xQWqxNrilFenidf8ouIkhir3U59CMaqbmS+4tu175qmTc30EjZEdR5EXsZB2XK5sMLyX/YqNQuietX21d2jbqrxmidzyek4Jne1zHz1gvwln/0s8KPzaK/tEcxSaYaL5E3//U/zDP/U+vvWRzZnbLWHx537bY/zTT9+c26YDfPbaEX/y2x56E2r1TYpf/5hdvbxXuGX4nf8DvPOPn/Kl7xsIpQb8/r+H+XvfgyhUWczAx/97eOtH7IvBEkssscQSFjMnA9nngwmwMYuH6fo1O1mZCm1nRKwMk/kYOzEbeKvNeradNov9JNzAEqtRZ0JJZ0ZlS2kVUKsFz4k0siHYUWdc4Re2LCkXNBhmnS+t2PMbqFxWLlri4M7n7CR9kOBHOHaiOGtiWMqSC6nUhkOuXbWh5oMm8uu2jM7OyEOyd0hcWkFpgwhqUC1IrjMPXnkBAiHrG6UVu+2gPl6m1HIDhh6gXnla7QhZe2VEi2C2mmpAgApp+19RH5jswibzI5xFkpbWFnuH8kq2bqdKNFeg7s1jkHTt3DOWrJCePc7d35q9z0mHA1tWUOCJKARU1kmaNpLQIFBOidQdJ0PCVOMNdpWuJUx1minf3PGw5mHZcxZE8j7IXhnISM+ToBJL3Dh+ztIgZ3ciPEsUCmHv42yxITuoJamSHkTH1mO6vGrvvbhjCbOTxpC5HpSME0VTmLjuRardojZbuWgXTl76l7nLd48kjVcZ3b/1c/PbfPspu710bBul4cn3xdm3w2Pfbe/Fw1dnb5cvRyW2bC+zF5HueLReEs62g7nXuU4aoQ3EyqAzz1s31fi1fMTsZNkFx5JyRMoNSGwhhwsarF217edVYP+F2WPFYCEvyeweZiR4VF4dHv7QyMaitgUbj9kFtgIbClttB9DWKmXgpa5TS1oPu9GoP+nuPnE63S9Sr0Ev7VKRPo7MSPu8z/LxjdwxxcS7g7DPwvWHp/tFaXVGUIRjn2f5MoYw4315UThZAkPmLAo5AZB7JgphSdWwaQn6QWTBoD7lVbj6bZZo9aojSxoh7H1b284Ur7n3gq0nTlfvU2JJvC5x3/CLXznZf0UIePvF1QdfmW8AnGmU+Pc+8NBCXq+fvnaIMQbxzUrqPUg0b8Kv/PC977/1JPyBH4XtJ+9fnb5ecfHd7D71Jznz/CkSlCVd+Ln/N3zf//Xg6rXEEkss8TWOsHoR13VgpWqfS341Iwsbo0Ra/SM7iRrDKYiA6tZsNZxKRguQA7I17o4USUXJMU5z+NJqbvtsp7A1Ct/3K3ZiNVbfTau4apyHtcvj3zm+JU8GSZ56B9Oh1d1duPAuS1AVedpefr89x96BJX92n7eqPK80g7zKKTEHKrGwab3OhTPuLRfURxNgvwp+FXFgjyOMOr1auLQ6W50YrEDUHD+ezAgIRBainBFtlQ3br9YfhfbtcaVU0LAZ4ReF41mCo7JufTF1ap/pJvf9JNp34eJ7rIpUpyPCp7RqJ9IDGDPy1Z376itG289D7Yw9/9btaYWe44/IeLdU7Dl4Sgxr09sfkd6T2HycJHWIwj5m4OsrBLG/itApwqSYIn/bPAkpnGzhRWRkpxhvx1k47XxisP1gPHAnQr0H4fAACwhKFqqP441UnI5nQ8EnEXUyi40IupFNGBhmybaGdgcDxWb2T3XT9r2Bks5uVFSpXL+aZWmxQDsKace3AVnlliDas77Uw/3laG1Ap3bcc0sn2Ibk4Fc5tTd33LU/Ax9mFds2GZB6Au6br3QGbaAbpejc/druxVQDn1owWPARlkyTriUVB4niymsM2yHu2v7XvGnH/9ZtiDJiv7Riz0WWLYFYXrfjTRG5Lz2rrk169vfBc2oCcePy9PPP8exn1S3AFJDU2fHC49H9odMZamCrbi9q78Srk7p1+vSouRMLnXE3C7E/M7qHptSvM/qOV4bGpZG/rsyek43z8xc6SqvjkTDzkv4NMLnYe/Cy/ezo9dH5zFK8C2HHz9XL9p7Qyrb75W+x5+BV7PP0a4AjWRKvS9wXGGP4pS+fTLw+tl1b2gycAv/RdzzC//5rr9FP5r+kfPRdF0mUwXe/+oPKNxx+4S+fUjWRwzu/31oLFGV4/SbF3lv+KJU7n6R+OMO3pwhf+Rn4ys/CWz784Cq2xBJLLPF1gew571dA1OxkcxAR4Fdh5/kJYuXNei+YcRzHnTGRzG3vVUaKwhxU/xjtVUEZhPABB6EVg6TMUjijieAkVi7A/ouz6zr06zyhfYY+uI5VjQ2SpYjME85oS2jF/el9Syuw9fjJarz7Ade3SrmB+mfwmVeDoGqJ1/ykvbQ6Ci2tnplQMGHPd/tJe37dPXsORUTpXBhbTnXTXuP27Sz5TIZZ70aNc/Doh2D3K3YCP+lb2Duy6uP+YebB6+VCejNCVnjj5Hj+uEXYeAw6d+w5ThKvA9XbKSbuqdIc9RK6cYob9fGSEmuVfPstotpzSOqXCDlC6gQjBKlbx+TClwPlQXhjel+wbRI2xxdKoIB4nVCsTWKR855ciEjD8SRWbmk0ThVxdZMqvJNgzCj8HEaLUPk6x73MIzmyRA7YhZgBkTQIGR9TUwLrD9myj65l9/ddOHhpvF5e2SbrGip6B4Rf++S65yGzMUy62WJRTmU+L1P7In6c228d2Ttc+cB8pfMQM9peZtYyNOxiytHrC5ZXVGaOTK6s2YWtDGGixkjXAZrax0/jUSJpxx+NSYPEZ5uPj3boH9nxf/WyJTxVApVVO64cXx+3TAhqYLZsX5m1eOWW7ZjjemOiS6/TJS2dRQz9WXPnGtRtxMPQY3jiOSD9ESkZrACZ921RHaRLioNyApwp6waBcgM6fo3aSskuRg1IXpXMv3+Nnn+7VdagkamFo0tw5q32eTCrnQx2XPcuj5TjboW5EQV+bfo7nY5+Bt+lJ0RLOr6tn1+1qvkxn9YZOCHQ4X5jyYAtcV/wpTst7rZOJqeWPqSnw0rF489856P89X85a/Jg8T1PnR09jJa4f3j9V+FLP3n6/fw6/J6/CU9/9H7X6OsfwuHVd/wl3vaJfx8nPWEilMfP/CdWfTQIYVtiiSWWWGIas6xcBpO/waR2LJnFIoTSKWYnKh1N/Crr1kdtXqjwjOM3U5d+GGGExEsShKngJR2kjkE6rNTOwMYjxb6gQT1HeE6U71Vy4fKnJKa9yrSP7OoV+//2U5aUiNr22NUN+PI/m02gzEuGcy/wKzZ5CDmyGGHfSbzKuN/g4LRnnn92vbxycVKpqYJOQradW7HklPSY63+IsGHU/cNskm9GYdVxb+QFKKQlt6PWKPwabD8/em3U7wqzx4/QdytoSrhpiphQZBqnZt1bRRaWq5PR+cSdqeurtOZOKyTJytEIulFKmChKuug+EjOvg5CS1JvTTwzTSu1BmbVtGw4eZN9XMwXq2kOZcjKx/+c9Su/Vz/BevVMLy5r6Jfd7xpRMkmTSHR/7ames1+UkEepXLMlmUoi646HJQmRkbPZ30hsRY5NEk65nKkXPJgIahGz7VTAG43i2KYuU69K1ilVtMtF5drygPq3qvxfUz9pFmLyK0PVtuPWg7Z2gwHvVnsa0n3XRRqdAGtoxcbDvkKTUU/0tnbg/dEZWxt4qsbp7irluVseBf+cAXjlr74k+KATG8YnxSSK7iOZI8IMs+N3xC5WbwhhStzIiXvP3QXXLesjOwiCKQ+TUzHNhEEX35yS/uHLJqmhbt06+nweJpcC2UxGhKqRdQF1/yG4zUBgPkb8mAzubVTsuJ30b7TAPc58vc7D2kCXbO7s2kVl12z5/T4U3V7C2JF6XuC/4yc/OGVhyeGZJvJ4a//4HH+Zv/qsXx5I8TuKHfvqL/MSf/bY3r1LfDFAJ/NSfO/1+556Fj/6InQwuUYikvE1cO0/5+KXFd+rswD//8/AH/v4Dq9cSSyyxxNc+5qlXZqjVpGMngXnySTq5v8X8cheqlhgmARImI0aEBK1HGdLz8AYqGEZZ6qcLBWGQ2YTXCIfYX0EYTVzaYOWRDzHTQ1a6VsU4GVbp+NMKtyKcWt2JbWu/Mq7knFLy5f/OZ0XP4x7JL+lOWy6AfR+ZJOQHijGvYtujvDpSjiHmXJMJnES4lddtmXGmygxqdhIvneJ93YwsOr5uidOoXazuG4RYG2XL6e5byw1ZHtXLr40WAE4Id91rRXRbikYnws2F76duhaid8nAJQEDrZo5EIlNejpfVCtMh6TooI1GaKDWEqWLVn7jf5gmyTmhfg4HVS/Z6hk1Lajm+JRTdYJyvFNkvg6zdQo7ae1hgzuN18L90OblPDg5wur6rtCFONSJV+EylpRtH0LDE5pg/7Jz6+NVp4lW6UM6IaCHnJ3M78VREFtL8PjjMwsmzvqoPd9FSI4uIV52i3BJdf5M0TZBCUC25eJMZ1ecddxY2Hy8+J2MsCbz2kL2vFsJJ1/MUgp94htAiN3Zrw1giOQCdWXAY6dKOJLVgUK9BFfMdnILPZ6DgtNphSt+UcYXG1SEqNfT6CatuCccrFYa6G+mivXrxgqdXHvfEhQm7lzl+ppPQKUIppJ69gGmJftf2yaA2m/SdRaxXt2YrWZ1gZGk0icmm9qsjO55sISLflYbcusj1oBOHl2yRLT+OSydTPbtZMs9ZtOYCytc3CUvidYk3jBuHPf63X11sEH/n5TkPuCUKUfYdfsfTZ/nnX5iRkRB47kaT33j1gPc9fArvrSXm49/8LTiaY0BfhPf/WfiuH5p+kV1iCjfe80M8/kv/3uLZjgGe/wl4y+9eKomXWGKJbzr0Vh7D813Y3rIfLBzmmS/kYDTRzROWfg3qZ06YCM6eGSkN3TClH1oFVSAUNQ1udaVY8VVet1YAC0HgqPGIKiMkcXmL+f6LWEXp5uOjRDWCLIHY9PZRqmiFCSIrK9l6jPSwh4h7lLsR9ZKH75zQ5kevT/u5P/V7s0obO3E9vs4wa3L/0O4zC0VJfgYn4p5CJVREyA+SZ6WRnWwbnU1ks8lsGtow3RP72UkEh4bNxzJlobEh56uX4LVPFG9fyuYJ4hSkxHBiPVHXgVfnAoleDIIo2MJVnxuWmXpVIn99VP4gaVUeg/bKoRuNEuCEbp1+64AkU09EUYoqS7YqszyCzdQnc+ttsOR5Z2ekvE2jEeE8vOfFKMmP41nPS6OsKnTsfNzxAwcNS3IPiCU3KG5Pkal2F1HMZpv0YkUnSjHG4KYpfZ3iu4pqteCsg7olhpLM0qPI2zaPxoTic049ZuIkn2UhrWds+671Y23dGqqHZdqzi04Faj6lDTeP+rj9Jm5iFxCipmCl7FIKAu5pEaxQJVyAzUfhxicXKejk6+m4nEzO3j+yy6pfNUO/ZbAh5a3b93CYXJ2FJEoV/cQmj0y9GilVhDFIHdOJUlbKnh3H4u5o4cWrkBiFMMkoafDaQ1ZtPKjjQ98JL/8LOHzN2gAlvcxaZ3vs+G8MuZOvn519nvnjDZ71TjB6HpZW7PMxn9Rx8N3Gw6PPyhu5qA8zHuFSWoUzbyusgzbWSsKOhTYvTeA6zFziW7tqxzIVWwK3swNxQdK7YRTPvSxYLBWvS3yd4cc/e/PkjQBXClYr96AgWIK/+D1vmUu8AvzVn/syP/5nPrBMsHU/cPgq/PJfWXz7oAEf+dvw5O9+cHX6BkO8chX+8D+Ff/ARTqWQ+Jk/b72qGuceUM2WWGKJJb72YBzfejt6JTsZGfgUxr1RIov8hOk0iDvQTG1ZGBuaXNsa32YsVHs02dYGunFKImPwLNERGZdErrAm/Dc40TDMUlUVhlwWQTpZpvcE0gIf1mzitd+JuNO0BK+SAbt+Hd05wk26nNnvslULuLJRLdg/X90T7BTOPWMTHQ0IspO8X1cvjdfzXt/vZtXLmCxjubJhx5OirbWrs4/pBHD+WVq3XiB9/ddQ2iAlVDyXsp8jTQ9eyZRSxiqBnZL9u0h5J73RpH2gvD0NJgkMIa3/bxqOJzYrgAFSt0y79giO6mOEXJz8nQj1jzO1q3JKvK7PsK72R8cxEKeGo9CwdUJ3AoYLAYV1FoKovJ1TZ8+5JwaCACHHCcnJ6zuVOGySaJ7TZ2epz6dgiFJNO8z5NwqBEZJ2rHH6HUrSsffJQB6X9rNEO1knLQqTh0xZrOikVWpxQkG6v3FoPSrLDP+x8CozjwPYduwfws4Xbbhz8+ZQ8SrTPsLooWIzj1aYoEoGd6xtDe0wxSvXcd7oYkchchYzZ94KR9dnnFuubBXPvt5D/05/vhftSRDSWqFkJG9P+Hg5GzIz6/iDfuuV7XWY7Hcz27B4wSOeSvgmrJqc0f08TC6Vv9/71p925PEKHL4yUmgKab2A/YYliIP6DIuZ06vFda5ttHCIq+fGVanltXEbkeHnq6PfnSDnQSstudy8ObIT8Gpw8V1w4zdG+0wmWFTx6H2kXGwHZ4yhlyiU0mOfhUmKSjSFbt9+zT4PDl4a7DD+vZBW2Tt0sZhxX8x7bi6S+Os+Ykm8LvGG8ZPPLWYzoI1hrbJUAt4Lrm5WubBa5tZx0aTB4rkbTf7ll3b4nrdOrnYtcSoYAz/xp3MeRCdg+yn4g//n0lrgXvDId8Jv/0H4xR9afJ+oCT/xH8If+8nTZ31eYokllvh6hxCjjNtgJ4OThGt5LVNEZsrK1u1plVohcTln4jeDUImVngoPTbwaXtKmF6c0ygUL7lETmoN3R2Mn7l55gvgwuOEhnnEs4TyLaF25lGX/noc5pGX2+SCCM/ZWOF57Gj0MtbfHnfQeLMRJZLBfgUd+G+x9xSqgZhAoIk+S3BfMqJfjZ6TdrLaZT37udyL2jrusZ5NpraClEoyBSpBN5sMj2H1+bL+ddkSs1ymbA5ykizEa7ZRJgjW6Tc2j23PqDLPfz2a11xSZWABj9283HqHefgWZO4aZF8UkPVh/ZHScpE+ve4ByfPqyQfeoTxEVEaYapQ2OFLbzDRKITfYh1yf2AvxkPCN6r3KOw/V3sBVeg1VmE8uT5XmViXsh97tbssqyyc+x5FOYKDCKUmrw3AJK2KvMITKMJWX6h3D+HXRbHWDk/Zg6ZbS/Qr98HuG6lPySJYT6h1A9axMRtefPNztROlQb77VDDrRi04Rs14JiUYqU1uu1KCTbLUFlwyaEK4JwrI/sIIFYXjUYNu2YpSIm+7HWhp4oZtz7/jr92kVqgQ/MOK4TzHj3HZzfAuOUkLB+Fe7+VnGI/MkFWPFDe8cSiW+UeA2y9tCGWK6S6HWCaNJHFIbnNmmlsPHoiJw7+YDjZWXoxbPboSjZVx6pv4oYLNKoKBvbczAGbv6mVcpOqbAHz6bTk+mJ1yDyV2k2niD16qxUJ9TVhd7PEzj/rG2/ARwf1h+2i25Gw2O/3V7jPPE6hZPrrjRjpGse3TgtJl7BktQDW6T8ZXBLVl07GPONyRZRUkaWKoNIBTMaX7/KWBKvS7whHHQiXjs4OYQH4Mp6hZJ3mtChJfL4/e+8wP/8Sy/P3eZ//IUX+O1PnrEvckvcGz7/Yyc8YHJ420fh9/7PuRfVJU6ND/6n8Pq/hld+cfF9XvsE/Jv/CT74Fx5cvZZYYoklvtYxJM4msHJxPAHUwSt2QlLJlComC3OfMaFUCLr9BG3AdwUV380Ss+Rh3zMGaiBpEhs2KxhOcvqJolH2bfhjZxcwlrAIMk+8vNVMQfiyUDESD1WQhGn0lnMC0VA7C2ffBgerNiw4v0/B+e+dKfbLv9ecQ1Pwq3DhXVk77GYhmgIEJF1BmirM/UyW6vizK19es0rCQlJqEHJe/D6pMVw/7FEpIOTbUUrJk8iid1FhCbJeLElMJct4bdEqX8WEGeEZ1O3kOmpNlzEsa8Jq4g1MrE22r3IrHK8+RRAdIUyKlgEqWIVtH3a/PNGWwirEBj6OQR2MITywc51Ob344fJRoS1C3b9vw5KLFDSHp1B/CS1p4SRsQ9MtnuHn5e+0hu1XwXl/sJB3fhutDRvJiyZntJ0Ep8EsM27Jx3irg4zatdpN+aM9FGIVJUmIlqQTOuH7Qr4zU95Pw67bvZ4rQpgoKyBZ77G6YQt4aUziZWnp20qdYj1s8DNANU1qOw0pRxOXKJUuetm6Pk/lONmYJae+DIqLfr1oCdLLPeRX6rUOaqYObahI0MlZUMhV4mGq6xidNFDLVlpHKzj1Wmv1OQu38W2xI++BcxfCfkxdjZi1KFI0BQd0mYcpD5Lb1qrMTcEnfKvKPb4DftxYQwhnV1assZPFRhNSr4iXHQ2/vAaLSGXjkKdh6Czzy2wEzsm2J2lYRfZhZxOX9qgUMla5eyZLXeVJSQNlzMquB08EIiXbKpI2H7Adzk/gVkH+OO7IeMCpXZ2H7QBoWljSoeOqtoJ0ypsgmqLo935KmsjFueTBWtBz9nIT8ORX5cWMXaGdBa4iUspYDbmaBoxNb7sCrff9Fxp71lU2b7Avs50bb8bm7O32A5k1wnFESzNNg87H7uAC6JF6XeIP4l1/aWXjb73hi6+SNlpiJ737q7InE60u7HX7qc7f4fe+8+CbV6hsMvUP42QXIvI3H4O1/EL79P/uaWEH7uscf/Afwt54pyJQ5B7/038HVb4dL73lw9VpiiSWW+BqBcit4JAwnkNLNecmdAK1Bx+MZ3/MJrxx/OMELjcetuIHITbhLnsPZlRJy0v8NhmpXqVMkdtJvhItycirDQcIPsOpAISxB074z3+dbgBILJHkKGhC1iFPN7eMeB90Eg6FRcrmwWqG6dtVOzO9pAnUKxrV+Cguc889C684YsZi0JUmSIEiA48XLmoeVS7PJgMp6pvYrIkhz4acF6JsS2hhEoRLaECttw8ULIIRVa02G1xrh2cjyyrpdUKhtF0+kBxiGcS9ISi0K4RCVNod/OlJYkurcM1myr6MROZcPJVcJVDeJ/RZ+fDz0dZ1xEFKtyXKmTyNTxonMOzXxV7hz/rsRxgxJYoBu5Tw4B/PP3fGtd+7KpenxonbGEmgHE/MLrwxG0+t16EVpLtWWPSelNXEKJXei/kHdkifDHRwbmly/MFJqdvcwBV3OTIWBZxslPetVOycsOFV6Koo8zUj9XpwWE69rV+1YuHrFjmta2bHKr47aqX5uOpmXX8/d62Ls/6by6cWCRAQY7OJVO0zQxlALXGKvwWHfhyTFxCl+7v7pmBQvUDbE2qtY8rszYTOXjXUzMS9ZGOQIWGHvs0nidUwBHcy3WgDbd0qN6ff3xvnpPjWJYFyROen0UIgBGTip+q2s258B8erX4GLB/OChb7f2CJ3dnNXJyc9QY0zhVlHN3lNpaX2wYUGdRfHvYPuaG0Cpbp+FcW48mbBZ0F6VeDimCtr1h2mtvKXwXhoe68yT9tket0fP2iCzS/BKVt3a259RgD3OyThhm9o2He8A42ocFeIl05ZIaWos8apj2HoSjq6Nviyt2MTVaWTH3/pZ+/fQbqIKHMx+F3Lv0TcZ7Jh/H7EkXpd4Q/i/F/R3BfhD77mHlYYlhnjbhQZnGgE7rfkPwf/fx1/mI89eKFYaLDEfP/+XTvbIc0vw/T9tXyqWuD/wq/B9/wj+3nez8CTXKPh//gT8h/963K9oiSWWWOIbEM3t96FNC86ds2GVYXP2RGPWMKq1HTuzsOohKutgNOnKFe42Y1Lh4TEiRMNEcdCJ2aptQ1tnoaWz3zHEZPhqZWOktj3/jvF63/z0zCzbvuMigjKgJia0Br+Sm8LUtlH9Y17abY+pllphSmc/4nFRpXaaDNI5BNHB4hsPFTgLYqb9wemKmYmBJ2Fvxjm4JascKlS8zm+vdoIVZs2woIhSPSPKLbN2cHy61QtUu+PzCC1duPBuuP2cJZ9mKbYcP1fHBRpsZqIyi8ECQlg6QykcF5UMS2+cg15gk3YVIQ3h8vvZO7zE2uHnof3K7PoIgXEDQA8qMP59RqAZOQpNjkrTApbYbVhStbRarDB0PFtWnkycPLnCkGS7bT+ebbuVKENpkklYfxQGyfAuvW/8OxVbVWL/kKJrZsn4GZgcUyaUqFGiyGfp0dJDOQGx1yAGzgU1xpTujp8lEmrbdpnMPj+AG1hidv0RWwe3ZNvryrdObCjQxnDYjTHlc7i9FrFTJXJXqfoljoygXN8giQRa23mGRqNzFiZK54gZKWHtiv2Je/Zc3cD+7L1QQJhi1cwzPXiLCEE5n8iVsxWPt4/7aGOvopOE+ANFNOC5YuStO+/W9Mtj96XtnmbmbjaaUxT2436s2O9EVDoRjbKHd1IixNq2vV86swVkEp0tBmTHXL0CrZujhazyGpoy/dIFzCAiZHI8NBp6R9Ddt/PLyWRrg2tQeG/KseupCXCz626kC0ZT67xKu/7o9L4DlNfswkelgJAvry0uHiqv2QWnIpxUhsiU4WYBSwWDHavOPAVXPzi6L1u3suSG2cJEHtXNkeVHDqnWKGUQwRq+KO43bzaWxOsS94w41Xz+xvFC2/qu5IlzMx5qSywEIQTf9eQZ/q/fuD53u1f2uvz883f58NPL5EOnwmu/Al/4xydv9/CHlqTrg8Cl98C3/0X4lb+2+D7H1+Fn/hP46I9+TTxQl1hiiSUeGIQgKZ+xoW/l1fmqp6l9s//TyPqrwrTvpZD0U+tBSMHCbS9OQQT2+eeWLHlxWLxQ6aiQ1M1ZE+RJPMcbn8xXt62KpUB1E3k1+okaS1wy4Kc6nZgVY5DGwJm3snfrtYJQUcHeyttgr8c771ENuXgSL/dktdl06aeuz8KQnvXuc7yZIexIWWxVAaNrNkMt6/b3qKcdyv3F8jwMsXIBkfGDUWkLLUsE0T4YTad2hebq26yCrnHBqug2H4e9L4+HUEtv3OJp0IzNgS9mFn4M1lc0qGeJkhJIi8Oft6o+K16VaOthvL22jV6dKJ7a2eJkNTMw6X08CeU3wBxnG+eukfSGViFp7SzM0QNoBFz5FrjzOTsm5MUDjm9JQiGmulqrn4BJaR33SeMI12zidSwJXnYdGiuZgrOfzPRf1JO+x+V1e7zujPBox8+FoI9XyAiJchZQtw8gPSB/HKueTpQhVYb+4W0oraEaDyOkgO0Cp93a9swxbAxCzCbbB++ewi5QmcxmpeetUoqOUNIn9u240NceiUroZJYIrtKYHKEc6gQzSOSkFex8iWFfHthCrF6yOSUOXx0nwrbfWkyuTWIQuj5TJTmxWFJg8zKwRRhcfzdViFwo+dDvFGHLGyy65WGw93jvcEi8SiHwVB/lVigiikueQ5Hv9Is7bV6420Ybw4WDLlIILq2X2aoVeTvn9l27Wki8pl4dMNbqRqYop4zxSoigYdu5s2PJ8I1H6UZb9EWd4ZEmx9qkD7c/kyPKC55D1c2RyXgefsX+DOol1oi1BGPoVq8ghMBR8VR7jMHx7XNg/yXG2tSrzE+eOIna9qi/7Tw/fp7G2PmYYay+o/OoD2MbUreSWaZkuwo3q8NgUUTBrU/b3698YFTe5mPWy71o/PXKdoyPsgUNY9jrRHRDReyv0L3dpSxbPLEyM77gTcOSeF3inmGMIXAdEnVyEqLHtk/MK7nEAvjup04mXgE+9ksv8zvfdrbYTH6JaSQh/NQPLLbt+/6DB1uXb2Z8x38OL/0C3Pn84vs8/xP24fzeP/Xg6rXEEkss8bUC4TB/ohVQqG4yOTLK8Qu3OezODvtX2hCnCt91LFk3L7v5aVFezRLpHI3CfctraHWITnuk/tpUfXuV85izb7chmo7Hi/X3k/a+QhAfInRK6tXp1K6S+CvcOOzxzvV7m3KNwrpPIGAvv//0C4Azti8Oap1AdcsS1mAn7rUzWUhpz5ITlfURwV3ku7l62ZICZASsdG3bD1RFg+s7J9Gol7Rwk+7U51p6DJWckwgaiN4ocivx6yS+FWa0Vt6Ccss2rLd+Bu4KGw67ehmirq2X41nvw6KFhyJS1Sgbmtq+a+0uZhCvCOi6K3TKl6g413Ayr0KT/Rv7dfytJ2D3SzPb4yRobdDGoIydQ8VOlcSViLAJUcdOyp3AXkvpgHTRXpVxgnGiTGMsCf3477AfRB173curNgT35m9Yf+f1h6F+JmsTw+HOEUInHPch0RGwhu9CKdzDONCobkBtC66PJ67TyGxRJRtPvMCG3TcuZn6VJyQy23jEEorDhEIGEETB1hy7hJPvB2kS+oke2TuELcJE0zKrnFtZILlaDtrY6ySFQM6MKpgeD/IJmrSYHh+7cTo2ioSiQipGY/Gec4aL+XON22P7D20tpGsXJNLQ3tuOD1uPj4dnT+L4ul00m6VaBPtscT3Gxjpnxjif22S6hQydMAVRxtcRvpcrI9+eXnl6DDxhuO2GETd2u+zrfcq+pBa4fOVumygM2WmHOEcdwkRzbb/No9t1zq+UWKsGyFnJeAuI5SiwRLFUIdKkpG4N6tURCbh21f5/4Z2kt3sQ5u7PqWRlM85v7DNp/ZXT2Qm0AWTSGfW7XLuZec8dx7cLgueftapbo6yvdmXdllFez/zXZ2BQ9taTI2ucuMvUBRrYGOiCRIRi+A+pU8EImYuUKLjQs6xxZkRXALD2EIT2mWBJ15TEa9CtXsZg2D88Ir7V5NnZJbwpWBKvS9wznrtxPFy1Owm//ckZ5s1LnArf8sgGVd+hOyf7IsCX77T4+Au7/La3nHmTavZ1jn/91wvDFKZw5QM2I/ESDwaOB9/7v8D/+p1zQwKn8Av/H5us5MI7H1jVllhiiSW+JiAzUm3oOzjuMUjtzPRkNumPK3vccmHSDpUpmIQpHn+HXMOCIlBdRM4aUzz5DOoF4b5HCGMKQ5DD8jZm4zHIQkqPQg0rj9Oe2jLDCaHzKxWPnfZsgqtemqEMHWAqW/UieAOL4+sPT3/m16bDMGHaJ3Ltqu0nYEPUXX88GRuMLvbcZDHFVgNRsEk5LZjMr10Fx0OI+UmnjAER1OH8O+HWZywxUcr1jXiCPJ1p2SDteTYuwO3PWyVt1Crs+90o5SUadPa6CPdpqvI65b5tt7C0xfql9+Lfo13FAGGq6SeZJ7LQyHZIL/Bp196Dm3a5Ut6nVqmO6r75OMTzldqDexbHGxFCeZRWAQNrl8eucerVkCrC5AipOFgjDtZwqz5cfC8cFlglCDn0TrXll6wPYmXDJqnq7lmSGzKVXaa2FdL2Wa8CF95Jv/1ltJAY4RL765TDu9PHGh2UyXtFuyX62kX09hECUm1ICgamKNUc9xd7nzTGcNSLaYUpWhukFDRKLmsVf/adWj8Hj30PtO8iEpfjLOF0K91hTUtEjtjzXUmamzeHcjzsfNe7wAU5hxidPD+3ZH82HpmhTM1hmKhLECaKbjfGiRPKqWZMZyxdxtp6UgHr16xNxozDaGM47iWERz1ULFkJu1TSDiVPggCdeX+XXIeI26TtPYSOkKUGlTFrkukj9BPF/m6T47WYg3IEXXhlr0PZc1i99guc1TGb3S+OSogcmrsu/doaFx57x9AveQxium/lvpzx+RxMjoeCISFo/55xP1e2ZljCjNSgYp4fehHOvNWSpEev2+fTG4nWdFx4+Dutb+/NTxV72YI9f60YJTeb+Fo4JP4KbtxGmpM4pEmZ/h27gGBLGvuPqAmbjxG7Fe6GB+jAy5TTFuX+HW4ePcZbXX2yDcUDxJJ4XeKe8QvPz3tIjuOPvG/p73o/ELgO3/74Fj/3xZPb/mO/9DIfemJ7qXqdh/2X4Sf/NNz87AIbC/jdf/NB12iJs2+zyteP/3eL76Ni+KffD//hr9xDqOcSSyyxxNcZHvp2OHxt3OdVCKtkcQM4eAXOPj3aftLD0cupa/Ih2xlifxW3v0Dy1MlJ+egLEq9BHKxBTdgJX+s2w8QoA5sDIaxibobQR7sllKsJS/kwX3u+nerV06S9mqOms2iUPN59ZZ13P31h/Iv9Pty5U7zTAGfeNu3dt1CdvkrvZ7XJRfmCthnU7QSyUTk+7oRSSzsBUXAB3L5dRC2t2jD98kpWtEAgGPAgA+rDd11czxld1/WH0JVNOjuvYbQiqDYo1TdtVMxhglXVTrehcgL6/iZIh1LlDK4QNmkLwMpFq/CaUMyq8iadiiWzjXTp1B+mUx+R2+YkYmsCc1VoZrza2vF5/dLvpb7/c9Qamfq4umn/j+dlNX+AyCvqpINQcwj4rG1M1Eb1DhFh29JF3f3hHERIBzFYLHAD+pVz9CsjS7R5xGtiDFGUgknxHAdHCI56KSIN8bIQd11ABJWUDT2em63e8axaDsGdZp99GUPFqrmD6IjjXoIxMB0snyO8HQ/iDl5QQTv2WEp6GOGOzcEcOZuwHJU5Z5yaPEevYsPINx5dQIlt63HjqM/O7SbrR5bk86OIhkholHJK1zkq95nVztCLFdqQkd0emgaOaqGMxnfkUHHejSBUh/hxF6kjuqJClCqMLLabMMBxL8YNyOwkNK4jOe4lvHCwx3cVLOb0YmUTmnWO2O9EbNVLTI0XQwXp6U55bN88Ghfgrf+2JR+Nts/om5/FjlVmNkG+ch56e+MLpMKxY3X7dvE+ow0BSCrbcO5xe+/WzliF/81Pn3AOc1Skk3B9671aBMe3c7GkZ60C6udspEKufvZXgRYucbBKKczZCxXdGJMq5bhb7G2cK/so8Un8ac/qVuMxQHDUi9mun04Bfz+xJF6XuCcYY/gXzy/wUg5cXCtzpvHV6+TfaPiuJ88sRLw+d/2YX3/lgG99dIYv0Tc7VAo/8afh1qcW2/7ZP2xDeZZ48Pi2/xS+/NNw97cW3+f4Ovzkn4Hv+4dLv9cllljiGxsrF+1k+87nR9EBfsMq3u5+YTq0vLzBQDmj3QphopGJxgXcCa9X5ZRIvBWYR7wOhlh31iRZkLplu2FQt9nUVy7ZL69+mw39HuD6Blz/pE2ekUMvTtmJAu7oNY7Cdeoll9WyP0wc2lp9cnb9Cuv8gFQupRXYfss97vwGFa+DDN6nQVCQwGiKizAc9RJipfBMnTWzOxVyPbQNdutjxKsekHDSR9fqhIkiqj5ExXMIVq/A8TUur1e4vF7gBfjYtlWlZjjsxnz69S4l+RSV8BYiFmwmfS6X1xArGdESNseK6MWKpkrpBwpQxGqHDdlgK68Erm1bMjjuYMPlq8Tn3wvN2dfjVCT/KfdJ3RqpV7eZ0VfGFcsLH3eWAs0NChW+ozMtuC8mlO1KBsh5arvA1jlWmtuHfSqZlUSXkTJZS5dqvc+5lXLhgk3iVfGmbCsEvUhxGEa4SZol7RuRqPlSUs1MA8coyZFLOrV+uFrZPpAROUprwoMeZadEc/VJjHAIIqs+bfYTVrTGnRWuntV1kbv5JMvofCRpL0456iZEqUYKqKyUWV+3hCMX3jWRzO/knrLbDnn9oMfkElE/VvhSUgoG55cva4YdSsHhUmWYtP2NnSqxLCF0WHh9TKaGNsIh0aDcYmIySTVhoum0I67HPV6PmjRKLnGqUSollQZ3TlLpZj9lqz77fE7CfieiEqXUghOoM5H52g4WrFSc2TecACHtMzJqj5JXBtWJ59YJntFeFTYnE2290fnQgvv7dejnFbsn9aEFLXzyWEDx2w4TulGKMVD2nSwhG4TBFkaIMTsQwC4CF4yPwAMR8iyJ1yXuCc/fbnHreL4XyQDvvrJUoN1P/La3bNvkgAuMVR/7pZeXxOss/PrHFiddHR+++799sPVZYoSB5cD/9qHTrby/+PN2dffSex5c3ZZYYoklvhZQP2sneWmUqUhzJOjk4pPjQqlB1G3STRISN8FLNUqW8WNolAxCCLR0adcf4kR4FXBclF9Hi6OpkMGwvI12ZilAJydhwoYpt+8O/fF6seJuMyJRho67jtbQ7KUkqWG7EQxVZIvmvQKmlJu9OEUbKLnSEhlfDcxcJFxgsluYiX4G/PrIL7K0OvFdFS5/S5b0zIYhf/r6EX3VZ+3o82AE7WbEuYZH4E4zJ8opYYSTkWIMEwlFqeLmYY9UGw7dDgJBwzU8Nq+eufYIE8VvvnZIlCocbwW4hcEmTanKmMGbrVIpyjhIpUm1oR0mmBzRIZIu1w56VAmo5MJ2cX1ws4RL5TXEXFJtTl8LWzlCwMDRNSrdu1S6twpyYk0Xohyfo7W3zw3ffkNYuWjDgyf6lE0yPmEbkK+lEOCV6Ze38aOiEOgC5BrJzFTDU6iiHvhqAggD+DVC3aeZSNKghJt2C/wz7wHGFNpnDAgZR1kSJnWrNFeeGH5/d/uDXFzNeZJOWnMIcXKEoQEz5yrneie9xI6Bg0+0gaNuxPF+h8e269MjxEmDoRDcbc5WT3eTlJJfQBC6wZBYt2P1GqxcptdrYTBIrfBiu/gRq2L1pEFiAKWHzjBDJF6DBOhV7cJc6vi4KmbybhhYaiRqpCZvhWnmmytIlMado84/7p8yTD873UE1OmHK9bstzq+UOb96iuiG0whBvCxiZcaC5pyDTPxf8BWW1N9phVlbSc40AuqneojOQXnVjoOD58xEsYlXx4mOMcIl9WoYBKVwb/i9WcSqJxtne3FqFyMQVEvOcEHkQFd5Zb9Lqze61mtVH2/rUVK/gVTh8D7pRSkaKJvRekCYKMJePKy6VhHhcR9jDBfXZqUYPB2WxOsS94TT2Ay862pBJskl7hm3jvs4QpAuMFj++qsHfObaIe+6srwGYzh6HX75ry62rePDt/6/Zmc0XeLB4Nzb4YN/AT7xPyy+T2UT1pa2JkssscQ49vb2+M3f/M3hz6c+9SkODiyZ8IM/+IP80A/90Bs+xi//8i/zoQ99aOH6bG6e7pni9fdwTWkUso+x/xeGuNvZ1rWDLse9hGqzSb0H7ahCIkv05ApSrHDeaRImCldKqoFDt3pl6MFnhEDMes+obYNwaN1+1doS6D5SJRghUE6Jfuls8X6FMPYcNh+z9gkq4rAboaVDs3yWKB0pAHuxIko0Jf/0XptGSATQS1Je3+/Riy1Z7EjB2UbJKvGKcNLE+UEpaU/CaSb09TNw0Lb+jPUJm4HqJqxfHf752Vf2ORASWcoSYAlJs3IZ2Xqdi2vl6WRDQhKWtij372KEM8xMryakbwbDjaMeDSdcKAputxURpcVE23E/YaNkOOzGdLoCo/skxz18R9jM5zlEgb3PuglUzj887VvqBFmo+QmY9crdvj2uur35KdaORpm3X2q8H4HC0QlNYtpJyDmng3QcRHmdsL7FTuQRqohD7yyPTNC1g1swDLZOVcFWmHC32UdoSa0V03e7GFcN89ykyqC9RrEP4+CgjmfV72Nf6nFSTCU2BFg4Nsw4QzwV7psjJguOGQcbxDnylTPrHO4fEVaa9Crn8ONjHE7h/T8LM+6byaTyRrqozKO66zTo9zz8aomtejCDYBVIYS3hBNCXBtcB6Qj87LOZibpGRx3+ZhMdTne6VpjSChOml11OmhMKWv10eP798hnKuaiGVBlSYywx5FVhoD52fespPkB1CxrnCI9G5GClewM/Ppq656drOOGxMYEo2EDqyBJsE8+eQZcxRf2VURK0VPq4eg7JWpgsbHQsLTziVGMARxswkgRBp3yWTuLQO0qp112qvkMvMVw/jtlpxUjXENUPeXS7zko5R2CfRjzi+kSJIko1CKj6Do48WfE6sjWZ3bbHvZiX98bHluN+zOWVkFNn4RFiuipCjJ4zYC0TBvMxYRcynOgY7fiknn2mp/27OCrECNcu/E0faOwvvXKJnZuvj1mHHHTBcySuI3ixdIZrjTW85AUC1UULl+fNRVb9R1nNygsTzfO3m8My1lpdNn3NSsXjqBdzK9dGiSfZxY7lS+J1ia8qTkO8LhWv9xeX1iqkJzzc8vhfPv4Kf+/fXRKvQxgDP/efzw4tmMS//Xfhyd/zYOu0RDE++J/Bl38Gdp9fbPvuLvyjPwT/7s/cm9/eEkss8Q2JP/AH/gCf+MQnvtrVeEOoH/4WnudB6cB6P5ZXT9xHGUOiNakxRMpghCSRAYkoIaQGWoAhTBW+K4bqN+WUZpOuAAjYeoLoxd9ECEHqVKxsRAhLEJ3gCzogdsYIjNIKnHsGFbbZj5qkbhkVaaqZEm2wpZSwXvURa5VTcY8aB6M0r+x2xwg9pQ23jvt4jmRzfdrJ0SZmem52wWfeunglFsX9css58zZLDJYats/4k6GrWMuKDHGq2WtHU8Uk/goH8gk2/R4VV4Pjo8M9yIgw7ZTo1q4iVTTH99fibrPPQTdGCoZZ46W0v3dvtzmz5bNZC/jK3bwH63hf7Buf/U5EO0xBeghjGyxWBlBIf6SeGiRma4cJW9VN2wbdXcu0eRWobWXew/MbfbZScb6X65nwFRQeG/ENIlPmQJQ4cgJcx0FSJzmOedm4GNHDiBIb6V0e2qhOkXth+XT0SKI0rdCSPj3/EmmoMHJESJVkiShTGY7OJPNjnUg4pKWHyhTsbtrFS3IETuzDzhdtG2Y+sEZIlDNNVAxLzGwfSv1dgmh/8ltLJN2ts9NZzQjGBW6InGLOYIiVIUxSdnWEFPDpa4ds1gIurpZG5Efj3NBqwHOLj7HfiXhBrLByt81eO6Lqu7zryhpr1QmFnhBUfJenL9ga34x38bSL6zpsrI3eRw97EUG2ODB5xFrg4ro+Snp0U5DDRFd2Sy0cMJqDbjxNvJ60ACQkB92I9ays2F+jFGYJ8Iwh0YZ2P6YUK8qX32d9wgHK67ystkiURgiQfRfutrjbDBFC2MWO2hWMkLR0l0p8iEOebBQnXj7llImCDbrVi3hJh0r3FpP3/KCIvtPAV/2pzwfbt7wt6t0bKG3QQJiqkVK/sm7HwsnwcqOH5TRFnbvN0BKvUtCqXqUvV9kTV7grH2el5CEq64Sp5pUX2nzxlQ6uUFxcFdw86nP7OOSDj22yWsn6R9BgXMtcDGMMr+13IBdNfCgFW7WAaRf2SWQRIDMWBIwxvH4waeNh8cKdFptrZvaiQNHnJyRctBi3GjCOT+qOFlGFTpEZQR4F60ylhHT8qfeI6z0fXeDXnChNSGAXff11btbfNV7dnmK1ar2Bbxz1xu5dZeCgG+HIxaxC3iiWxOsSp8YLd9u8uDMdQFOE1YrHE2cms9Qu8UawUvF4bLvGS7uLXYNfemGXawddrmycPHR/U+Ar/xxe/IXFtr30PmuSvvQM/erA9eEj/wv8rx/CGtMvgFuftt69H/3RaWP2JZZY4psa1WqVd77znTz22GP8yI/8yAM7zvPPP8/ly5dnfl+rFWSePy2MwRiD0gYhGFfGTD2zhFXR5HcXkihYJ4gO6McpMS4mm+gfrT3D1u4nmTlZzMKQW5VLlMVdpE7RQpC69WESIoPhoBMjpcMxRzbC18B+7y5hkHJ1o8ozl1anyk3cKqlnJ+61kqRWcin3buHEHVJtEG3Bw7UVUJ+Ha9hkJVc/cGJzKSTtfjJTRbnbCtl8YtrHfbcPJi7hpy1Wyx7KGPbaEUe9BCMdnHWXh8sazxnZH8RKESUG35X4rhz6zN1fLFDm9ltG/rNR21rxDDJnSxe2nxzzibzTHPdq3d3+NvJ9QDQCnr20Cu07tNLP0JJHuGnf+jN6NdaORhnFZ6Ebp3jKFL5W3T3oUKo12KwFcxMiRX6Dg73XSbTBEZBWz1M+ugZY8lU6VaturpzP+nQOXhlWpyNjTgoTv9eI3Ea8hzQJJdXB0w5QQmMXRY66Map+Yajia5fOcYM+5db+mAK7XzpDt3pCNM9kBXN/Jn6D3a1vIYiPEFqRelXefW6bVc8S54J55y9IvQZpRmB7SXNMdWhKASL72xjbb6Jge7rd89h8HHgeYVIcNU3020o7kNGLUhcrXU3+HpAO2S1ImBhue2fQgYPviCGhvN+J2G+HPG0Uge9bAljImQmGmr2E3aTMUf0cA+fhbpzym68f8p1PbA0JveeuH3G4s8vKziFKG3pRSuuwz/l+QsnXbOTWc4yBwC1+Ny17kuPGU+jqGaRWSJUQpnpIepa9kPX4iEPxDh6e3Hn1Cuy9UFiuNoZ45WE4GhGiyi1zXLpE+XgXEdr2jRQcdRt4xyWe0BLfEUjHp5d4xDlJsEkS+tmCmPYl+IBwSGWJrrtKI80lTZoxTulckqnUrdCtXc5+r1qCeQqCWFbQYrxfuY4cU2DeicsY5eBlpF6rtAmJcAABAABJREFUn1Jytf1+IzM6WbsKe18ZK8cAUWo40JCkqV2kVNDqJ7j10c3U7MX8qy/v8NbzDW4fW/I2TA03mglXU43nSp67ccyHnsgWSqRjfc4nkvlN4m4r5Kgbk5eqaW2fNYE2uM4CHoMzyPd++5DG3ufyGw7Pudy7RU9sU1ubTLg4B0HdPk/mwZ0Wv0TBBlGwjpe2cVUEBmJvBVVgd0Lj4thiCtg8l+XyOcr9yWSXgm71srX7KKjKUS8Gqhz3E8ozhGvNMMGZGgPvv/nLknhd4tT46c/fOnmjDO97aH2YCGGJ+4cPPLq5MPFqDPwfv36N/+p3z8hE+M2EpA8/+xcX3/7f+itL0vWrjfPPwgf/PPzrH158n/0XrYqhslR6L7HEEvCX//Jf5mMf+xhPPfUUjuPw+uuvP1DitVKp3B9ydRaE4KATcedOizBVCARrVY+LaxWKnNK0dEmkXXw1uWQ6qVcnxSVsHeCvXaZfPke7/vB0ePEMWMJt9rbagDJ6LEpnoHadzEKeKj1zea3f7aK6R8Np0E0Zsb5+l4o3K0SxoK5uwN1WiDGmkGTqJQpVvzD0e4tSxa+/ckCzn+DqR9na/zVKsofBTr53WhHXa8/Q/PRdyt4eT5ytDwnWS2sVbhz1po4xwEY14Nsem2c18QDeO4I6PPIh60lqlCWdJtouzpPzQo5nhzbQkh5UN1HBCnvxb+G6VZRr+5VYMKRWG2ZeA6Bg8jsOow077ZRyUqOS2jDQfRlw3t2krFoo4XMc+qxsXyYuLfYOYIwhShSOcEm1oRo4PLZd4/yqVVULmE2eL8DIauFxULpEJTzCNSmOhkS5JEGF3YpNEtePFe0woVe9zMvuGr9rQ3O2EdCrNjhsnRzmejMMOOiuAwZj4KgXcbPnZ/eMoS4qJPVRezhiBylOmb2+AJPB482Vp1hpfYUhaWEG39tQfAAqGygZcBKxoXQ2TuiUk+4J33Ew5Qa9xNB1Kzj1MzhGszpJRgnBrcM+l85W8YS0iu/9FwvLvG7OcKP20BTZFyaK3VbEpSxB3N1mCFrTixW7rdAuvoSKdmKItEZpPVwYO6m7GMBp3cAYw2EvGQvf78eaWuCyVRuF+e+2QzphiicdzssAR48T2QfdiJstxesqBiHHyOq2bPB6co6tQaVMhZ14BXY6kLR4eLNGvTq/zpNUV+KU6ZkVDGLKpzUPLe2TKvWqpF4dow1H/YR2mNCMN7gc3aXkSrzMFNZIh4Pg4lQ5eRK7nyhCJbntXuZMeouStgtJHe1y13+cd69mCu8zb50iXjthSpQq1tVdAu1y6FjiNNWGMEohc0c57iesVnza0fi9ozTsdSLOrpRpZQt8Q6Xt+kM2EeYcWGuJgnYyhjjVuI4zuz3neZ4LQfNwb+LDLOIE8ONjmod6DvF6ymfRYMGlcW70meOhpY8S0G48gnZKuEnbqt2FQ6o1R/2YfqIIPEktcO1bSu5ZEKeaUAGVs6ROiVK0hzAKLQP65e3hc2gedloR52Z8FyWK6kmJ0+4DlsTrEqeCMYaf/vzthbd//8MFYVtLvGG876F1/v6vvb7w9v/k0zf489/9+JsyqHxN45N/x4bdLYKn/x24+K6Tt1viweM7/nP40k/BwUsnb3vuWfj+fzaWGXmJJZb45sZ3f/d3f7WrcF+QaMNOK6SVhLycVKh52+AZMIa+gmbb4ZnSKjIj1AbTFiMDup4lXZr+NqHToJbsE/s+bbnOjdWn2Dz/FEcb78h2eGNKj26UnhiaPeATolRxa6/DYZYQQ2AnwbWSfV9phwmEyVgm7jhVvLLb5cmzdVzHKoP2OxFhopBCsFkL8CdUZTt6nZf2uiSJAgH1wGWt6g8JtaO1p9HSGxKvn712TLNvlWCpV2fn7HdS67yOm3ZpIXhRbBE5drLXTxQ7rXCYdCVV89vvoDtD5XeP0Jl6MlYa35GsVf3ZoaMLPhudtEu1exOlFHudmONuxKHvUDlosFrxaNUfpd55FS+xSq65yZSATu1qptKet5WYQXCOdjroxRz3Em6lm2zGEXXdpCUSNmWJln+Gg+AiRjj0lceiS683jvq80u+iAh8hrJfw52828VyHC5OJdKqb0M0p+vIJn6qzfVj7zgomCFjr3KSiNL8q3o2z8ixvP7NGnGpe2+/iuw6JMlxTNX4jWuNxWcerCWjNV8sBtP0tXi+NvHMPVMzrwSi8+Gnpjy3KnEynGJvwa2rD+XvunP0gekZyoJWcX8jB5nuodq7PLOfOcZ8b/Yi0HxPGMZVUU8powyg1pFrjGE2i7TjRc+rsOlcJtQYHjv2z1JNdnBlq1lY/ZQNs5vIzbyPZu8HO/iHdVPLJ+Blipzok2yDne5vhK3fbOFLwhZvHfPb6EdW0w4WC5FWpMex3Y87US7B2laP2AUq/hgBSrYcJqaSQpL7G0fYc21FS6JnaiVLcRJFqwydf2h8bS15UD/M+vkjNdwgTRbOfcP2wy8HW+0ZqyNy40IsVWkhCaQlkaQSpNrhScGgaPCYGtP14PbqVS4BV1xb1hr7b4E7lCUqqzXb/1amttHBJM+uKgQfzfjemk1ljRG6NQ/ccJd2h5ko83+ew/iRpe3qhQAAaQSxLdKKUVLpElGg5q/gmYrvqs1d+iFiez+0k7MJT3BmWMj5mj9c3Tke+xp0oZbXic/NoOsH4nWbInWZIxXd5eKvK0xdW7RfufE9rYwz9RM28s9pRQiVwsoSVnZljrVTFFnpKjy9+WoV7tk/SB3PK+dK8Qby8bn2zyznt7vrDtLrrRHjcOf9dAPjRIeuHn6cXKzrdhIY2JK6mHUKzn3BuVY2RlNoY2o1HKe3tkQSrJMHq9Hk6AUU20F626BEVPpdzZhVTUQNLxesSX2U8d+OYG4fTg80sLInXB4P3PHQ6JV87TPmJ527xR9//TZx4qLsPn1gwoZZbhu/6wQdbnyUWhxvA7/lb8Pc/fPK2vcPRiusSSyyxxDcIjkPFfqhZp8fNZspna8+yXvV5aKM6nDscAFfCFuuZh9lgSpHksk0bBLEscxhcYqVeZbcVodKUfuVC7mgnJ2qZnJx2Y4UxNilJP55tDTPKom7Q2vDlO23SXBbigc+oEFANXFr9lKJpYZQqmmFCw/X5lRd2uXYwUpjebYU8vFkd+ux1wpS//8nrnBNbrHIXjH0vSpTm7EoJ5dXp5c4/ShW77fFJrHYCWlmW8+NeTBSPe+a1wpTB1F4tao0zEwuojLKZc5QqXtzpjFko3Dru8/iZOvOm+6/sdehFyvo2Zj6rr+yOzslRIbXWy9w+7uOmmk0gUBIOyhwfgFh7ht0zH8SLj9ne/TcgBLHfwI+LScKwtI0fHWHM/Lzu82wZjDEcdmKafauAvOte5MBs82X5NIlxqZQqQwVeO0xYq/hDgiH0Vrh20OWoF2MMNMoe51ZLSAS77RA16dkJfPFWc5p4rZ+bIF5z17o0rv6OUkWYKqviFbDfNYRsIrRhxz/Dura+kKnWNmR67GTh5d0OD20ultRlUkEeJop+onClGKoG82Ub5iuP7wWOFDy8UaESl4bHGChwDZYAudPsc+v1Q15qu4jGszykevjx8VRZeauJfqrZ60Q0nBQpBXFqVaQWZXxX0par3HIuDlOU36g9zWPNX8dRxdGBO62Qu7eb7LZCEq1xxRoHThUcLOkKbIbXEBmxvtopU9ejPnI3dPlUfJVX97pEqcZJZ9zzBvqRwtQMiVOhHe4SRqn13h4jghQ30z6bpQQhBFGiKQ4ch26keGGnw0EyTnB3nFV+MXqWc+EN4n6XV49d7rqPsZk2GM3GR9f7uJeQ17xrbRPWuVLgeA0Oe3tUVkeLZAP0yucZEK8IQbVzjVK0x0qUDO/tRJYYT1rloqUkdQNLuub6XdtdG5Kuw+2lS0+uEhnBhudn1hUFxKsQKOHxufK3clTAuj20bq/l2tQ3hmY/ptsMcXuhJbQLxh5PRzgqQqo+gepS0j18ZXCNIDLF0Ra9OOW5a8dcXK1MewEXwBT8VoTIW6EnVmd+LwotOQS9KJ1S1A5GYWkM27VTPq+q2znSegJrV2yywoJ5WK8yrjdNtaYzUA7nrVFSzU4r5EKur8apph8ndMOUVBtqJbfgWTF6LxksPChtLX8ejk5vt/gg4l2Xs9MlToWfem5xm4Glv+uDw2Yt4NHtGi9ndgMlT3K2UeL1g9mhbf/7r73OH3nf5fv6kvV1hX/xXy6eUOtb/xysTIe0LPFVxNUPwDu/Hz77v8/frnkdfuWvwXf90JtSrSWWWGKJWYjjGN8/eeK1CHa6CsdxrTomm+QfdmMqvsuZxmgCvtcOh8TrfjbZakfpcIKdtxrAQC+b+PSDzbFEJZMhxMNvjCFWGp2MT4L7cTo1QbcYL8VkYbvawG47oh3GTLvB2az22oTsd2LOJwlJNqkUwv7sOn3KnsNhKOisjtfFGHj9oMdbAxfPkdxu9km14Vb1SVwTU0tsiHorTNGeQ3ThGYKciuhugXJt/IymW6abCz2dzJB+WhjHt/52akZ27ixhizGGl3c7U761sdK8stdhXtqvu82Q/c5s5W2zl9DZL07IktUSgMRfHX7SL1/ETV5AmvH69CoXiEpbaOkRrjiUfQdPTiec0dItdHcSmZ9xs59wp9lHaXAk+K4kET4dd4Vb+gxXVQs/M/rU2oaPlnwHow3XoxqbufM96sV0woT1qo9yysSyApnacOAV2I8VrX5Mo5y7hzcftxm7O1liosHFrm5BxdJbqbLK9KNeQphoUqXpJwoDJKk9l740BK6kG6V0YzWeCT1rGW0Mn7l2RC9W+K5kveLPtG8bzAeUMrx20OXGYY+D7P6v+i7q/Kitw1Tx3N0jasL2c6UNxz0b5g1wfrXMEysxG2GLWufaVL1mfeA5kifONCCcJosTpfnK3bZVuNf6HHRiXu/FVM0aFzkebpdqQzdKiVPNgQpZU4oB35lqgz+TmJ+vlM4PaP1EsRtG7KvRIkGi7KKRnyOpN7svE8UxyhhE7FFeKeM5Eq0N/XaV6vbVzD9ywm92AtoYolTTjVJ6sQJjClXxxhiavYQYBw0zidfdVkjQipgcOBOl+fJeSnP9UVY2PF7uHgHQPejhOZJG2Rsj5+JUM0UdGkOqYScucUdsc1EIS5wbQz8x3Ck/RsgKgyvci1LavT6Bjsbue0+PxtCOs0ogQ4wnpxcBMByKcVo0zWwblLbetp4r8FclF7IkZYlXxt9u2MSOWqONGXrO5pEnUnvx+DPizt4+t477rMYpQapJtSbV4EqJb+w44ZByIb1OqMqITodGssdmL2JdBEgJd4JH2GN16rhgPZx/5aU9njzX4EqqcLUejlvOnPwTRkgwBoGxT2G7QsKtuELoeifmUCtC4o24mFRpwlQNh63Agcibo3gtGpBrW3D0avH2aw/DI98J1z+ZWYRYxOVNmitP5gsmSmcTzYfdmLvXj2irDr1YkSjNl44cHPEMwjE8ulqlGjhZElBbTurWqBnJtYOU3VySyCTVvHC3jStOWNib+c39w5J4XWJhKG34J5+5ufD277269Hd9kPj+b7lCJ1K896F1nr6wQj9WvP+v/OLMhAQv7Xb4zLUj3n31m9D3cu9F+Pw/Xmzb2ln4wH/8YOuzxL3hu/8b+MrPQm/Sr2gCv/YxaxVxZulrvMQSS7z5+MhHPsILL7xAGIaUSiWefPJJfufv/J38wA/8AOfOzXIZOwEDG76J2cFRN+ZMI0BliTi420Zpw0rFQ2mDIwW9SA2zYJuJmZvvSprU8PJ+anFKK0pIEw3C+uhVfMcSFp2IdqfDcXyEaUdsuBrflXZRd6HQvMzjVRuuH85eLB4QUmMnn53/IFFXL07p6YSiua/ShnaYslbxaGdqKi1cXqu/Cz86pN06oq9c4nib7QNDvdvmu548g+dIwuQE5vTNeLWd05YGeH2/y527Bj/3zpcqQztMMBj6tatc6MWj7NoTmFRI5tEKE24f9KYT+EzVYhzKDWg3HqcU7uCmPYwQRMEGR2tPA5akbZUrqMDFdyWp0jT7ViVXD1wC6SAQhQnQjnoJO62QOCOslIJEKarZmsPr/iOcSz49RpwlSlPCoR2mtE2Zhr86VFemynDYjbjTDHEvvZMXdtqF5M1hN+LhrRrfOUiWIwRc/SA0b0B7B4RjE5aVV22rGMNuKyRONY4QaD0iXfMt10tAKU0qBa1+Uki8CiBMNHeyhYA7xyGPn62NvCMH2+au5av7XVrhuPKtG6fcOOzxeCaGGTk8juqb7/P9WPHcjWPeW27PTn41wNS9UNyvbhz1htd1FEJvOOqnnJU2vD3VZqhItnUTxErTjVMMIlO5FjNPRbekkj6pSQCTeYoatNY0Q01YQHy2w4SNrENFqeKgGw/JxHaoSHWfs40SunCFabwGnhlfNEmV5sWdDmGq8Wfce55JSJRGbz6FoDgJcCirRBmRN4nDbkyiDLebIfVcfzJYhW+j7FEOd8Y+H/yvtSWehY4wTglt4FCuYy6+ld3rktcO+hzJNZKoBLtN3mYU2kA31hx1YoSOCFwHUaBCnOf1ijHcMpsEGfmeakOrnxJkURomi05odSLONEogQDiSkmfvAU9bRXef6XvXTDw3APbaEXvtiN5xcfRuuuCqWaPkcWfOabnZAtDzt5q8+uIulzsdSp59TjZKLutVfyiEMuV1vrjbABVzPlyh79SoJ/u4OkILh3K6ghOVWJtg7VJtCBPFfifCl5KgqF8evkrs1Yf3T29ijFNpzM2oxONac9RL6EQpQgg2qv5se8LKuhUnNfOckIDVy1BeJa1sIx7/ME77JmgFpRUOpYYJfmKSDJ/EneM+KlcFIz36rn2T6ThVvGD0bOvHituHffY7Xb58p529s0iklMP4E20M7gSRnLqVoXXD9kqZq5ce5it32yAEyplvEXEvWBKvSyyMT756UPhSMgtLm4EHiz/2LVfH/vZdyUfecYF/9JuzPZP+8adufHMSr//Pn2Thtazf/l9D8ACToixx7yivwe/6H+Gf/rvzt9Mp/NSfhT/5L8FZPuaWWGKJNxef//wokUYYhjz33HM899xzfOxjH+NHfuRH+OhHP3rqMm9V3woCbsUOL0eK5oFVbR4C1eSYa82EfmLwuy1u6j43gYNeylrJIez1CDL/t27ap+N08B3B4WFEv59yrCWtGzcRQpAow/WjHqWOR10f232AfWM4OJa4UtDxHO70D6i3e0SmSyOQhIlV+UyiIxWH5nB0HuoWSvp0yw5HfcW5zh61ePR9ojT7zYReMirLT8eDSENS2rLN3bhL4Epupjc5PJgmiDrHR1xd9Tg8GCdBdrspicqe8/0WbtJnzxj+0S+1eNt2wI1mwvXWKOM7gCfF0De1EysOm9OTxpvSKkRbJUkrnD+B/6J7hBO3qN29MTr3NBn+v9/eJ4otiTqaKtrfDnWXT+6/QE1oNvq27cJEc9gfEXyvNBO++M8/zYcfr+M507TUq7f7dKLiOr5+HCPDY7bD8XDS2BEcKktY7IR3aQWWBCsfHk6UUM9+gBRu3hxloW5HiqNQESpDL9YErkRi39DWyw7V/i4vHER8Zc8ScGVP8DC3KR0f0U80yRRxkNDVXfqiwlHcQ6QjUlImkqTnsNdNiZXhC/2znOk2CaJ99ropCS53vUusHbnsHe0TFyiwSnELp+fxxWS3oKXKuP01qvuvAzbLd5hqDo7tgkI/0XQjPSSLYUR4K2O4s3fEatmh09ccmpFCMFIa1T2mHWmaoaIda+q+pB44HB8e8NDaOJn+W84hvRe/hB/tU2qllDA0Es16RnQI4BXeSxAd4whBqDR+84CYkH7Wb/JwUklP3Oa59Brb/S6Jyt+LvWH0mBTQFSmxOKCfatqR5jc//nkut19mreSyXpEZ7WZ49SBGa0sWfWL/VZSGatyiEXc5UG1KnqCfmLG26qcRiU7oJ/ZHkCK0TcKXJz8TowmJaNFm4KpyoA84FKOlg33tIxF0IsW6ukUvMTQ6o/5tlbYaV8ccmkPudhI2whAnI/QcJVGR4NVOB08KWgjCGzdpHkUoDWXdodMfldfIFJ/aGNrtDp1Oh12nQdgLUVEx4eSILq1+j89eb6KVxssSZYlMHB4r2HM3aR+3aN25QzvnNNBLNJ+72ydKDVJA1Cpx2B1d10OgHDeH92qYanq9BCeKcNIR2d2MQ7SjKbmCG7sxr734RVrXWzQ01DM1LEAtfg0d9ziQl4jTlFQrtNZ4EvqySpj1Z88keCpEmASpJTrHm2sh6Zg+h26femLbrh1r/FSzqkYjfpIk7IhjVOhSciUdT3AnsaSfMYbDg5h2rOhMjLlSwmGmXnUlfPpzX+Dlw5iDruKxrB2cbps4TVG5xR4lHBKToE2KICERLmmvSyfpYFJDp5NQxaXsdThXXQUcq8xV7aF/6vFuh5YQ3G4nPHpwTJpKLnhtHCFot+G4KVkt2bFq/9J7+Gz/LI6KMNE1QHGYmSMoY7gY7lHTIR0TD58FsTJ0MkufO9ExAK+0XeLKF8YSjq1cv8bOfkiYVAnCvakFt2NRo71zzL8Kp4noraqDUF8E6Q7Vw71Y4x0fUTUbuH6dbuvQLmS4dfotl+j6DjsvfgoEbFUcHl73KbkR12/0huNrkLYopW1W44go1SAEjpakuedUMznm5q3bWRI+i6rSw/YthSH1bH7XizVfuNGjl9gxKIliSCQ6gfWSgxCCwwOryD7Wx6T90TPikCpgbQic1KeptvmNTpXdbko3NvDaK7gSvvfZvBXTvWM5I11iYfzD37x28kY5LInXNx/f/61X5hKv//wLd/ivf89TNEqLZQH+hsBL/xLufmGxbc++HZ75Qw+2Pku8MTz1EXj8d8CLPz9/u9ufhV/7n+GDf97+rRL4xF+Dd/4xuyq7xBJLLHEf4Xkev+/3/T4++tGP8va3v51Lly7heR4vvvgi//gf/2P+xt/4G7Tbbb7v+76Pn/u5nzt1wq+Ob5OQGGM4ECmo0eR9r61p9RWRgn6S0o0MJUdanzM0KSUa2YQrNQalNX0NaWqVTrtinfUkRgrB3Y4iTFKaok7VHA2PEacarQ1SCg5SwfOs8nTm66q1wXdEodWAVhqVjuqaJDEbdZeqY9hNEtI0GX4fKcNRqHNKV4bnPFamAa0UqdK4SJIkJlXTZIbWECdm7LtUWZVQHqkSdCLNL7+a0Oz63GipKUXcRlmyVXGyczBTxyu7giSxBG8kJMkJqtkwdHDikCAp8OUzkKbWl09NFKOBO7HDXR1TXz+Hb3YganIUjuq7755hX6xS78X81u02T21Nq16jKC6so8Eq/6pK5Xw0LZQYdbs0iUmkPd9DZ5OV6G7heR6ULg/bBaAkYc03XGumOICH4dKKzWJtjOLzt9q81kyHBE9bweu9kIe1TSg0SRwYZZPHKGH7otKjyXuqDCo1w0iwUAmuld7CTtil76XEwkcLF7cfkaaqMPw7TQ1JbAjDYpmzH3bxc9dwr5PQjVNiZQnUGRwbAL0kpeaDQDPgfZqhpptohNZIaZWSqdJIbHh6R0EvNGNkej+UiLiN6hxQysgNofSYOWeaphx1YKUkSVKDShV9nXC3rYi0wRPgZYSNUoYkTWiGCRtKYZRGGoVBkBo5DCG2vxo6YcxR36CFw1HkshEmdMOEduiwVZGkGnpRgkBwFCqiwO7fNlap3081/Yl2SvBR2Htfo63KHUgKFIkmC+U/1ulw4eE2EauBHJJQSSKQwE47pRQrtDFj95ZW2paTGKIkIU4V2mgGejmlDUpLVPZ7KhUiiVHK9tVUT98vAxz0ErSBftVu485QvJpMkdtPIKpcotR/HU+HGOA4EezJTVqmChjSNBnef73UcKOZDpX9ErjTmliIMobrR4rzUYwrYbdrPWajRFPJ1cdgSJSx9h6+oBdZ4wMFICDK+tRhWqKhuxihs6B4g9IGV0oi/OF9miARWmGEJXsdd9RvE8dDa02kJBWtUdoQxgqFPzXmdxNFKQIPSd/1hmOKAVKVko75/pJdM2j2Db6Esi/59PU2ZReSRA/HLK013VTg5MQ5HSqZF7UdbwwGo+1zU2BQWiC0wpOaqpf3Ox/5laaJIVKGvU6K4z6EVCFraZuqtHVsh5qqazBumePgAlpFGJVOnUOUavuMNVY8KrJr1InMUMk52CdKFb91u8PbtkfjfSVJSFLFPmtIFBvmCAeFwuFArtGjTBJp9rsxa8GIsI2N4fm7MbfUMYHn4jsCZQZq9W2kEHQSRZQ+TD8xHLU1u13FSknydtf2sdsx3D7uIwW8cpSSaNuO7+7/GiHQDFMcAY4j0VrbJGlOhWP/HBqHJIlROQV1XutelYJGxmLeOo7ZLhsoC64dG8ougMZo0FpQ9gSp0pmNhkLNsDj4V/vb3GodsdeffD8o3PyesCRel1gIzX7Cv3h+5+QNgXdcWuX3PHOet5xd+ru+2XjL2QbvuLzKc9ePC7/vJ4p/9vnb/JH3XXlzK/bVgjHwk39m8e1/x1+xS6RLfO1CCPjwD8OrvwLp7DBVAH75r8ATH7ZZnP/vPwHXfx1e/WX4Ez8Pcn4G5iWWWOLNRxRFvPbaa2+ojM3NTTY3N+9TjRbHBz7wAT7wgQ9Mff7MM8/wzDPP8OEPf5jv+Z7vIQxDfuAHfoAvfelLOM7i41CYGhDgOh4aM/SyBOgoOAxt5uJ+KrjRNqyXDUIKEiNJnBpCOQg0QrpDj7mDCBwh6fhnOOP5SCGITITnOCROlcjUKGur4lRG4GeqzwP/Ah13EyMcjIFI2dDKIncp4UgcdzTd8DyPt1+w74f7UQ838nC0S5RqjmJFagRiwg5BCQ83n1hFCKTj4EhJVN7AdT2SjJiTwk60pLD1cVyffGR2J1FM2gy6jot0FO1IsxcJUhwmorlJEXiendCWhGY1tQmTBqdc9SUX1wKkEMTaEJn5s7VSqYRwbXsMkKTJMMbcdRykI4m1sR6TAnwp7eRfShzHRUmff2OeoS52afhHgODA3ablrOMCnifoKAfPD6a87TxP4xVEAmkMrmNwcae8CB1p2z1MDcexZN8IAkdQKl9hTR0imCRqXXrVy3jOOPG704/ppbY+/RRSDGVP0I0MsTY4whmG6gKsqkMiI3CEwJFm2oVBSBzpIIQcq7OQAsd1caTJztkSOh1RwXh2Ii+Bmx1IjcAtuB9d18X3XUql4rBTJTbpyqcJUGAURwfPE6lB3SVSTC4a5NSjroMjHaQUuI5LP7Eh8I50cFzHnq+jcKTACGeYgKurHLZKo3sqCEq4rkuMHJ6r9UIeHcuVDlq6eJ5LKjStRCAT6KQAggRwDdR9geM4eK6H63gIIQnoU06PsFyuQeiIEhFSCzzp0Y9ipBPQDs5xvSNYycRze31FKwGJ4KAPgWNQRuJmSrWu2EYnrwyV5Hn0nBWktqHZAjn0mizyV1YaEgEImfvWoRnDtufgSsFuD5SBwwguGDs+5PuKQSBSjRSC1DjWi1PIYZi8lHI4viVa4LgOnufjugYUuMIZv19yt7/GjkVCuAgpZ+baEMLWyw8CQr/OkfsYrgppRilNPIyQg9xhOK43HI8OOzGO445d+0Ebp9qwYy8yOz3NdqzxHUE3turikpBjbTqoQwoIIUlEQEo4zAg/GEf25BaB7GVj9aiMUFaJnQoyU8d2KSHEGlscABAbKDkCLRxCfx0pJD2nitez41yobF/UuWPZayyJVHY/uz6u53HQUxz2Fbs9Q5gajBEErhg7n062JlI1dlzvG4HnQav2CKv6CJOUSaM+brZPKhz6omL7nRG2TwmBlLa/dBON1NBOwFQc29jGgBB4rh3LW5Fir6s47GuO+oa9pM6KcemKizzsHlAydu7S7jfwz72Vcq3BpbU2d4/SqTFXZ9dBCol0HASZKlyMkq8N9nGkpKvHx3vP85BOCtLhyNniSG4iMWisWXqET0A0bFvb1oZmL0UZQWg8qq7Lq8cJsTJcXfXY66W23TspjcAq8duJQUqHWAsOY8GFum2LXqKJU41wHFtfYZBZfYWQw+SOibYLt13hE8kSgSvxPB8pi61yXN+nlInIWonCy6wnXNfgyNFzKNZiqIwF6IozrMojeommG1t/YEcK6r7kNhscxWJ47zwILInXJRbCT3/+9lioyTx833sv8Qffs1SUfbXwfe+5NJN4BfixT9345iFe//Vfh25ReFgBHvp2uPptD7Y+S9wfrF6C7/qv4ef/i/nbqRh+7I9A7wj69qWPm78J/+ZvjZSwSyyxxNcMvvzlL/OOd7zjDZXxgz/4g/zQD/3Q/anQfcQHP/hBfuAHfoAf/uEf5sUXX+RTn/oU73//+xfe//Vmiuu4rG/UccoRV7eqtMIUYwy3j0NKVTvZKHUtQeQEPnGcEpQ8AqCfXGU9vk25VMdxRhl+XzIXSII10lKNku9QSXv4pFRljbZ6jCC9SzltEpsYtxTQDc6g649SK19gv/8Il3vPk2o9k5iqVcukGyOLo+jcBR594iqeI/G3Oux88S7lvuLGYY+aNCRKE4txFagX+7hmNJkuBS6Nep3tRom4vMlX1ApxpqTSQFfAdqPEpbUKZxoBR2KURCc67iOCcYJwfaOK6MaYfkJPeqxvTE/2GiWXc5s1DIaDbkJL2slzJ0o57sY4SpC2S2zVS7zryirl9nxvzLe9LQtdLO9BbMntGzdukCQJnuuxsbHBre4+SW4SGWJVhuVymVJ9hZ63Qm1dY9ikmW3jAoPWXq/6XNiscu6hDbbr49fnrtyhW+Cxpw3s6SPKqUutNW675LuSREJsNKJUwymtkgI7cpUzD61xrvcCbmrPJfHqHK++jTPBtL3Vy1/ZRfsjFeyxhuPIijwSpXn6wsrQw7HVT2h0EiCwSeO6Me0oGSNf69UykVuj1C1Rq41CU2sll/V6QDNbPFi/dJF+rNg1o/4wwO3jPlsrZYSwCrKjXkIvUrzYNtxOHC5d3uLpC6u4jiV2NIav3Gmzm4ZQvUgtcFmtePRfu0EijiyB7oA3weW+mJzFGIURHrVanbWVEnRj1lfL7LUjaq69JuvrZRwph/0y8BzWV+w19FxJZbVMyZNUfJebCFY3tuirJl4WfmzCBJMpmqWA7a0NtlfKNMou12+1KIuA7ZqgZyb6qe+wtlqhce4swc4dnKQCpPRCmSWgEvSpUsZhw0vxa2v4/jpx7QrlYIN1tU5NjPpNKfOK7NADDB6C9XXbJ/qJ4jXvvVw5vkZJ6iEh2XVXSf2LlNodvNgjlSs4WuIYieMWiyM8xx8bg2pVWwe/4rNaGS1uuLpPKS7hSKhVA/qJIk41SINQKfgObrnKihtT6XmQpZ/SQJ+M1HRhteqzcekiR6JJrDSB8qk1R+ctj/eythe4nk2KVqvXiUWKjIoX3FzpUi6X8Dcusrm5gZPZejQPe1Qn5uCr586xUr2I1oYdfUwFaBrbzwV2TAOrmO6KURj54PngkmKUoWO2OJtLMuY5Hgh7zkG5THD5Haz2n8MJR2OFAXomYid4nB3nPBf7h8QqIhQVgkodXxt6SWqXYaTPbXEFkUrWnBDpgKhW0d4KVeGgteGOucpmcAuTKjw0rgGj7MLTgEB0A59yJWBlrYqob7NnNlA6YqUEx7oL/ZRuohCeQ600TW9JIXAa65R8h7XM91rH2+i9T+K+8nEc1yEUZdpyBUe4OFg6WVPCQ+CXy9RKteH9IoKAtqgSawdfpHiux8VLF2n1E3Z3O9RWoStCak7KftfnZf0Yb3Vv0Kpvc6ytarVRq/LwO7+XJ6+cY9fZ4QsvvUrtcHzMVWFCJz7PpneM52j6SpJKw6Crh06dWsnuU66vUb54kTNXNjibjRWYr3AzPqCtu0RiOlnjde8tHCYej27XOfPQBiDYacXcafYxQqCcGivbNSqmQwVwaz6NQHEzbFGrW6J+faNC03TxsAnNgmoFb6VMJ0xp64RK2WWjrEky1WlN2vp6iY8rBZ4jiJVddOtql7b2OVsqceHiRbQTTNUZ4OGzDZ7IBH6vpKPE7x23xd1kfHwf3AsAuv4BOPw1knYXP5ec7k5wHlV5mPUHnIB8SbwusRB+7FOzw9fzCFzJh5++x8QRS9wX/O63n+eHfvp5+jPC3L5ws8nzt5u89fxK4fffMOgewC//1cW3f+1XYPcrsP2WB1enJe4f3vsfwOd/DO48N3+7g5enP/v4fw+P/1twZl7O5yWWWGKJ+4uPfOQj/PAP/zAAn/3sZ09FvOZxdqXEpfUKL9xtE2Yx2ZM54hOliVLNirQh913PTqpip4oRglT47JeucD06QzdMuX7UQwA3j/pUTJe1KKTsOYjKJaR/nn3Vp14u4TkuW+E1bpcfo+Ws8bL7KJX0mJJXxtMhFdUsqPE4fuH5uzx+ps5xL8EYG166VQ8QMDfh1gCD8xQCjroRqWfGMlin2rDbivAdyVE3ohcrKr4zti9Ym4Uw1ey1IzpRitaGg06cqeyg4luVYZQorncTWhn5kChrr5AOEpoBTma1sNMKeXGnY5MlLTKH23wcbk8/x67L81yXZcjmnfkENUq4GCCe9CGYAaXHSRutDbeO+9w66qEMlD2H86slm0wlYzRDp8aXV799uI91ms2SwVQFJhf4qbThS+0K8vx34GaRKKk3muxOYUa7RFlfztc2n4BlkCxnsq/PwsAHdGBR0O8n9OKUbpSFpGfq4lrgorQhThWeK7nTDMfEJs1+yv/x69d46/kjHjtTRymrPs8r8pr9hJ/9rbu8pZeiTZ4cHNTZsCc3eVVesSHsmdorfx6dzJcgShS3jvooA/04RRsbTm+MYb8TE6eK64c9fEdyab3MY2fqHLcignh2fxAYdlohO62srFz9Bt1DCkGcquH16YYJpSglakeUJkj6RAZIUcOtnKNVeZzUq2XHGUeznwyT9GTCQIyBnVafg25MEnlUoss06LJWcSlVaiSyPFZWKOf0pRNw1IvHiNfhWRtrqXHYi6eERWGqqWVkfdF+sdao9h5xqnP34Ek3uw0NdxyJ60ykm8r+8KT1O77bCjmb+67IAmOAKLOAaYYFliUUJ6UHhlntY+ETCx/fTJNyIT613HiujaEbpcP5pUESOhVue1dwBxJfLYlSjTIuCNA4xJRoyVUiImqui++XrKVBqmmaMl3hk2ZjcR5plhwSrNXNQTfGkYKdXpe98mjBIK9w7SVqmFRpHIajXkKc6iHxmvir3D33XfR3jlkLpxurK+uUtSWta+khx1zMjjcoUXCrnXA1F+B7txUOr63OXeVX5WWO0joPNe+ikoSOqHLQv8LTv3XI+7qCXqzw1OjZN1DGC6AtG3TiQ6TokTjj90LHWxvtkxHm017rZmYwZyTLtGWVnbTMblphreJzo39MmotSOeyO+sZ+J8bLK5GNGUuGmGrDawc9Yq2HStz8GC5UMkw2uKI1jpB0YzXsj2V1yE1xjlj1qEQp5Uox8Zp/pilt6ER2EXryWTeJHgG/Id/BVvA6FdXEIDkMznPsn2e3GXJutTx3/zeKJfG6xIn44q0mX7w1vTpchH/rrWepfzP5h34N4agb83NfvMtPfe7WTNJ1gH/yqRv8N9/7DU68/vi/D7r4RaQQD39oSbp+PUE68L0fg7/z7cBik88hdAI/+jvhL7wA3oN9yC6xxBKL49lnn53ydvtGwvb29vD34+PjN1SWNpb4G/j6FbWa58hMtWO/7XrrvLjyLUROTlUT2wnsfifOJvApfWPJBzebOGnhkAoPjURpQzc32VPC5VBusO7XwGgqvfnEqzCGONV85toR9ZJL3V+h4S9mZQXgOhLfkZR8G/q7XS/x9ObKkADZbUekUYo21ss1UYKdVsiZRmlIvsJI1agNVHzbhiqr22CiedCFlZJHO0oyr0j7ftuNFM1+PNbo+cn/QTfCdQTVwCVR1rvQy6m3wJJfQgjYeMRGZ+y9AECiDa/2anR6XRK3MbcdF8Xkpp+7ecy1w+6Q0EmUpn034Ymz9aHS1AhJKoonvUWIUp2RHiNiQGmrYHakzTw+rPvCpRaHlotJ6jVHmKTaDBOwpNqSld0oJUo1O7sdolSxO6FGrmXEYDNM8R1ZGOGXasPrBz0urJXpRYrAk2PznZ1WSDdO+VX3W7jrz1E7J6MkWkWkWJgoWmGK4whcKe2iSaJQxvDqfof9TsJaxcNzDD0UrdspSsPZVDPzagnG2suRgqrvImVsibusg7hS4kmJKyUKQ7e0ycqRJkpTJvXsWlsv0HBivmGyk4pSlc1FDJVgtOghgONebDPLJxppJFpIjqlz3Idznkd14kSEdGnLFcqqOBM9QMUUE6UA3Sgdkr9CwB3vIueSm4VzpR1nQHnO7qXGwA3nCrduHg9tEha5GzuRopG1bxECV07ZtZxYroCddjh1HWbBYMe4PDl3Q17gqrqOgxqetUbyQvA2vsNYFXqiNM1+Mr7YYyAxDlo4OJm1Spwo0AwtEVwACbe9S1xMrqG0Jf2Ngb1Q8ny6CTU7Bo1OydYtb8sx3iwTjTTxZ6IMQUEThxkpO9Ye0uV65a005BdxTIrvSuJUE8oyd92L1LXlPw6qF9gvP8rNqE/JEahyQNdbo3WcckcYqqUUtxly86hv7+F+MkYcAxzJNY5YGzxGaLgurx30aJR9rmxUSERAojTdKB0mmUuUAjxuu+cJA8VqvJs1vaDpb9N3RnP5/eAiXqqJEkWUKmu34wRz+5Ae2PoYeH2/y8pFj3SCvDxox2Pt3JvwSN9pRkSJIsieHcrYBcmzK3Z+pTISNkoUe80e2wP1tLGEelH9+rGm2exzKSiz345JlMZzJJt1n/Wqz5mGHSRuHvX4rVvNIeGanrAY2Y1SEqfM7eqT9CLrOys1iNgS/4PjPCgsidclTsSPferGyRtl+P3vuvgAa7LELDT7Ce/7K79ow2UWwE9//jZ/+Xc99YBr9VXECz8Pr/zS6fb5bf/Vg6nLEg8OZ5+GD/w5ax1wWoRN+Af/tvV7XWKJJZZ4E3D37igB0dra2pwtp9FPNI7W+GFis/R2Ylr9hFY/QelpEscAK2WPjZpvE8/07EKkxpnabvL3WASEokSVFGPdDwFoZmV8pXSG0IQ8zLgaKzWCO2qFWrIPWOJ3MhkSwK3jPo2SC7j0KhdotF4cflfxHQ67sxdNtTEoo+nHGt9J8Uqj8qNE0c1lMzruJTY8HTjsRlT8yvAc22E6lQxMa0M3VihtySJXSm4d9whcZyxTNFiioB/rYVhrP1FcO+ghBMRpkJFMgqOenbQ6QrDdCDifKWpe2u3w+JlMKrX9JGw8SjP8FJ++2aPt1NjoPodHyP1A3kPzqBtz47A3xegY4Nphj0e2qiNS+JSIEk3Ft6TyjcMeO63IKkOFYK3qc3m9YomIk8qexRQswG7l1VmuFKxOKI/9gkl1ojS1wKVesl7D9ZI7XNDI47gX8+pel3Y/4S3nxknxO83QEh4LqpCHMCBz5Ex3IhvX4JTDRA/JtXzzaWN4abeNSkK2oohaySs8xzw8x6ptu5HCESNq2xib6CpKNBhoJy5hKqjpdmE5qTbstENuqxY9RxC4krAC3TilG43ImVd2u5R9iSMEJc+hFSb0snPRjNf1OKeQVSIbq4TgWKyyzXQCN1+HWd0FK+pw+Pl2eptQlGk5azZZXDCiPPbcc5xJbyPNBGmM4K5zLvt9PiJ89g96bNR8aiUPY0bk4SziJlaWkQxTXbjA2FEpx2nMlawCcarox3bbbqwIE4U24LsCL0oRVXs/zyNd8/exMYZ+rKaItUiUeNl5hDVzxG15lrZscFue46Js8OmuJOx8nnaY0ounfat3yps8ntdPT1XFHj8RAa95j7EhOjTKJVLhc1d7qI69X/OLHSdrh0dIs4Wt/GdRqock4HRtBMZYJXSibJK6nlPnNf8x6rpJ1RM0hUNP2rH5yLF+8c3qM7S9TW57fQJXYsp2HG/FO4SpYUMp0qMeO82Qo/7o+bVani1Gc6QgTjX7nYgLqyXOr1UQR3bBrpqdZyfMcuSV13mx/gQXul8m0F0iWRkqXAESWeJOFLB/q0knSlmv+pZA3l8lufPlwkUGJRy6osbAkFgbxhJbDmx0Em3jG+plj7WKx2rrBfyoNyTIjbGkdklJmrrEDfcKidJs120yzigxBJ6xamAzfl0myemOHI2rL+12aCXu2CLB3Vaff+fdl9ioBey3Qz7x4t6JKtc89tvxcCGoHaZTJHI/VnjlJfG6xFcJ/Vjxk5+7deJ2G1Uf1xF826NvfkKLJezk6l2X1/j1Vw8W2v6ol/CJF/f4hjSFCFvwU3/2dPs88bvg4rseTH2WeLD4jv8CvvgT0FzMDmUM138dPvm34f3/0f2v1xJLLLHEBH78x398+Ps73/nOU+17FGocqUjcGIH12zzoWiVIkYJqMFfxHDkM4QarZCzckHGF0U33Ihu8PgwPHqAnqzTlKmYiLFxpw3EvpqFdfCzZGSvYjwRClhFZHY0QNPuJDcUHlFshDLYoRXs29LRvQ8GFsOfoSklH1oeKqpJnk4zsym1EKaCW8xDtThADsRoRHIkyw+zP2pihogjs5L2TUxmFWQjxWsXLJqzFCX16iRrzE9TGgIGjbsJeJ+bcSmlIeipjuNMMkUJwdqXEreM+51ZKXDvoobRhpexxpKscK8X9zu2xVR9JCG83rWowT74YYzjuJVw7SDjuxdw5DmmUXdYq/qkIWJv53fDZ60dcO7Bhs1JAo+RlWeQN51eLvYDzMFmdUm1Ii5S9k4LXOSUJYb/3HBvOO0lsAhx0YrbqPiXPIUw1Jc8hUXqM0Opkk3Rxt52FqCdc2SizVgnoRCn92Cq+/v/svXecLdlZHbp2qHTy6Xhv3xwmJ2lGEkrASLKyhIwiQQLJOOGEediYYL9nwGDzHtkgG2TJCMlG2CDASIAQQhEhJI2kGWlGk+6Em2/n7hMr7f3+2FV16pxTdVKf7tv3Tq3fr+/tPqfCV1W7dtVee33ra3t+ZMpAiCrolAbPl9hoOhEZ7wnRWX7Aer13u+tLNDwOCxZqLUWjSGlASqImTgTFdstFO6iantc5rmy3UYAHT8g+y4rlWhtzUhEvT+EgbsWTyfELAdf14XoSjlTK2bMbNkwnhyq6ydqWIyCkwJqrocG6C+V1Lef6wb0oIMBg08hrI7Et5oJCRRw+FrxL0ecn7Uewwg9gm1XRclVs4b3YpAU8pt+Gk84j8IWKxYGOx/kpNGgZoWZbBAp4GRht6KyTwu4LZR2wUnfg+AJ2s4WZYGKKU6AAA115hVJVWFfMS/LFbZACICUeu1LDxXMb4F4LEuhTYDuexFNrDSwWvMieIg3xM9Z2fTxETuNGPNa1DCMEhHKskiWcMe4EJRQmBUyNwdFKcIkJ1+/PfN0iZbhEg4QqltV9ZEG/Bx6poEEIHKOKlllUNiCB92y7j9DtPz/xSx8+w4RQfWq9h0BL6rLCLVZyHEJK6JzC4MGyEihZOhhdxLbno+n3E8zfrOehXH67IUSnJrME+nyz4wS7wYKCVsGzs97uKLE3my6I46NICGissKDGKFwh0XJ9rLck1osvxs3NL4OJzn58wvF04S40bB+VoCrkesPBU6sNMJHDQcIB9FtJbLA5cEpxsKJjtqCe2Ze32sjpHCu1dmSjA6i8wq2WC0oIjvnLKHjx+1ui7nqQDtAmFdQ15V9+dr2JY7M5NB0PTTcgkAnFNqug5G8G25VgsVa6HVPwtlzRZ5sgpLJMPFAy8QdfOY8Lm92Tk8Pn9GIWBT3b9nyV7bLRckChCPCy1V9kcifIiNcMA/GHX72QOOsbR8Hg+OsfeymubLf7qqZm2Dt8x7OWRiZeAeAPv3oe/+Su0dPIrhl88meB5uoYKxDgpT+5a+Fk2GXoOeD1vwJ88I2Trf+xnwRueg1QPTbVsDJkyPDMgeu6WF9fx+LiYuoyf/VXf4V3v/vdAIAbb7wRz33ucyfenwSwvG2j1nbBKUVivZnAF3Kr5SrViSdgcBoNkIWUaDuia8AaH4dcZIcwoxFUyWXQwM5lm1VwRr8ZkvSriRqBF+Umm8Umm40+39ZzaBZfhLmA/JMS8EWrixBYn30WCle+go21s2g5nhoQScBzfBhcYoX3TBO7wJecUzjkWnheqUO8uglZP/FPPF+imtNxdq07LXmr5fYRZEICTUd50TVdHzROWMvOQH65ZkOjBJbGYGidiuWOJ1Bveyj1KJ6ubLdxoGRiu+XiT79+KbJ4sHSG1kYr3HxsVzK6LvHr4/g+tlouDEZgaGwgQRp/NX98ud73/UbTxVag0roYDGS3Wup6zsWKVYWKue22G/mOGpxB4xQFg8ETEmeWa10+vUIqFSMhaj9fO7cJRjAwpbPWdrFa99ErHg0Pv/dI11seWsRB3XaR01iXv2N4XjhVlhNJaLk+1hoOhFC/J30fv09arsB2y8XDl30slT1sNF3onEIKda1KpiJ3OKOKiG+lK7jbro8nVxtRjDmNRmrQNCRd6/P6CZzHCUgpsVLvJlkYgNlmJ/6mY6PsCRRSWICG7cHbbmG94UAn2kAFou0qNX2duaAE2ICDettHnglojPTFKkGG2qFtNh3oAYG0weaDYx64CpLIOhmLXAYzSKG+d4PP4StsBu1AnV8jBdU3Oj4cX8ATbh+p6fg+cnpAqgf7s12BS04bFR63uwCuuDkcAOlqrIN0eR4Y2jAgAHzmsRXc3bJRpF5k/dELIYELG60uhfcwOL7ABq1A+sqABlATEpamGsIan0fR6BQW5IxAEoozuTtR3PobcHTOR5uYeIjfDFMqIvuMnmzVZhMThuyx15BBvwbVZ2+L7vPsgeMiPQgCiQLnACSe4KdhaRTCMrFFSthuu1itKf/uXtViUlMRge3JmeUG7jluRPYiIRq2j5k8Q5JJyFn9VNffvdcxaKrK/7fnQdKlxPVl1yeuUM/nWstF3fHQrDkoohsiUD67AGrExbJPsWV9C47gCgzYENTAunEYPtUAW7UF2/NxeUt5zXrUwJPmrVhy7++yp2nSPJ7UbwzsitygqKDEZstFxdJS21XD9sASbsZQZW9RgrzOAKkUvZyp4lkXN1tgVPkbn9NO4Fbxtb5ttGgeDdJ7BjrIuRsoemuwLzD8/lM+PF9iEepe3G65uKwfhQM98pwN73ZfCAipJht9IXFho9U32eQJ1Y/lDQZL5xBQ18Z2/U6hsikgI14zpEJKid/+fPIsZxzPPzkDU2M4Nju5+XmGnePVtx/Av/ujr2NEtwH85UPL+L6bl66vTuDiV4G//c3hy5WPAFuBhcYdb86KLF3rOP0y4I63Al//X+OvK33g/a8D/vlXMXWZUYYMGfYFVlZWcObMmejvS5c6yqjz58/jC1/4QvS3YRh49rOf3beNe++9F5/+9KcBoC9NtNFo4Pjx43jzm9+M173udbjrrruwsLAAIQQee+wxfOhDH8K73/1ueJ4Hzjne/e53JxT/GIyttgCjgEtV6l8HQhF+PcNNV/hYqyvlmKkxbLVc6IzAr1DUbRfrDacv1T6uBnF9iQu549BLp2HCxpOejS1hotnyoDHlhdeCidAle1C663rTiYjXsODRWsNB0eTgjEJSHV8mt8EtHsKKt4WnXYnnuV8CoNJGNUa6iU901JUAsB4QTYbG+gbh8Wt1casNxxPY6hEU9JKuFMBMQQclBAVDfbkQU41KxWp3zpWQcG0Ppk8DolV913L9PuLVExINx4usCeKobzpYKhDosrOPuu2i5Yiu4lqO5+OhzRqusBzmCirj7EDR7EuvJYFKMImoC71PG3Y/cRGi1vZQzWmR4ickaEUwQPeCFNRKXsNGg8LgLChy0r+tjWaHfGw6PmptD+Wc1ke+0uD7JETFtXoORwgJn0hcIos4ie6J91B9el4OzsjbaLio2YFtB2IKOUuDnXJ+PCFwdq2JbduDqdGgoF3n4IsGUv08AUQEqaVR5A0OISQKpgZfOKkknVLSprOQYWG47vX7l9+iFcwj2Vu54fh4ekNiMOXa2YkMFmuQPDRKYXISecDmdBa0SwLXF3AE+nxMeyGkDAqQEdRoGU/oN6LQvhzcywRtasEULTAZL7zWv9GK6FgPtF0fLdftItYlodii5b71XF8irFNWNFjU4FRbIurPYHctVynly7x7/xIEK6jgADZBoAg5hwhsUR2FhCt0iR4ECMFFtgTbUy1dkUMSppb0bkqwWnfQTmmbIVqxe8n2JEByeIydwo2+Ur2GKuA2tfCEfmP3MUhV5+VC08C29i04IK5Ag4s2TFyhC5CEwkB34b9e9H5DoCbDZKCo9vq9CSAIwyapAAB8pvrPs/QQWm2Biw0DQgisN2qp1R2SRGBN28f5jRaOzuQS1/GERNP1A3WxRPye6bXD6ENwkCLhWIZBAlhvOTgq8qi1PWw2HbQ9ZSnh+6ooYPi8r8PFputgpSZxwZyF7fnQGEPBdFEyZZSxst3qttHZ5PO4bL0Q894lMOmjSQtYY/MAIZBSot72oj5FSglfZ312FBFIUm9CookSk7FIxVu2NKw1HKzVHWzbPgAfjAC+VcLDxh04aj8Ohqbyq2XVKKbOueneU87fwkLrSbS2fWhCoGp0nq2kYeOMP482Vc+hODaaLuYKBjSmCkmuJZDKTdtPbE9tT0xku5OGbJSZIRWfP7OGR6/0z4z34kWZvcC+wIe/cqFPHTAIji/wubNN3HvkOimGJnzgT/4lhjozzd0A/ODfAt/8I+DT/x9w74/vQXAZdh2v/Dngsb8A2pvjr7t5FvizHwVe90tTDytDhgxXHx/96Efxrne9K/G79773vXjve98b/X3s2DE89dRTY++j3W7jgx/8ID74wQ+mLjM7O4v3ve99eNnLXjb29iUUQeimDYjiy0qBrZaApXEIqdIVyxZXChgJUELBGe3zhU8izDyioc0MtGkDrqOKUbhCkXUPigU8B+eC+GQf+Rt+Hs+cCgeHWy0X37i4jXxAzJxdb0JKDVecAprExxYpoyy3VAy+hB4bsazxhWjbjifw1Fp/YR3XE3AC0tbzhVIfjgjOSERIRIOu2KGZGkPB1Dqqmdh547RDdKYRiBtNF8sJ6kvHB67UfRwtAcca98N32ii5oqvwjC8k1ugMoN0c7VsI5TF6uGr1HWcvB7HddrFWc3B5q91XRTwJLVegYFDYnh+pYuu2Fw3MBVTKbCWn4/JWG4bWvf9G20PbD6gL0kmTZ1RdlxNzSrRBAAghUEtInb6sHcIB90Lq650fbHWFzuFEL/EakGRrdH7gcSpllPo9vpvNAWpVKTpqVimT759R0HIFfOFG3oOiN4h4nCNwAIR0x9KVpi0VqXeZHsBpXEmkVm0fOGsXcCo9DABKtexIgSY8OJqPx/VDaLmBYjQgoZyWQEGo+0KpgpU63PE71/lz2gvBEKrUJCgkICQYJPI6hdCquK/0UhzcuhzMJnDMymXwGPHqoqPUXOUq84BLdW0atodLsSrrYyGmkgVCG4zwt36FYxwX5CxMxrHAm2i1bGwLiYv8CBZYHXP+Mpj04RINq3QWDaLugxWqxtRPsBO41fsmHF/C4N2ey1IKPN7Moea3hvoxJxFoF9kSNmkZS/4lVDSKBi3gEl2E9ChAAh9hAG3PR73tqTZOOC6wQyOetA6SCPGw+nzL8cEJgaVReCIf2UaEnW1ABWKbVaP2vN5wEo+pamngbMDNQRT5fm69CY3FqGIJXFhvwLRdeL6ymBFSwtIYhJDK91T6qPsewmsuAbQcL2pP4bYS7/8R+gQhgKfXGtjaslEcoGB2PAmHBc/P4Jna9lRc4UTkTMFItJ9wiY6L2miZfU7s/JZMjpYr4Po+bFfA8wU2XQ9pzEGchA+LscUtjPwgA4LlZ3BOPwXH8yPSdhi4UOemYStimVM/6tuEBCjUszIssEUClphCPbMJAEtP3lfas7Biabj9UP/kzKTIiNcMqfjvfz1c7Qog83XdB7A9Zbo+7jvfXz3RwL1HKrsR0t7jS+8FLn1t+HIv+/cAY8DtbwJue+Nob7EZ9j8K88Arf3Z8f98Qj/1Ft1lThgwZMoyIYrGID3zgA/jCF76AL33pS7h06RJWV1chhEC1WsUdd9yBV7/61XjnO985dlGtkdAt0IEnlGqLwEPBZOCURCoQjVFoDPAEx7rXPchLGjhKKP+5jUav0haoB2SBzpIo1w5ClZ6U3Z6dvpB46FINZYtHpF44qF6nVZR9Rby2PQGNUzSDgj1PiyI2fAecAg+c38Tytg1LZ9HjfLvlRgMp0lLVxPO6UuKM8sTXEp4Dri9ACcAohaUzVKTWRYh6QhG9ri/R9txocKhvqAJjcwUjGvSlpbwDQMMVkZWD60vl+zkK2Q51nJVcd+y9aaFtV+DMSj2q4Nx2AqWPlDFSSW2vYHCs1W0QdJRzMvC9jMPxJbZaDmzXh8kZNlsOpAQqOQ1+QLIkUdCerRRQofqbENJHqggh0XQJbM+H4w9+Pq/SOZznx3BcqMkAdR8IXNaOYR0L3TF7InhvltAZHUrKcaoIotm8jpbjRam5gzDOO7njS3BPQGcMZZNjoWQqH+e6A63lQgTXZ5T2G6Zz96LpqAJJQgIGy2ObVmC4/RZlZ3Eg8tEceoxSkVNNWFinsxBe57MQtucDnEGDhJSyy3MaUJM7aVROzQVK1MOGtoBVOo+itw6DAy2Sg4WOYnybVQCoKu0N2klXdjyBhuMrP9pAjawxgpzOoSV6tAQxEwNntJtQ0jnQo7aXINiU+ajPApA4lpAg2ODz8HIW1vwWvkBegLyRx1k7j5vwUN/yl+gBNEkeGiXYlOVgKkulyMfJqVXPRM3fGYXTJHk8zk+jqmtoOB4cVwLoJuwGTTp0jrEbXpDWTYm6Z/paLCFo2j5qttq2xhmKpoYWPYgZ9+nEfayzOXBJAC+ZSAaApushF9BaSrPamQnReaeYnM5oX6YHEFjLxNTDTdcHBYEvJVoQaMqeIkyuQMXS4AqJpiNgaAI8IetDjtgLtF2BFZujwe8KPglp53A7BG2SnPLedHxYOkfL8dFyfVgp9hQh4tkivpQ9MXaul8HVuVLPORJlVPiOTCVe42jYPhjrbyNCIuoDRLD/3jcI1YcoWwBClE94ybkSrQ8A2z2ZK3lRx4pv9Xm9256I1KyHqxZ6Ec+KicdRtjRUcnpiIbxJkRGvGRLx1GoDn3h4eehyC0UDpxcKexBRhkE4u9bE//uxR8Ze76EVG1fqHo5Nz77k6mD7EvCJnx6+3Oxp5ecZIiNdry8863uB+z8EPPXZ8dfdOgd84w+AO98y/bgyZMhwVfHOd74T73znO3e0jU996lOp3zHG8Pa3vx1vf/vbd7SPQRj8tOpQMjY14dqq8IXjq+Ijvi+jQhKXNoOCJkl+qLEBRsXScKRq4cq2DcdPIf8IwYP8FjyXPoruBO1OtJdEFQslA1tNBzXbQ9P2sFa3lYLXl1hvOLA9v6MwBQEFcIEexpxYQ1GqY3E9VWhjlc7ivFwAfImWK3B2vanUL4xAYxQtx+s6tvCQGo6vqrkPPI+ds9mL84H/qqUxVYikZyFfKOKzbvcO+ny0XZWuyFsEOZ1B53Sgd2PN7qjOkkAQpsN2h7HRdFDJxdIv0Z+WTklHiSsk0BqgehUBgbZcs7Fcs2FwgpzGE1MybU9CBuREqAL0hexqU0lIUsRF23R9bLc9FH0fti+w0XTheGLgNXyan8AWO4iqvwoCiRVxGGd6hru1ttvlM6o8AQenbFsahaVzlCwNVoOj1nL7zl3vkY47Xm87AgVDEdGcqZRZgzMY2ngpzBQEvVKMhu11ERK2Dzxq3YZDzoPI+ytB/BSX6CIeZ6diNPXwO2abFPGgdjs8cAB+3xrKX5pBCKDW9tEe83garoCpc3zRfCG+rfZR6FC+ojnRQE5uoQ4Ly34BvgAuskXUJAWBCwEKh4kghs75sH0Jt+WiktdAgcT27BINy/wgbE1P+Fb1R7anyEOdDUq2ByRh8IkGL6hCv8oW4EmJ4/5Z5GQTHjjOs0M4Rw+rbQsJEANn2Emc9s90FQHyJPANchOYJ+AJCUujEUnVq8AE0DU5lARPCHiDKsANgwQu8cNgwkWt7cGPpdtzAVimjuPe09HTgUD1U3ZPAauL2lHM+CuwRI/9CiviCl+CLolqtCmwPRldj17MB4WjVFfYf6zc7y+aJSWieygv+zMqAEVMt22BbSnQFh7KJMkhdjS0PR8u4dgKLBbGgS/VdbQ9VTxwGPHadv2uvsDossmQkWK0bnuJPtyD+uwoJqGK6UmPgCZYP4RFyHROkdMZ8kFKixsUumzaAqt1F1wD8gaH7Qkst2wsGIP76cQbUcpIGZ4UeW8/LYSA40vYro+1mo2W6+Ntzz069JhHQUa8ZkjEuz/1+EgvDGVLwxefXMc9x6pjpXFlmC5OLxRwoGTi8gAVRRo+fbaN75u7xsnzj/0E4NSGL/eiH8oUjdczCAFe9yvAu18AiNELDkT48x9TfrG5meHLZsiQIcM+xDI/iLLsPA+lBK7UbGiMoGYu9RGucbo0/N9gBIyqtPQwnT7tlXCFLsCTZ+C6blR9m1MCRgmElPhqfQbGUxs4VLVACEHL9bHRVIVrQtWL7flREaeCyVEw1fDkjH03Su3zmBXr2BQEK3weV9gCWKBAI0CfeqlXTSe7vlOKzF5ojMCMqd8G+XK2XB/L2zaKZvcQKm2N9YYDXwI12wsUYEphU8npODmfjwjnEEJKPLbm4rm2D88TEEM4qq2Wi4LBoSeo97aaLq5st7FWtzGT16OBp+MPJnYjxAYClChyw/XTVXCiR5K53hysmFNqaifwZCSRohlQA/ftttd1/UKlbR/B2ZMK3qJ5tKhSYx/mFjTWjtqm7YmBxZ047VfdpsUeR5rKdGJKK1Iej7YFKWWgcu+v1g0k2160JcdDxh0QqIFLDzYx4JCeorsDdu8QHWfZETyo3YYmzQ10wnR9gbbrQSRQD5yqdplmo+ILCSEELunH8Qnz5fg28lVU5Ta2yDw2SBnnsIgmDNRICYKogmYSigJOs/sQUDYYE1+fWDvXKB16nWbyOsqBHYLGKFbEAlbowsB1zrPDaJIcjpNLqDCJFsnhcX8JNWkCgRrV8Qg8X4JRAkqBoqlhqaxUfVLKPlVgL2oDyMwkFA2u3B4AgKi+8jI9gs2mA4f2nwPLdXFX7gI4pWi6HuptT6V/kzgVC/iE4yHz2TjonkPVVyrsNTaPs2QJrtfxT53Na1hrDFfixiFlp4fopd7qbReivT1w/UIK8RptH2qyjIygEE7DKFkNgyAEYHCG8xstzOWN0aTxCWi5Ai23k9JfyfVPPBh+PfIh5ox0PS8LvjqX4dE4voBJ+5+5vgBAle0RoxSUKA/orZZqr4wRGIzCh5qQyukEm2wWZutCauxt0q9mBdREi+dLaDz5pPRODrp+576hBOATcCtpyIjXDH04t97Eh7+S3rDjeGy5jrf91hdQtjT85GtuwVufe2SXo8uQBEII7r1pHh/60rmx1/3cuTbe8ezpyej3HI//JfDgh4cvV1gE7nzb7seT4epi7jRw778B/upnxl+3uQp8/P8G3vDr048rQ4YMGfYAy+wgLDwFHd2TT45P8KC9CAS+aHE1pCrC1OHZdE7hegJPrDTgS+WfNwhP0iM45HaKl3lCwhMS26SENVGA3GojZ3DM5HUIX2ArKMwUIeUVRDcMtI1TkC6HIW0cho1DkacsAXzAFQYuakdV/OioLTWqlDYEiFRtLVckKk0tjaUqUJPg+AJNp5vQICmsU1xMFj/mpuNhtW5jodhJOfKFxEpTgAYFVUSaYrRnm+EyvcNKV0icWanjf37xLG5eLOHem+ejhZQ1wmDSJb5nS2NoBGnqafCEHFvludF0o2I4DdePfnc8Ee3/Al3CKgltzcJj7ezIjSe+9gRAej5qJvgf9i6fBNWmBS5tteD5YrT0U6lI/Zm8hvVxyaIRlysayrt5q+WkpoanEcluQGS3SC71wA2NglOSOAHgQgON60WD3STpP8OiVjJhP6MQ3UKqfmm7fDO+XLwDJe7D8rZRWbsPtqvUfrJHDT3Mk9QeqvRMZ680RjvXNWQhEdpB9K9HY9LagsnBqeqPOmnxwemT3QrcdTqDBp9D2VRtfLvpIN46HF+iamldtglXttvIGxxe7KJ5w2ZwRkTN9sCI8sxklAQe2jLV69YTKo3e8Tokt4SE7QpIyC51pkt0nNVP4SxORZ9tNRy4onPPbg6ZzBkKoiYBtpqq0JrnS5iTspQ9GOT3u9sgBDB1ipbtQ+cUlZwePdNXa3bPsr1p/f3bk1Jd014P4abj4Yw7h0Wh0v4dH+BUIKerAnpXtO57zhO9VgYJsUfb7jyPOKUoWxp8wtFoe7A9H8vsABZdxU85nq98tYNte+C4QHJo+8nPtEER7JDzHgsZ8ZqhD+/+1JmRHoJxbLVczBWT0zEy7A1edsviRMTrxZqPJzdc3LELMe063Bbw0R8Zbdlv+ccAN4Yvl+Hax4t+CHjwD4Er3xh/3a9+ALj7+4Ajz5t+XBkyZMgwIQKByFC41MAD/A7c4D8eFadqkhweZydRo0VgAPFkBIP3JBXUoLfC8/woPM/FYf9CVCRnlc7iEXZj5BUZEi/Kb7F7awLARqyoCCGq+FIxIBtmvRXkRX9WixAC28jhCbmEjaaDakyd4wqJYpAerjEakVKJVcDHZAs9IXBxs7vy/Ng+cFJ54ImCjFSvW7YPX8ihVd97EaqlJJR44kiscreQEk+uNvDUagNPrzWw2bKVHYMrhhZqm2Q8Oiy1eRQIKbvaoJOkxOxBqJqMkwRCSlzeakfXRojhx1zN67A9VaAlno6rlGAilUBNErw2XB8trz/1Pg1d60uV8msHReJk8BmgiP+2K6BzgrzBIaXEZmswoZyEhu2nFpuxXV8Vp+MUNIV4BYCy3O4Ev4vuXYrUV0E0PQldM6DRjuVHaMsQR84oAf1Z5F0oGt3rSCCyC7E9gY2mExWGAwgoQdQvxdGwPdRsD1IGi/oScRF6Lxlr6hzmgGHzRtPpUmmvN5QyPGl8Hk5ReL5Ay1WEVD1IOQ/TvBtDJhzGgS8D6xZKYGqsL8ugF1stN5rYsj2/a3ktQSXbhZ42NQm3Ga7iCYm26+PsWjM6L/tJdsQoxiqS3bVu4JVdtKjy5zYZigYHpRQPXdzqWjbdwkZNEFCi7CuMwEIjXN71BOq2jyt0ISJeAXVebVfA0BlWWVD4UioV7qDJOCkFCKGotb0go6I3W4Wg5XhouD44JWhoRWyzCkr+Zl/mzlNsCe0RGselrXZwLwFlS92A8clNCTkwI2KnyIjXDF24sNnC7983PnlnahQvPJUV2bqaePHpORicDn0AJuEzTzfwHbsQ067js78IbDw1eBlCAS0HPOfv7UlIGfYBmAZ8x38G3vNSTPRa9af/CvgHnwQS0mMyZMiQYb+ht5er0wK+Sp8FXdogkLBhjORpnvb+0HAGD9olgCfZCazoR6HLNho+g91TCCRME6+npL72EWK+hKWLII2xe2AUpqT7UqJJBLZDsrdH2VOzfXBGQUnoY0cgJGBy2hGpARNVOx9G4A1DuHbL8SPyrO2Nts2irA9UZoYqJdcX2Gw6eHqtBZ1TXNxswdTYyOnFdduHEKMmu3f2Pw76SkZJia0xVW0VS+uyWvCFIgjC9qxR5a07zG+W0c7kAyXoK9IyDElbH+V0UKDPukICqLcDj8GU+9L2ZESoTZKqPGi0sNX2UPf8kZkCie67NB2TsbPxlHlXCBiMosAZbGrCpiKym4jbTngjBG/p/cs4nojUi24XmaMmRYo9yzccH1SKrsJ0rj/c3zgNQoie/XayCBIhgZbj9d3XLddHNaeBURoVFpsmXCHRcvzIuiQltOg89JKuBMnt1hMCLduHO+iYx4BKiaewNDWh03IFZnJ60BSD5+MANEhu4PeTgqL7scwpmdxyILahrZaD7QsuKAHmiyaOzuSwXGuj4fgghERp/YA6NzmNYalsRsWzANV2es99eO3W6QweZ6dw0n8yUrzbkuKCfhNqQZE7TgkkpyhSoJrTFBMb81hljIC04jEnvxeEKlhPqPUfNW7D4cZDyEHVIRKgOE8P4Sl6bODpCY/E9QWKppqMPVg2lU1E2wUlJJg86b6Hpj2XlBGvGbrwXz71eF9nPwpedGpurDStDNOHpTO88NQsPvnIytjrfvbpZl86wb7H2hngr391+HI3vkoV1LIqux5Shn2EQ3cDL/inwN9MYBtw6X7gvt8GnvsDUw8rQ4YMGaaN+FtbPKV0mEpwVAxNoZTKF5ZqBmyhwxbphFVrSHp7HK4nwPV+UjTJwxJIJpJsV6Bg8kjdsl8QqjDDgXZcGSQIgxigb96k5YHbfmqtCd8XaLo+hFSF1VquqnhdNsd7x28G6h+LUzAlKVXKUiSTz2NzTT3LhynMlpQQUANlewhpFKqZCZQQpFex5AqJrSFelwCQ3/E4ZjLSxOC0i/SItrQHr+TDyGXJjIGBbATFgHoVaBrrVsmm3bNxsKBhEQz22a3bPlbqDlbAsOk+u6t/YkQRPTSYTDG5m1hIMETS2CcMdVYor9HO1pXitezrcIiJGpI9JUO4fv9x19semoHqvuM72kE5p2FjzIkHT8jE6ygkUGsrn87d0vDVhihpQyI8b3AIKaGxjjI9SSTtCYHNhjvdeKWyhtAYRejsEhKNT602sELncLNPQEkYLenySr5Al3ay60QUDWVvM8p9MQri5/HKdmcC8uKW8id1PAFPqIlM2/O77gkhJFxfdPVBfgKZ3oxli5xnh3GFLqAqNwEAG6QKt6WBwI4mNQmUOrxoaikq0sEdnC9En8LZgYYvy1ugaSfA4MOBHhWtG4jQjocoewweqLUBoO0oewZPULg9xKsv0WcrtBNkxGuGCGdW6vjQF8dXuwLAS28ZbBCeYW/wslsWJyJer9Q93H9+C886Upl+ULuFj/0E4I9QQOmRPwXOfgG4/Y2Ant/9uDLsH7zkJ4GHPzJcFZ2Ev/oZ4LbvzAptZciQ4ZqA6wlstd099SsLYWq0qyDFIMgxRtQ120fN9rHlOvBlGhkxePDWdP2oWNd+Qnid1hsO1hr97zINWsQMb8P1RR8JVSfd7zINxwclJEobtz0/VUHUHoP4jkPnFMUer9+m40Vp2YBSie50/l55inaTzrbrj0ScSmBHaaKM0olTj8ctUtSFxFLbo51LbwrWDmkIPTy3aQU5JI8tJEhEvoYoyAYYobC60vglam0PBVlP3I7GSLdViCewMaBYUUgi9U4K+RJYb7io5DV0a+XHxx1ev10VJUChrWGFH8Aj/Kbo86RK7xKIlKZJ11L2/A9gbNIVSM9UANSkmTtBJmQcGlWEs5oIGVfRrkj0S1staJRA45372/H8SGEeotH2pk4SSwC1lgtXdK5S2/Fh6kz5aBOGFTqPg3IFpkajDAgpBWq0CNOowCTdZhGbLW/g5IAWqFfTeNWarZTCnFBwc3DGhaVR5HUWTSaEk3Zx+5FRhFOqr07pp2LrK39XATHEF9glOpZJN/8TKd+D4w6dj6cl7nI8AQH0ZdSMi7gafZgyvb6Tvr0H++9NJMNVw8999JsTS/pfenNGvO4HvPaOg7jzcBnf994vpprsp+Ej91+8dojXRz8GPPrnoy//Lf8oI12fidBzwOt/FfidN4y/bmsD+MRPA6//lamHlSFDhgzThO8D22336vnVjbhjf8y09Wlho+FECpyuoR8BTM761IY7RT4Y0KeliMeRdj6u8CWU/A2gp0jaOqmqYkg9qNkeJCRyOoc9gHycJKsNUKnnlqfUw/EBdNFgIAAKpgaDU6zUbbgpBU4S4xESctf0eONho+Wi6SpCZRifyamquh2jQCYmfluuQMFQ5ISAaqOe6Hi8DsL6TosNpUCjBEwSNNsuHKojT2LVodBRhTZJHj7ppxNUO/OhcxYrhJOOPu5jCEdjuwLcSCasBDB2MbOuWAZ8R0DQdj00fA81z4utkxxw21cqz7rtBybd0+8Bh43dBxHYo0ACKFoaKCGJlgajwhUSruODEQGNETie6PLllVJO3D8loWxygBAwohTZ8S37tgdTZwivx8PsRnDPw6y7jryufE6brITHjTvAEmzH8jobOBnEGUHRGt4X29JHI8l3PIawTykGBG1UFFP9MXDdEAPvPQArNTsotkiw1XK7lNk7wUbLhZASnBGwcYnXnuU9X4w0uZuE3uPvqu0Z/K5RCkb8iXyER0VGvGYAAHzusVV84uHlidZ99tEKDpYHp1tk2BtU8zqqeR3fftM8/vhrF8da9yMPXMJPvOaWyHB838KzgT//sdGXnz0NvPiHdy+eDPsbJ+8FnvV24GsfHH/d+35bFdo6dPe0o8qQIUOGqaHt+X0Di6IxupfnzvcvBqbzAmpQvbJtj1+ECkpBl/5dsoIuBCOD/Vg5kTC05JTjJDTaXlQoLA0txx9KJXI2eF8e0XBWO4m8XAGXTQgQbJIytkkpPTbbh6WxgddiJ4rolicA20PR1CCl7FICuUKRkeOqg2o9A+mr/QY6zNYghMEp8kb/MJrAjewZxsFKvZtgX9sBcbhTVC0NGqfI2xyOKyHA0NKqKImNaBkhFNn4JEv2VvSlhAwYjGF9Q8nkUYG5URF6GQ+Duk4d4qw3vT/pnpeQAz0zFGEm4ZLYMinxCwms1h2sNxzUc+74VhxTgqVRSKmuy7jkZliUytTYVIhRX0r4wX3WsD1sUxeMEFA62Hd4XITEaFLhu14IwvCAdgcKoo4Z6kA3TGyzauryOg9UqB6BEASUdrczTilqLQ86S1ezXo3slEGIZ0lMM7SttoeZvMqW8IVA2xEQkHA8P/DmTr53ej9NmmQKrSs8IaPzaTACEiqUIx93gkbbgy9l9PlqzQalimi2PR+WzpHTd/e9KSNeM8AXEv/how9NvP7r7pzc+yTD7uClNy+MTbxe3m7jvrMbeO7xfZ5a/Te/Dqw/MfryB+5SZC2fjtddhmsQr/wPwGN/ATTGnVySwJ/+a+CdHwXOfh449dJdCS9DhgwZdoIkVdw+G9PBFxLLtfZEA+smySEnm4nf1Ulh8H6HnYhgYFa3vYFqxZLBYOocnhyuzxzlGB1PYK2uvPhmC8nvJz7hWGGLsEf0Z5BQA1CNkakqx+KwQ3Vmz+eeEGi5k+1TYyQqLpVEwE1apGiv4HoCdccD5M6Lru1H6Jyi6eXhEg05UQeBhEMpzmMJLTJYeDOo8FK0fUaiNOoQw3hY2xN9ZHUSGEGU2h7asUh0SK+owBFRCmY+pLJ8x5NzNKLY8QVWgvt8EkJ+GtAZQdHs98HcajqwR+wn6ravCOcxbQvSlMAhfCmHEvM7RdIRhnvsPZ46LaApgDlmwBeiz4c2/nve4JAOhS+k8qXWOYQQ8ERgMyEkppVMseMJqQF96Lg9lsFUkcrweTMKbFfAp91e221PwPEF8joDIf0E9bBjNjlFyRrs7yplx+ag7ouu/nmr5YJSgprtwvMlGKUj9Vc7QUa8ZsDvfekcHr5cm3j919xxYIrRZJgG7r1xAWyC6oh/cv/F/U28bl0APvML463z4B8A0gPe+ju7E1OG/Q+rCrz2F4D/9X3jr3vhy8B/vgeoXQTe9efA0W+ZfnwZMmTIMAQmV9WILU5HSmHfS4wycG57YuK4l+k8jvtPp363E4gRlXMtV8DQxice0tDLd0gp4QoJ35dAoKQblFZJUobLjid2VTUqgGCQ2v15L9Gb0yhsr784ShJcX2IrUDOFhaa02A6mkfK6U+Q11sUExJVsk3hf7mdstVwwSrDteagSiXP0MLhFoDGKs0GbdH0f58UMrtDF1O2MOgRpOD44VfcVIWSqxZptXyCcmlGF5npiBAJjSonmgKKAk8L1MTXybVI4vsR6wwmUvOqzOPk8Kibp+4YRr1cTnhCJ6sbwvGy23FQSXqME1Xx/wUbHE9iObfNq9V2eEJG3L4G6D9LgC4ntWIFCkMFFEkuWFinFG7Y3tEAfkFzE7yl2DMf9p1GzfVCivhcysFohGlyLIu5JqzPS5emcFKITO2YQ9XdafDKg1ZUSHGNbNE6CwW6+Ga571Noufunjj0y8/nOPVzObgX2Ick7DC07Ojr3en3798thk7Z7iL/4t4CarXtJBgG/9V7sSToZrCLe+Abj170627vZ5VRHmj34QcMZtfxkyZMiwc2hUKQP1EUfx0ygIoTMCI/jZKZyeQfs4rkbn6GE0E3xN66SA8/TQjuJqBcq5Ubw527s0iPaEwHrDQc0WqLsSW+30wWIvDE5haZ3hHCEk1TKhbGmw+M6Hfp4QI6ikxmszfjD4bboCG003KuziemKo3+peoOH6aDidn42Wi+WajeXaZPYZ+xkCoVpPTfZskyK2UcCan8O6zGNV5LAiCtigVdRoccf7a7kiKqTXsD1Vgd2Xqv/ZYXv1RacA2TjK6bSJjRB0n/gSj4rQtzi8z/bzUG+vYDu7cA2nUEAqZcMjLRUqPF2vc09t2/5QC5XQLqjlCbRcAXdAYS2Z+sd42CAdKwcRa5MSwBqpTOTTvNlysdlysdFysdF0Bz5H1xou1hp2X4G+3URGvD7D8e5PncHqCKkaaXjtHQenGE2GaeKVt4+vRF6t2/jbJ9Z2IZop4MnPAg9+ePz1nv29wME7px9PhmsPr/kFIDf+hESE9TPAJ35qevFkyJAhw4ioORI1W2BrD1QZgPLrNDWGoslRzuk7IuzixGCIcQb+PuH4Kr8L5+hhtIiFFrFwlh3F/fxOCLJ3crJe8nha2Gy4fUq8UavV22FeawBK0kntrZY7FbU0IcNoqaCQ2Q5IiNWGi1rbRdu7+mrXYWjYkxV82e9ouQKOUHXKPaEKuKn04F0kKghB3faw3fbgTJDanoT1pgvX66SNj9IqdQweGy+KKzuOC1D97AAb0KHYv3rSAD19QGgrUjCusgwYGFrUahJS8WpfD8eXWKk7O/YpHXWya5hX+SBs0XLixKkDHY+zU/2fx/odFkxExzHJBNheT+plxOszGOfWm3jv556ceH1CgNdkxOu+xStvXZxo4u1PHhjPG3ZP4HvAn/3o+OtpeeCl/2768WS4NlGYB177izvbxt/+V+DJz0wnngwZMmTYp/CExHbbQ8R77GBEySkd2QsuDS7RcYafwt9qz8Pfas/DE+wEXDLY322akMDIfojjYqdjv14ylezy8H/UAe5Oo2i5YqgS+WoTHcAIPsLXMBxPDC0mN034Qu64r0hCzfYgBVAwWFcRpEkRV+vtBKESdVJci01vt/unncKcQlbAtDHyGdsD9f1G00HL8eALAbbDgtyPs1N4kN+KdTKDTVLBWXoEX9LugUMG12UxGENOv/YcU/dfy8qwZ/hPf/7wjmbvv+XEDBZK5hQjyjBNLJRM3H10/BeDP//GZbj7Ia8rji/9N2B5SAG4YkKRtxf/MFDMPIgzxHDbdyrbgZ3gj/4p0N6eTjwZMmTIsI+x2XKx2XQgdkCG2NeAanEU7OWgaVJvRIldzHYNULP9yJM1DQ3X35NCUzvdQ8FgyGssUglzSqDtkEy43uD6EkKKPk5nkrPkoN8Xc1JQ6aMsNlEWWyiLLZTEFopiO/ipQZd2tKwnJJquD8cXI9mwDLv/tqdgsbBT6COoDafgEvOMwkxeG1qwKYSQEv1lBqeDosFQCH7yOoM+Ahm8Wre7ilftFnyhngFrDRfrQ54DQ0EIVug8HtDuwNe0u/AEPwmXTNZHXAuWL9ceVZxhKvjyU+v46AOXdrSN196ZQHRl2Fd45W2LuO/pjbHW2Wi6+Jsza/i2G3dWsGJqqK8An/y5wcvoBeANvw6sPgZ88mcBexsoHQZe+M/2JsYM1xZe84vKuqK1Ptn6W2eBT/1H4FX/cbpxZciQIcM+hOPLHfm87qWH2m5in01JJ0PuPvEK7C+VJ6cEQsiJro8UQNvzI+sLT0jkNAqQ66tg1mToNCTPT6aYDKaquYdL1m0Pm6QCA3awBdnxS5US27Q0teh0OHi2d3/q90+y43iaHYv+lsBQr8vOsoNvov3AZ47SrxqcojlENc5I+v28k3srLR5Atae9AoXqE0fZ5aiTa66QWK07aLcEpBQwOGAKMXHnWwnIXimVvYaIZZoQoiYvNwKbIYN1rF5CrjGns2eYb++1ebAZ8foMhBASP/ORIerBIdAZxevvzGwG9jteedsB/NyfPjz2eh994NL+IV4/8VOAvTV4GacOfPCNwNLdwHf9D+ArHwBueT2gZYXfMiSgMA+89heA3/97k61/y3cA3/oj040pQ4YMGfYxnukc1DiFefYCaS6rQkrQEQf/OiMoBwP+tbpzVYnl3orV40BjythWIKiIPUa6epLP4zCiqheU7F2xokEkGaAUe5xStF0ftiem4pEKqOI7SaCUdKnxuEfwNe2uqewzAzBf0OEJiY0JlYWjtOVqXh/YZ9iuvyMlZZ0UUJB1EACUUAgpYAeZlU+y4xNvd1QIYGSebhJfagnA8YG2449UpDEJGusURWy5fur9BiRb3vj77Pm0lxBCwPHENfGOklkNPAPxf+6/iPvPDyGyhuDlty6ikpteukiG3cGx2TxuOTj+7PKfP7hP7AbO3wd89QOjL7/8ELBwK/Cm9wC3fsfuxZXh2sdtb1Tk/DgwK8Cb3gu89XeA/NyuhJUhQ4YM+xG74bu431GxNFSDn4J+9YvBjIKG46M2YrEnx5dYbzhYa1xd0jWMZVK0XFWN2/YEfCH7iq7sNvbjrWFqLCLVdxO9fA+nBDojI6XB7xRGzEogCVWxObV95XWV8h0qNvfCSxMAVurOxKTrKEgqfNiLnd5PK1S9LyvFsY+67UNKpSpeIzsoeLsLUP2hjbWGA0YJ8hobuS03XTGxDrPe9tByPDQdb6K+cBT7jOsJ8TPkC2Db9tFw9v85yBSvzzC0HB8//+fjKyB78ebnHJ5CNBn2Aq++/QC+eWk8P8qtlou/fnwV9960sEtRjQAhgD/9V+Ot86zvzQixDKOBEOC1vwQ89TmgNYIdxw2vAF7/a0ApU/pnyJDh2gOFImN8KUZOt70ewOjklYs3W7tHeOwXhGP8sNr71SZgMwyGpTPojCriQSoCQv2urABGVTtPC21PQLbcIJ2bwBdiz9LwNQyeYMjLxg623jkKnREwqgjKMOk+TXE+DAanu1ZAbBIUTQ2eEBCyY64Qv36EkB17lzxNj6Ioa5gTa5ECW4LgMXYadVroW15nBG6KtcUw5DWWqGIfFX7nhoIPwPH3hsxreQJDmnOGGFqugM58cDbpnTg6pun5nRGvzzC876+fxKWt9o62sVA08K2nM3LrWoCUEl98cm2idT/6wKWrS7x+7X8AF78yxgoEeME/3bVwMlyHKCwAr/kF4A9+YPBy1oxSuprT8ybLkCFDhnGwcv+nQAiBpk+mYjMYhaExCDlacZlJoTMKZwymkxGCvM6wPaJK83qG67iQUoIQggfoBVhopS57ka5ik5antu9waLk/6KDJwQgBJQSu2J8Ucvwaj3ovG0yRfrYvgnRtdbWk7JBTnCqv1V5styefPCD+JSzLzdTvt0gZl9h5tSwARsmeEoo1UYcvzqV+70LDJd6caNtECnxSLAMADI2BUzU14QuBtidQxwbq9Mmude73vhn97nt+ZPvBuFLLX+IuigYDIRT1trsvJjkapoZa2x1430/DSuMSgLxoBH0awRYpwSUPAei3PiyNEFMSCABLY2jugHgdF5Pcz/sNjJBr0qogrFS0m1Yv4XsT8K1T2V5mNfAMwkrNxrs/+fiOt/PGuw+Ds6zpXAsghCBvTDa/8rEHL8OZkjfU2GhtAn/578db59bvAGZP7UY0Ga5n3P4m4NY3DF6mtQ789muVd3CGDBkyXGPglEBK5dVnT+hBNyp8IWEwOrLqzQ+KiRgTvFdSQsDGVGONu/zVwgod7LNfI/1KsZ0gEnpdB7iehigUivgzNAYKdY18KeFLpb0Mr5srJFqOj5ajUpa9q0A87zV30yC5gUWwrtDFibctCcVldgCX2QGsaQewwg9ihR/Aur6EZu4wfL1/In7QPbkapNSHp8jU9od1ScP2ht730yK1GjSPVTqHVToLlySTlDsRF0pgT0nXDDtDOOlq8Z112Ls512P7ArUdTF714jp6NGUYhl/9xKNT8b948z2ZzcC1hLc998hE6223Pfz146tTjmZEfPLngOaY+37hD+1OLBmubxACvO5XgMKQF/TLDwB/9m+A+sqehJUhQ4YM04InJByhCpq4PaOUadOQvpSw/fG87iZVyZmcwhzBozAEAcD32P9zUjSJBR/J5EwLFnyyP4ib/Qids6mmh15NxO+MYYV/XKHub1dIiCmwEeNs4aqQ9oSihVziVwIEDTKdArsUBK4v0LA91Nou6m03scDRFklWoEsQtLUKCgZDOCXFGd0Xk0D7TekopPKB3V9RXee4Ss1QSglGKeg+76un2RYz4vUZgseXa/jdL6anY4yK55+cwemF6c6yZ9hdfPuNCzhQMida9yMPXBq+0LRx+evAF39rvHWOvQg4fM/uxJPh+kduBnjDbwxfzm0Af/qvdz+eDBkyZNgjJA0qTE4nUqDuCGOOvUoGD9J/R0dOZ1drjDk2BKG4QJf6FH0+GC6wpasU1f6HLyXqbbdvguFqgAAoGLGCTDvd3hiNt+1NV6k1CnabxDMYjX6KBkfR1LCdPwpdN6D3nOOLdAk+2bmjIgHg+gIt14cfWDsIoMsTNcQ2LWGVznXdswIEl+hBCM0CJbTrIu5FAbLdxG7xZfbVyrZ8huJqkYFXv4fee2Qer88Q/Kc/exj+gJcQg9OROrp3PP/4FKPKsBdglOB7vuUofunjj4697l88dBm2dzsMvkfKCiGAj/4rjN0dv/Bf7Eo4GZ5BuOHlwHN+APjyewcv99AfAk/+AHAi8PuREmisKL/YDBkyZNglzN91LyihMK3JJlKvN1AACLzdhrlv88B7cqFooOX4qO1TP9l2qw0hRdd1bssWDvkXweGhTUxcoEuYTUnT3Q1ojMDkVFUi37O9Xj8wmGp7oUAy6RoPw0xeAwGw3fL2lFC+0XsUSyJdgLFMFyD4LSDYfRKFEWAmrwPBvtquH/jKUgjiYcm7AEM24YPjMl9CvqUjP8J2OSUQQg71W62MEWtbtmC1lkGkxDqZhZUrYqFo9C3XcjzUrtFq9BolqOZ1LNfsqx3KSDA42ZWikpPcz/sJRYPBF1fPomG+oEdKfiklpJQQUg2t2p6P1i5bI+01MuL1GYDPn1nFX35zeeAyFUvDlSGd50LRwCtum9wvJ8PVw1ufcwS//JePju2/VGt7+Nxjq3jZLXt03e//XeDcF8ZbZ+4mVXE+Q4ad4hU/Azz2cWDr7ODl/uDvA//y68D2BeAj/xLYugD8488B2rX30pUhQ4YM1yIEMDLbE7cy2AfZvWOhTSyc4VfPv971JSwOlC0NW63xC97sN4THsVdISkkfF+uNvVWujouypcETu1u0z5fASt1J+gYAsIIlUKJ8IzVQMOJjlFNfMHiklvWFgOOJHZOhbWJhkyxCQBFy16MpyLXWj6p6J2rCbTcI2GsRoeCaUaBqaRDArveNOiNwfAmDqSKITdsHiFJP06Awohbej1LuCfHKiPJcdn0BZwr99SBkVgPXOYSQ+Lk//ebQ5YaRrgDw3c87Cu16cqx/BuFA2cS9Nw4u1JCGj+6V3UBrA/iLfzv+ei/+YYBm7TLDFKDngbf8dwzNea1fBj7wncC7XwA88Slg7THgs7+wFxFmyJAhQ4YdgAX5sdYY3rC7jf3uR7pt+2gFCsNrHYxe+yne+weKpGjYHhr7QLkppCoy5gsx1A83CZ4vd12BWmu5WG842Gg417SaLzy7eX1yWplA2dpYGkVeY8hpdGz7mFHRcnyYnKFs6Tsu5jQOKFSfw8juWTNMCl8CNdtHzfZBKKAFcbJdDDQkNm1fouUJNFwfDUfFsNX2UI9no+yR/7ClM+QNjpy++3rU/fPWkWFX8H/uv4hvXNje8XbCdPUM1y7+yUtO4/alYQl5/fj4Q1fQ3osUhE/8B1U9fhxUjwN3vGVXwsnwDMXh5wDf+iPDl3v6c4DX6vz9uV8GrjwIuG3gM78A2LXdizFDhgwZMoyFcCwZDuz3U02Za2PuWKJsadD2AWlZtjjmCvpEJE3bGU0JuZcoGAxFo5/A2m9ETRpcIaeihDYYAacElkZRzWmYVOvj+nKign1iDzoFT6jYXDFZjPsFhsaC/yfvvBglEFIVgvOEAKNkR0TuILRcga22h/WGg9YeesjqXBVRo5SAEbJrxPI0QCnFbMHAbF5P7I+GYdrXztAY9uJxE972e3FlMquB6xiuLyby9UzCq28/gMUJCzRl2B947vEZ/IuX3YB/+IH7xlqvZnv47GOrePmtu2g3cPFrw701k/Di/wtgWTeWYcq498eAh/4IWHt89HWEB/z+31M+xWuPKhuC1/3yroWYIUOGDPsFeZ2BU4Kt9v70TgWAfKBmIYRAZwTtXR58W5zCMhgabW9oujndE5fMlH0TZTdGCbA6KKVdAhqnYC7B1TYc4FSlpFYsDXXbG+taNvehyrDtCszkdXBKYXuKGNaZSrnd7zYD00TR5KCxWQgy4X0xzhWOb303edDlmg2K8WLbr5gr6DhUsVBre9hsJdk/jIZe4tn2r75qetoQUu56+vogGIwgp3M0ncHPoWn0M9MoihYXqhNClHJ9zAkRRkliXaOKpbzRSfBP+D8lBLW2uycK9GtijjXDZPj9+87j7HpzR9sI5eb/8NtOTiOkDFcZ9960gLI1flGGjz5wcReiCSAE8Mf/FGO/XFkzwF3fvSshZXiGg2nAd/0uQMZ8RK48rEhXAPjy+5QNQYYMGTJcBexlOmXD8VHbx6QrgC6lphVT5hQmUPaMAsYIOKUjpW1OkhY9LQiphBqjDpoZJdAYgUaVemvaiqRRNkeCpSglKE3wTrubmOSu84TEWsPGdttF01XXoumKq066yj0yl8hpDDmN7ZlxaNnSULY0VCwNccHmbiterwfSVQsmPRglsDR2zdmP7LXgdNImPQ1lrKVR5AyuJsx2Oa0ir7Gh94+yXRh8XL3fTnIaOFXnTwueVQZT7dX2fLiegCsEPF/AFxJCAP6ECvlJkEnFrlO0XR+/9onHdrydN999GD/wrSdw42JxClFluNrQOcVr7jiI3/3ikOJBPQjtBkxtFwYoX34fcOUb46/3kp8AuD79eDJkAID5G4GX/Fvgr3568m388T8H/snnASPrPzNkyLC32Mt0SmB/kwqWRrHeTCaxNEoRFuiZJsLxYk5nsHSm1DtQU8xSyq4K9UkVpWmgyJHYXSUegJF8LcMQ8gbvqxY/zcrm8UM1OFXvnVLuazV1HJPeB77o/Xu6F71sctTa3ljx+QllofI6AyWqzfhTohEYBaw98FcEFHFopExKUaiJhP1mRbGfYMaY6pyuCD1LoxPbO+w1vBEv7tTUyROekrKlYaPh7CgGk7M9q81j+2Loc8rSGBxfDHza9l4eSgar3i1Ou951wueuCIKZLegghKDt+tjeB8+QTPF6neJDXzyLS1vtHW/n9XctZaTrdYY333N47HUajo9PP7oy/WBql4GP/fj46xUOAM9+x/TjyZAhjhf/MHDgrsnX3zoLfPz/mV48GTJkeMZCowBn+78Q0zDstkfobF5HXmfQGYXBKSqWNlBl01XMYxdAqSInaJA2qdRidKCShxCgbGq4ig4EfdjrMAhU6rnBaf81Sjh31/ZdsbtgpOPJOQ4usQPR7wQAC9puiPN0aRrhwfGEUqJ5AkL0kyjTRFo7llLC0ilK5tVVUE/irRlCo2RXiR2KTjsiUIWSXF+g5YprgnQFRidTb1gsjpQNMexxPMxmJgkaVQrNnZ5Rxxdw/VDdOf2p0bzGMF9QAqhRrr+ls6E3texRzQ7rA3r3Gv4tgp+VuoPlmp1Kuu61525GvF6HaDk+fuNTZwYu86JTs1goGgOXOVy18MJTs9MMLcM+wN1HKzg136tXGI6PPnBp+sH83jsAfwJ/oBf/MKBlnsMZdhmUAt/zIcCsTL6NL78XeOLTUwspQ4YMz0wUNIqiTlG2OIw9KnC0G/txEwaiFKq6dWUKaeOMEuQNjkpOpRPrnA60iHN3iTCo2T7W6ulK0EHDYAKg6XrwxT5SEg84TbsxmMzpDJQQCCH6VFC9rdLkFJWchpxGd0RcXa8YtYXPF3TM5jXM5jXM5TXkixVoVgklU0PR1JA3OqpUmxhokPHHEkmwfYmNlouNlouG48PzFQG7G5M0aWXAHE9gtaFiuJoYRX2ehqLFMVc0du0eKOe0QIGISMF/FV1SdhW9BGASKAFMPv0TMK1z2nB8bDRdrDfdiQjgUTCWTQ4JJm9IuuWAwVnfOoOw06NKU7/vFjLi9TrE//ziWawMSPthlODn3ngHTs0XBm7nbc85AnqNKysy9IMQgrc858jY6/3lN5XdwNTwld8Bzn9x/PXKR4DnvGt6cWTIMAilJeD1v7KzbXzyZ/dXCe0MGTJcc9iwBTZaihzYrUFUHJQAeZPvyUBBQA2gduuNk+5DdmDQI4EAsL3xrrHJKfQpEFUlk6NkcpRNHvlgViwNBXNAKvgUTq/OlFpPowQlg0UkX5L3bO9gf7FkQGMUR2Zyu2OJ9QxAwVB2GCxUaAcq7UfNO+CT7nPqE4ZvsNv6GCJGlApuJ2i5AutNF6sNd1cKoaXdd7utxN8L7GY/N1/Qu9LWOwWKrv3zlogRjo1gdybGQtV1vC/LaWpismppqOY0zOS0qz7J1HB9OGNaGpUsDbMFA7P5ZKtASpXnuOspr2sxYGKUUSTe0HTENlk0+Eg81zRbeObxep2h7fr4r58erHZ963MO49hsHv/o21XBrL95Yq1vGUqANz9n/JT0DNcG3vjsQ/j/PvbIWB5STcfHpx5ZxqtuP7jzABprwEd/ZLJ17/0xgA9Wa2fIMFXc9p3Ak59V6tVxcefbgFf//PUrC8iQIcNVBSXAXMHARsOZqnpTyOlUOt5LpPWy43S/Bidjk56pSNmvlIP9EH0JjKv9zQWD8EHXzOB0YBEtjZGJiEuLs0BJSECIOt+VnA7PF9AZxYWtVp+HaS8quck9+4UEDpZNmBqD50us1IdnUlkag5Bi4ms9V9AhpVS+hhJXXSk5EDtozi2ax1esF2DRuwRdtuESHVf4Eiyiw5QSTcdHw1GijGpOhy8kGjGRRshn7hff1LTbjlIKg5E9mdSaFPG06N7+g5EO8Trtt81qTutXNo5Juk61X50yDE7VBGNwOASjWfpIqKwQphPEu12dEThjtqO4p2y4psEpWsG9pHMGvUedqTjH6fuTj4NRlMEhRmktddvHKMekMYJqTsdWy0VfBzdkRxRKva0xOpKgLO5rvFNkxOt1ht/70rmBaledUfyzl94AQFW4v/emBXzt3CZ+6zNn8GffuBxNHNx70wIOlq29CDnDVcBCycS9N87jEw8vj7XeRx64NB3i9YNvnMxiYO5G4M7v2vn+M2QYF6/8OaXQvvz18dabPQ1Y1d2JKUOGDM94CAlsNKdLul4NEACcKbXj9pjptganMDmFxilKJu/zc9PHKDBiaRwGl1MpxLGXarCtloeyNXhYxwmBS9LJp1GiNTlFu4e8zSeoYQ1O4XgCbU+AEQJ/CPtXa7soTuiveWIuHxHKnpAjER8UQNHSYbv+RIW7aMAwhzR1TqO7otCcJrSA/OKUwBfdSfeD+BOfaFi3jvddd+VZHP+gf5IjVO/tJ2K65XiBYlN5LoeEVsnSRiLtxwUdcM8BgTcrBTih0TkMT2PD9iGgvF/TCpBJKbuFNKENABAQpJMT32WTJxZoCm0GRu3hNEZhe1eXJIyjYDAwQiCkTDyvGqNDD05IQAhFiMfvA0bHq9BGA0/vtucDsqPEbFM/Il57eWAp5b64p65a0UPZ90uEYYrXQqxNj9J+C8b06NKMeL2OYHs+/ssQb9e3PfcIDlW6CdVnHang3d97D55abeA9n30C//u+83jnC4/vYqQZ9gPe8pzDYxOvn/jmMlqOrwyyJ8Xf/AZw6WuTrfuSnwRY1m1luArQTOAt7wd+89sApz76ep/+eeD0y4BD9+xebBkyZHhGI8k39VpBWG8gJPQIpRhHxWNyipzBwKMCVqryuuNLEKK8GyklyOssUubFEapAKYC80VEVMUKwbXtTry4PKMJqUPX0STJI6agkyBCLg6EYkWkZN+15XIVYCAJFrIfEqy8kcjqHM4yUCMIzNAZMgTwwdXbViFeNEUD2+xX3VmYnQbW2kJQbdMbX6jaEVMsVTA6NEqw3HKUGZASFgFDVGEXBUMvNFwx4QoJSgpzGYHu7U9Rnp6jbPjgjMDhF0dTgBnLskEie9i1PA4IvCXmddXnn9sITEi1XdF0r2/XRDPqy8HMZ/isVgTzfU8dl0oyINC9OElabH1QkEMqrmRClhibokNo78bKdBlxPQNN5atG50MN2GGqOACcCEnEbhvH6PiEBLZg49AJvY50rojp8Nm0JAQpVdIuSfVNzcSyM5Qe7ox2N/vWw/t/U6MQTgknIGIzrCP/7y+dxebud+r3GCH7w3lNoOh5yCbM7x+fy+NnvvAP/18tvxEyK90aG6wcvvXkRJYNi2x79pajl+vjkI8t4zR0Tql7XnwT+4t9Ntu7Bu4BbvmOydTNkmAZmTwGv/1XgD35g9HWEB/z+DwD/6DOAWdq92DJkyJDhWkZAkjpjesm3PQFLYwBVCqytVvIgKm9wUELQcn1IKQMylkMPlJlFg0MAEQmjcYqCZDtS9Awa/xk8XSE5id/tKJpeCaCSV4NI2c3YqH2OsNO9NM0ZhUyWALZaLuq2uk6eL1A0OYRMVi0XDQaN05F9AJOQJKDmlKaS++OAEmXd0Oi5DxgBKjkNBMBM3sBmy1EkJwgoJTg6k8PZ9Wbf9uptF60hhHDJ5OA9HqdScXiQAHxfwhUde4w4F8cZBQ9OSNHUYOksGkO6vsDFzRY8IVXqNrn6k0Q6I5gvGoE3Jelr83ttCjVqKZU4byukHEyijnmKKYDZQmfcPypBFqlqU5DTOqRy2dKiyZGWs/sqybKlwXb9PpV2CNuXMAfIvMfhCPv2sING5HrK45hRAjvoA0Twj48h131CKK/U/WMHMioYBWbzBlxfQEql4JdSZc54vki3DYldn2FWCQTom8TYCTLi9TqB44mhate3POcIFksmXvtrn8Wp+QL+zatuxtHZXN9ys4XMP/OZAJ1TvOREHn/8cG2s9T76wKXJiFfhA+95CSAnfCl9xX9QrtsZMlxN3PFm4MnPAF95/+jrbDwJ/MkPAW9+X+b1miFDhgwJaNo+NsdMnTQ4xeGKiZm8EXEN59abqbyDpbPEjB2dUyxVVTbYRsOJ4tjxOHRAd2/pgSIwYSeOD5gT7GvY06Xt+sqLNUaqRYwOIShbw5U9QgJli6cS3ABwoGyCERL47wUeikSmkiAAIIWEEAI09p5ncIamPZykubLd7tr2wbKJsqXh4larz/M2Ka14XE9GX6hxV6/nos4oGjvwXLQ0CktX6m1Dp2g7yqCBU+W9SwiBySmqeR2VXOdaPbXWTH21aMdI17T2oXPap1COn40k1aMQItaG1P+252Mmr0W+iRqjOFy1sNl0kdcZWq5Ay/GuqtpRQpG/hJBhgs0do6ARND11HjyRfMyjqCM5JWg4fnSrtoek7Ce15PDy9loQAAgyBUY/E9F6VPUZzfB6hvsIts1j9/K0i3VrlKSSkBpVambIwX1Oy1Wp/FFksV8MjcLSKGrt4c8BT3QT6JbGIkXyqGg6XlBIikR+2XvFg5p85xNGcVi8Y9NAQNCcYmHusqlUyvW2i2pO71Kj+kLAdkUwQURQb3t9+zYYQcnQYKeYjuc02nXe8zrH/BR5sYx4vU7wh189jwubrdTvOSX4wW8/hd+/7xwevlzDw5dr+PhDV/D9LzyGf/aSG1DOTU9GneHawd85VRibeP3Ew1dSVdOp8D3g158LtDbGjDDAza8DTnzbZOtmyDBtvPrngfNfBpYfHH2dBz8MnPx24J537lpYGTJkyHCtwXb9QKkyQRosIZgtGDA4gx/4HBIy2K9yKMbgB9LStS1OIdBdDKcXjFJUcxoajq+IIADpOWujRpOO0NogTf1IRxzmC6lS+dOIV40RnJ4vQMpOpfgr222sNxz4Ip0sEQBajkDejBOvtG+ycpzq80VDg+d3lK8GT15X5xSOPx45sNlyI5uMMK4kfsHgBJyoIjmDdKcW705p5ZSiYKaLDeJEWTHBYzdE1z7HaNvxq6T3nDfbl7ATirgVDAeMEtTaXuABqhSlGqMoWRrqbQ++EKgE6uALWztr8TvFyPYcE4IQAosT6Iyg5fbvi1PSpzSOo2BwtBwvUgn3kkjjTBhUcrrKKPBibsuxCZitlhN4iw4XuIRNjwb97zA/7Jyu/FSniYLJsdHsboPFwKMlmkQYsk9PyERbCUsjsF0BjVKMadc6Meq2DwpFUJtyb0VGkzx7izE/HMcXELKjZi/2TOC5QkxF6c6pmiBwfYGmK/qe844vcSVW56hgchSCvtHUKBaLJi5stpTXdexWCh/TRYNHE7PhhFLJ5IkixYmPYWpbynDV4PoCv/7Jxwcu88a7D2Emr+MX/uLR6DPHF3jPZ5/E/77vPP7FS2/A259/rG/2NsP1jRNVHUtFhou10V84267Axx+6gjc869BoK9h14L+/Bth4YviyM6eA9R7lNtOBV/zMyPFlyLDr0CzgLb8N/Na9gNsYfb0/+zfK6/XAHbsVWYYMGZ5h4JSgYPCx1KI5jaaqLdPXYYg5CQJQA63e6trjIi2Vf5TU5ILJQQiB4wvcdKCIK1ttPD1BDPF33/hQfVjF49m8rgg1iagIijWGJxylFMUYudZqtTCp8CgkuhS52NHRESiytJrT0XR8uEIkkq8CagA+TPnmSwlTY8jpyaqumZyO2byOtYbTty2NUfjST/XQ7P04b6gU+Pggv5zT4XpiKE1s6RxaUBVcSjlQZWkFfqRJbY1TktjGe8/SgZIa1Oc1Fn1pBf6RlBLkDAYpgU3fSbb4GpWXSliuYPDU1RlVCt1xECdiDEZwdDaPetvDZtMZSPQdKJuARKR0jmOeGkE8FKcX8gCAyzV7Yg/lksmj1HWDUxicjlYYq6sGVQLzOsz8dkyUTYbDMznMOH4XUQ8AlzZbAxWZdVuJXFpu8nFVcjpcXyn8PD/5vo4jJKzSYHtuREKFpyWvM5h9Qpvuk3a4aoEAWGs4iX1CJachzi9zSpHTlCqRAF22GoyodlS3PSBIG287omuZUspEQ6+afegtNaQfqjvenqbfFwyORsyGYa92PS7vSknnXOtM+dIKCSynFHc3OYUvfMzkdWw1XfgTzowWDA4pJeqxvnyuYKDp+GiGBfNSMFcwIoW2E7vnCCHqO6LaMeuZeJiyUHskS6AM+xx//LWLOLeernZllOCfvuQ0fuOTj2Ml4abYbLr46Y88hFf88qdRa1/9CnkZ9hbfccP4Mzkf/sqF0RasLwPvewVw+f7hyy7eAfzz+4A3vRfIL3Q+f/4PAjMnx44xQ4ZdxfyNwMt/arx1vDbwe2+fXPmdIUOGDAnQOU0djCah6Y5HulqcBuoRDQVTQzH42U3nlGpeRzU3uN5AfPcaJTi1UEAlp4NRAktjiggaAVZXgZXOVgeRTAanyifW4CiaHGXr6mpZCAEYIyhbejS4bHsCLU953QmoAlBFI50UHkX5FNZKmi8aKFtaNDDVGcVi0UDOUIRnEoFLCFCJrZMGRtVgXecUeZ3DCn4qOR1LZbNP4dm7K0YITsxa0ZXkQ1R8hBBUEmwW5vI6FoqGSp3tXafnb84ojs7kcHqxgGMzOdywUMDJ+XyUYk2I8mIN7IgnRny/LcdHre3C9QRqbQ9Nx0PDVj+hj2YhIEji17avSn3sO88X2AyUhBolOD5bgMZUATuTp1d9WywaUXG7JFD0X6fqCNYWaTA1hrKloWxpkQ2DMaZ4iJCkQlrT69RCDjftrhpUVCvEoCJ1yzVbXXfb7yJd0/ZHiOrrBqnGhVQ/fvCTaFvQ8zejqm2XTEWMxdta2eIwOOsitDROg2cJR97kkcVJxdIwWzAwmzeQCwpf5QIf7njMfe13QqRS0CkncAyx/UQwNda96z1iXodPY6XD1FS/VxjQlo/O5rBUtlC2tGhPVWu8WkLh5IqhKQ/p+YKBU/MFmBoDpYrL2m65aLQ9NNoe6m0PInhYzReMqM2ULA1zPRMgnBIslsw+0hVQbW2xNLbxTyoyxes1Ds8X+I0hatc3PGsJDdvHb31msOLwtqXyVCu3Zbg28KKjJv77/fV0E+oEfPaxFVzZbg/ujFYfBz7wncDW2eEbZAbwzo+ot4I73gyc/jvAJ34KeOwvgW/70ZHjypBhT1GcwOt44yngw/8Q+O7fyzyLM2TIMDHC3iMclyufxulX5FY7Sf7Y4hTumCnag9Dr2zdWCiRR5NatB0td1ltVS8dGK10JRwm6Bo2jkjdmz3Iao6mEYppqElADwe3QUza2SNnkgUJ1QAEYBGngUu1joWhiebutyJOeZRklSl04gDwQGJ0UpIRgJq+nFuMtWRwnaB4ksPujhGC5ZoMzitm8DscXfXYF4fUmIDhQNnGkasHSKJ5YaSAXENxJhK6lsS7i6dRCIbWKfBoSK9oTNQHgBNXFhwlHCVFerGZKpfTw2PI6xQCL3JGx2XQixaSl0S4lGAtUaXHCKtRBmzpNVXMLCbhCwuAUJVOLXlP0gHxtun5fW6YEWCyHZEZKAyMEbdeH4wmc32iqYj492yFQ95+QcizP3RBFk8NvugNV+F2Xl5Au9RsAlIK+wBOiSyVdtTRsjO1BTTCfY6pdJ7THosmx3faign5pWCyauLCVLLBKOlbH9RP7scWiiZrtYWtAfzgSei7xWt1B3fYgpcRm0+3qs3RGgLyaFEqDwSnKQYE3FtyHNywU0HQ8MKraqu0J1FouNluq8JTsaR+9/XFCmDtGTme7608cMPUS6n5r7sAvei6vwRXJ6vNe7OSdQalQgZm8jqfXGn0TugWDo2BoMDkLnrMSZUuLVNC9y5ucRhYcdduPTZ51X01CgJbnY6VuQwiJjaYD1+9WRpsaBUf/BMfBkgnPF3A8EfTZyROFAHB8No+7j1YnODPJyEZ91zg+8sAlPLk6ONX1VbcdwI99+IGBDyKNEfzoq26adngZrgFYnOIlJ/NjrSMk8EdfHaB6FQL40PeORroCquiQVYkFVQFe98vAP/k8YBTGii1Dhj3DLa8D7v6+8dd77C+AT/+8+r21AdRXphtXhgwZrnsQSkAoiaqz0xTV3iSwNIr5go584HfWcgWWa3bfT1iQI807cxjyOsN8QUfRYLA0Vfiqd2BCSfCD7iraRYMhp8ctAgiedbjSp4ayjPShTqhmiVsNFEweDfI0SqBRogaClIBRAkbU573WXDQoTkV7hvsGpzhUtTCb1/uIgJm8Ssuv5nTYrt81CNWYKqI0k9cwk0++rkppq6Oc03GgbMHSWGraqMb6Y+6FHDMlfRAsjWGmoEcFUEyN4UBJkXNKndhPTrZ6UkAXSiZuXSrjpgPFQF0bqke719touqi13Yi4zQXtNlosSp8e3E77K9wr5TRnDJW8FhQJ697mMPS2LwDgFCibFAUjnaDtBacES2WzuwByLIZU715KUTQYhFQ+wkVDFe8CUWTiTE5LJB10ptSrYXMKU3IrFu9SAGuU4MRsHpbGg+WS4ydQ3CMJ7ENcIcFoNxFRsjSULA1HZ3Jdn1OiLA/CH4urol29pD8lBNWchrLJo74rDk4JZOAFHcaa70lP1ziFxmmX1+kgr+ZBEEJiteljte4kFvUjhOBgeXDhHgmJgxUjUI4qK5Fh5I2TRuROiYlM8qoF1PGULE3ZxESxSMwWdLzx7kMDJ7UMjeHYbB5vePYSnn9qFrcfKuPmAyUQSKzVHTQdD+WcFt3b8SAIkHh+u7bfYyeTFMk49+NuIbxyStU/GSNaNBgopSNNIhKoe3jSpiGhrFQYJajmdOR0BoNTmBrFXEHHXEHdo5xRHKqaKFvBZB3p9NMh5vIa7jpSwW2HyrjpQAmHKqbKfMnrierw8OhosO/eY5AAZgp6f79OVDy5wNM1jXQlAF55+4Gp2nBmitdrGJ4v8KufeGzocv/oA/cNvXW//wXHcWx2PPItw/WDV50u4M8fq4+1zu/fdx7/8NtOJndYlKpCQqsPD9/QsRcpAisJRnGsmDJk2HO86j8BT35GKVnHwaf/E5CbBb7wbqWc/f7/A7As4yBDhgyjIVKLkc4bHp9SCiYBiQrjDIwhUFrqjMIeUmm7amlouX6k0CsaLPKJC//PaaoISz1Ikw7fL5J0A5xRHChbyBsqlfX5J2dxZCaH552YUQR0oIBtux4Olmxc3m6DEKUkum2phNW6jcvb/fZbty2V0HZ8cJaggIQiizVG0fb8LpKTQKl1iKUGsSqll0aEQMlSpIHjC0gpYWo8qhYvIfsUiCHJOCxNPjofQ8ghAoLFop54zCF2M7OVAEOL3UTL9g2Ue9fr/nu77aLlCuQN9U1IYIdLsSANumAwzBbMrqrujqc8MjklqLVdtESHtNKYIhQWSgaWt9vglroWvhBYSyguBQAbDSeqSt4fafwIlDq2PqKCztAYjB4lbZwD7k1Jj19LS+c4OZcHpwSUEGy33VR1vC/S2fe8wbFUyWGz5cDzpTqvloaSyYer5kj/daWURopvAUSq0MWSCY1RrDWSlZkGp9AYBUlQBBJC1LkKNhcWpDK52lct5ilNicoUiO/GF0oJ10teptoFaAyckUSvah/Ati1Q0gXaroDr26BEXQMaXIthnK6Qyhd3sWhGPt5CSGy03FR/XD3lOTAtv8qk21hnFI4vFAGXV96zUirfzOOzeVQtHUWTwx7gw+v5Am3XBwGBxlTbOjlfgIzdRUIC6w2naxKFU1UMy3YFFksGNpsu2p6PgsExl9cAQlDQWZ+/7VbLjXyCAUCjFIA/UT84Tdudak4bWHRtGAbZU/SiktPU88y1d9z/08BvfqliJX6/UrO7nlMGZ2g4Hc/v3uasnn2xaxZ6d4R/xo6zktMgpMBW24UUKpa5gpGYya2NSKQen833kcM7RUa8XsP4w69eGKp2BYa/SM0VDPzzl94wnaAyXJM4PWvg+19wDE+tNfDZR1eHplMBwGPLdXz9whbuPFzp//LJzwJf/K3hG7FmgO/743HDzZBh/0DPK8X2e18OiDHTgv7sX6v/N54EPvaTwGv+3+nHlyFDhusCOg0qHgeDhk7h5skGaJySSAWnMYqczrDd9oLsqNGHYDojKOd0NN0WpEj2zbM0BlNTRThcXxE4aenYGqeoch2VnIbNpguD00Q1HwFw42IxUsLMB75tOqddaa05nePEPMeBsip+1LA9GBpLJak1RnF8Lo+iyeALibYrQKkaJBLSGdSeXW+kFi0yApInRCWnY7PpgAfV3fsK0HR4uu4DHIYEeWv4SU5jfVXQOaM4VDHRsD0IKUGJUsEKISGkHKnISnkHquppcRNFk3el0IbtI9z+41dqOFS1og9oYAFgabxvIB1vhwtFAw3bw2pAqoYKcktjODKTw9NrzaHHsW27GMBd9oERpbIe5luZxBWE5NNsoCq7tN3ufCmVt6GlU5ic4c4jFdx8oIiHL9cghMRXzm7CFwLnNrpT2MPU+zQNnKUzVHL5LsJqlN4irlaPQ+cUswUdtiswk9dRyek4OpvD9gAvhlFTo+NzFkkelBqjfcF7An3p5IOutycEdN6/bZ0pawVKVRx1O/14BhVAC727qzk9Il4pJahYHLW2l2zJkBJwrxo/+jyFhE/bVG8ROgI1sbEaY7DD9hx5ZI5483/zUg0AcHw2163uDhD346ZEPcccX8IVPjRK0HAUcdpyBYomwXbLhe1L1LgqKEmDgwonaGgPmTcpRhVFUqImAeIksCoeqM6h64noWgwqLAmoTJO8EawjVDujhIxM2hYMFmWUxH2zCVHK8LTClyHyOkPZ4sgFE6fLBh/og9v7fKGUoGxq2LZd+KL/+96j771UrOfdp2RqmM132kw+RcFcMTWcTdh+CJNTnJwvKDXslA0rMuL1GoXrC/zaXw1Xu46Cn37DbSjnMqXVMx0/9YbbUbc9vOczT4ykpAaAP7jvfD/xuvo48D/ehKFPMkKBd/1ZpvLLcO3j0D3AS/6t8iWeFF/8TWDpWcCzvmdqYWXIkOH6wamqBso4mGVhe8iACOj3S+1FweB9KXTVnAbHF8jrDJ4YbazcdAWOmxyOpwY8SZWNiybH0Zk8NlsuNpqD/AU7qeLhvgsGh+v3+zbO5PSuQfgw/tnSFXn28OVttacBrygHyibOrNSVGq/dQo6xSJ0aYpAto+0JeL6IyN35oiJegXQ10iQDvEFvWTqnfcQroAbVvdf98IwFgzNstVysp6gMQwzyLwXU4DcRZBx+o5O6fHq+gDPLKiOr7fpoOv7QM0UTrCBimx2wHo1ipATIxcg6SgiOzuRwaasFWyCx4BaAsUgcSghmCwZOzOYgATwVELu9YISgkFQULTgeU2NR+nTYLMOiXi1HoGBoWG84aAdkT3h+XD/m/RtfL0b49N4nB0omWOBZTAmwVLHwzUs1NJ3BfVKoeE667wghMHWGfKxPquQ1XKm1g2PwuohBzgi2WhwN20Pb9aM22esZaXIa9RHhBFWcAC6ZGhoDCNE4ZMqFVanWnb8tTe3TZy4gCVxBoFM6UNBStvTE+44SpZS//VAZ37iw1fUdo6rg4XqK8joRKX1PXueojXgekrerJtM2W/39tM4pTi8U0Hb8/gmngaEmx6pzirKlYaPhwOKqGJXjqz4hJA91TmFyqgp99ayvlNXqd0qU+CxEr9+vlpBtUDD6VeqUADmdQjB1L6W1FUC1vbzBwagqiCalhKVzzOb1aFIu9Ke2vcEzOOWgQBWPWe54QnQXMkt5D9CCLABT4zgyY+Hcegu+UCrlticGe2RLNSEwWzBwdCYfTTJuNAe3RUYJ8oayFPJ91X9onGKG6fB8iUNVCwtFI3qHGNqVJlgI9MaZGEcwWbyZ8C6iM4pblsqROnzaBUQz4vUaxe/fdx7n1pONtsfBy29dxKtvPzCFiDJcDygYHO960XG857NPjPSA/KOvXcSPv+aWzot4YxV43ysALz2VLcLrfhVYuHmHEWfIsE/won8JnPsi8OifTb6NP/mXwPxNisjNkCFDhhho6DM6op2AKgokIpVUCIPTQLnZv07ovZnT+Ujkbny9nMa6ilp1xR6wHcOFOOoYD1UsNBwfG00XJPBtVGSmBCGqUjalBLW2FwkHQuJy0C7SVHdJ2GyqVN6toJiLqTG4vohSlTWmPOzW6k66pyLUe1XRUOmcbpCK2wuJ4WnAeZ11zl9oQxA7oRLdxch0TmFpyWrhNJRMPpB4zelsaOrlYqlfpUZIx+NzUKGx0BsyPKpvPT0HV6gZAM8XuLTVTlyvb38gyOn9KtKhhC3UeWQB4dV7rVjQNuu2h6bjRzYFuSFk9DDogcVGGio5DQfLJhqO32VJQQnpq9gdpe0DWKnbyOsMTYdhpWbD1BhuOlDEI5dr0bmo5jSsxtK/zZ5CZRtNB6ZGo/f8uaLR5R35vBMzuO/pja54VbGzTpwVS4PGld6ymtMib+heRH6ywTbCttJyRVeboQAM7qDt+KjbnroPJFAu6OpYgkUZU2R5r6o3PHidU3iCAvGv0winASwQozRSrRIQcEbBGcVW2wWjqtgaIQSNFHI6rzNo1MBKw47U0mGldY1RXNlObveMEMzmtVTbizhUhffkg0hreholXV63IeLqSACYyWkQUBNWa3U7aj95neElNy1grmDg3EZj6Lhy1L65mtOURYTtYaPhwpQSOb07iyFso4P4w1EmcOL9lcYoZvKqz297PoSQoBoBJxQMajKDU4rT8wU0y36H+JWK8FX9s0TblSCEIOBNoccyJMqWltpORol9Nqd3KVXTrq3O1WTAkRkLty2Vcbiaw5nlOiSA7ZaL1frgcbzOKfIGjyZ4RoERqI4JUe0gcksiBBonmM3rWCyZWG8qK5OyxTtKdSnVs9TiAAgubLQm1qISQnB8JodHPB+tWJvUKMHphUL0LA6v1zSREa/XIGzPx38eUZE4CAWd4WfecPvEaWoZrk9Ucjq++3lH8d7PPTl02a2Wiz+5/yLe8pwjgNMA3vcqoLk2fCd3vAW4Z4KiRBky7FdQCnznfwXe8xJg/YnJtuHbwO9+N/ADHweqx6YbX4YMGZ5xSCLfSimV4XcCk1PUUgYoOiORynPQEIYCEFLijkNlnFoo4ImVOi4GRG5YLR6B6M8TwGbLxeXtdod4HUGhoohXtcAoVe8ZJZgr6NEAMSRiCYCDFRMGZ4HqrJ+sJJRgJq/jSNVSxCPpbLMXEsMtI4oG71PNhepAEmy394gKBofGBLbb3sDiM/HiOHHFEQ2sFQgBCoaGsjV82FhIU7xCpVt3e/zRZFUXAV5y0wKqeR3LtdHI1jhCruhAycSZleGWbJ31VGwzeb2v6FIUGiF49tEqHl+uo2F7WK7ZXbYS46Ka02AwioKZfH2Umk75iN5ysIj1hoOW44MSgqLRrVSs5DSVeu0JcK6KcYW+sHMFHU3Hg8Epmo4H2/MjT86o6hVUW+idIAnbvxUUzokjqaBfweRdxKsqSqbuYY3RVOI1bMAEylt3sWTi0marT0EYtRiifg9Vn5xS+L5Ew/FUGjmApXK332Tv5MvhSg5rdWdgAepBcHwJxxPQGUVLiL7+x+Aq9bua1+FvicjjWsWrfEwpJcgZHMcMDttT1zY+abCZQqwSklxoK6kn8QSwVncSibKkrsfgJFJU9qLXtmGuaGK9YQNQvtu+EIAE7jxSwXOOVwEAJue45UAR37xcS9wmkNI3piikn320gu2Wi29eqnXZjoyFYYpJKJI5VHLO5nWUc0qVGvqE1n0HvvDVddYY5goG7j5WRb2t7Fw2mv1ZBBsNBy3XRzWnw9Ip5gtGNNFp6Z1Ji4LB0HaFsoIZ8ZDyBu8iXi2NweAyOtzwWbpYMkAJweFqDoAifG9bKmG5ZsPzfTgDJux0TnFiLt9XG2i+aGAlIeMFCPsJ9XxJmtQtmcrzXOcUNywUEsWF8yUTh6vqfnb9/nut9xmadkcbnOKWIyW87NYF/O7fnsUjV+qggWr7m5e2u9a7bamMGxanV28mI16vQfzel87h4oizvoPwY6+5BQfK5hQiynC94QdefALv//xTI72IfOALT+Mtz1oA3v96YG2ECYGZU8Df/S9TiDJDhn0GqwK87YPAe14GeBNmJNSvAF/7H8BLfmKqoWXIkOH6wGg+nBzHZnOQUuL8OqBzAQL0qV9T9wE1OGkNzjoHoPwJOaOpceUSCKywEIvJKeYCb9b5goGCyZUf4Iggib8PIZWDrys5DTpTqp+W46cqfIqmhqqlgVCCrZaLoslRtrSBnpwFg+Ouw5UukiqqwJwQnip61Pk7p/UvZOqsSzF2sGz2pf33ksnhINv2RFeVd5PTLgIonpoaqlqbjo/5gtGVbj8MiyUzWUmdsnwq8Ypu5awiDEYOI9rfQslENadhq+VCSKDheJhFehV5zxfIaQwlS4PB+4nQg2VV4ChMT+eUYC6vD62oPgibTRcbzS3cfbSCiqV13aOMEswXDXBGFclGSFdqdMvx4QmhCuFBKbYeW67D1Bmqlh6RrjmdoZrTcXa9iY2GgydWGzi/0Yre8Q2NwRMSvlBKvEpO77IfIESp/U7NF7piPzabT0x1LxgcniexEXQgMjhXLz49h0eX650UXxIvEEa6vJlZYImxWDZRa3uw0a16FVL2F5Qj6j4xNAbPF7A9AYmOLzFBkL5vchBCcbhqIadzHK5aaDo+fKFI1Kbrd/lrphWxChG/ZvEU5YN5BsZZoIQFDlYstFw/SrPO6RztgGgNkdTuBk1ZpWhYx9hCiv1JwgqmxnByPg+DU/CgbW42XUWWFQq4sNHCdtsDoxQHSiZeceuB6HgIQdd94gnRRYITosh2KeVIE4MapViqWDi/0UokXiUQpP0nHC8UYd9r77JQNLDRdLueZRqjoFAErK4xMEqxVDGx1fLQcn1ojOBAnmMmr8EzlGULJSSajBnk7VsJJg1LloaWK+D6AhqjOFA2IzKfQlmg9D67rQSVPaek79L3FuQzudp+OMkW9+w2Ai9rX0qc22gjJ2WfSpkEcW+1PGy33K5Jp2pOSyVewwycuaKBak6PVNw8KMhVzXdI/pyu3l8evLjdHbvWeU7pjKJi6VgomRGhLIM+LHrWJqi1bzlYxMtvPRCR/Mfm8l2cWpKv7DSREa/XGJqOh1//q8cHLkPI8BfzF56axfc87+gUI8twPWGpYuHvPvsQfv++80OXffD8Omr/7TtQvHzfaBu/+bUAzbqeDNcpFm8DvuM/Ax/++5Ot/+0/Btz7Y9ONKUOGDNcNRiniUba0iNCyPQFGuwe4acgbHARqcJbTGWptD4z46K3xQaAG0U3HRzHwniwaHOuMQo2zJSAVcVSxtC5CBQCWKiZajo+CyXF0JodqTgelBPUx7A3UscR/J32f9a/QOQ85vVMUpO2mE68AsNl2cffRKtYbzlASBlCDdK2HFArjSyI58jrrfA9Ai50vAqXELBo8Sm0PP+/FwbKJcxvNvuJOVk8abt7gaHvJrDohilDZbrl9g/ZhGERGO75Are12VZk2NQbPl2i6PgzW8WUtm7yLYCyY2tDU1zD23v8rOeWd6PkSl7f7J0RPzOZRtz2s1m0QQlAwNdx9tIrHAl/ZOCyN4WDZxExOR9nS0HYFnlrrVtSOMjHStXzwv5AS1byq/O4EBsuW1mkXSddbEVmda5QzVBG5jaaDgsVBiFLpLVWsSOmYrG6kOJjX0XJ9SIkoZbreVp6dR6sWDs/k+0h1Rgh8mUycV/IaiiZDyxO46UAJr7ptEUKq9P92gvdwHIR01MdtRyBvchhCdJO8Uk34JBWGIkSVkVBKW6VgjiMkecJJHkJIVKSvbitVsOt3Yown6ZdNlV49yM/y2EwOzHahw8elJoEnBZa3bSyWTUWYxUTC2giFkNKaFKcEni8DWwIjUkom3oUyqYKf2kZSBPFJHUtjKFsa5gs6bjpY6lrO0hgqOR1bLRc3LBYhperPnnditq9+TLgfKWUiYR+29aLJcXJOqSlTC0UFavzD1Rx8IbHR7HgYh9houkjg3kApgRCy77g7hcokKpYWEcWhIDxcnlEatSmbtXEwB2iajiuCoTpBzRyNUZxeyOOp1SZaro+iwXHycAGupyYPNlsuZvIaWo4fZa8YWnJfy6lK2Qe6Y0YwOXMwUMFXc1pXX9x1foL/87qy+2gH/QJnBJbOcHw2jzsPlzGT7/YmLpoajlQtnN9sRf0ggbrPZvI6LgcE51zRwFzRQNPtnnSId05Jwq9qTIG9WDJBCHB+vQk3upYEqwHxSwigc9Z375+cK3Qpq8sDMjSiA5giMvbjGsN7PvNkYuGCEATDH/plS8MvvvWusXw5Mjzz8I+//RQ+/JXzfS80ebTQgJL6c3h4r/YLKF5+YPQNf/7XALsGvPYXAbozX6wMGfYl7nwLcOlrwN/8+ujrEAq8/teAu9+xa2FlyJDh2kfB1JA3ONYaDgjQl7ZnaRRtV0SDnM2WC52T9KJHAcqW1jVIEULC0hk0RrAS84DklMDSKGYLBixNqSMPVSy083pXVWsC4FDV6iPj5go6bjlYAiEqNTheBCk+BhvtHbVf57obb7ZSAmt1u8sLkyCZEFFVq1kfwT3IaoAziqLBYZsUJV15583NWKCEdp0TjVNsNF3ojOBg2UTO4FG6MQkIpsOVHM5tNKOxQNHgfdWdS6aGtie6Cgup65XD+Y0maEBYnl4oYK1uDy2aEjtT6d9IwHYFij2C5oLJYWrK49AM2lO8zQghsVa30bDHL8wTnjqVut2vcAMUeTlT0HF0Noem4+HCRiuRkCBQyjRCCEo5HYcJ6SNdkzCsyF3D9uAJgVorUNEG/qBxMEqSVYk9kFLC1BhuWyrjxFx+6PIhlBUG6VKnU0JQDNRsc0UjUcksIUEH3HGMUZyoWPi+FxyDqTE8tdoY6TiAWMXylMVFsO+8zlBLaBs5TaXtTwJLY3A8ESPiAEjVtw6bjAitOSghyGsUZUGw5lO4Qtk6iB4V5qAxe95QBcSSFgmLMflCAqSJkqV1qXR74fkSSaGbKQSeFuuXTY3C0lmKTQHB80/OwhMStbbyw54vGIkTfMP69CS1a5KyE+huFqbGUDQ0tN0EfiQ4JXFlPSNA0hRfre2iammQAI7N5qJnaxiSqdHoOVrNa5jJGzh/rg7bdVFreajDw0LRwGrNjtbZarqRkrUnpC7kdI5bD5bQcDzM5HW89OZFmJzhb55Yhc4pam0PBYPj0lZbFaVKmeRilKJkpU+ADUqbf9aRCr52bjM6uWHGRG9mRbxf7cVckLmy2XThS4mZnB5NauR01pWV0bt+V4ZIz6Zn8nrXBG4ueKa1HKF8wAO0uzIo+uPrtUcY3QF9OsiI12sIy9tt/OZnzgxcZpSJ1p/7zjtwsMfzJkOGXpxeKOCNdx/uUr2+nn4eP6X9Nt7h/AQel0v4gPYf8Tz2yPgbv++/A/Vl4E3/DdBzU4w6Q4Z9gpf/DLDxFPDwR0ZbXgo1IZEhQ4YMQ0AIweGKBdsXKBg8SgfM6QwXE5a3PTnUB683XZoGKqqNhgtLU351BOozpTZRg5qypeFA2ewrAHO4avURSIBSISnvVpVeH6ZJL/QUZRqJdk0QywxLU036epR99VacP1xVBGfvurN5o0tZW7Y0FE2O5e02OHUTiVdApSFXaBtNxwOntCv9P4TGKE7OKYXmYtlMtHG4+2gFBIAvJWiQvls0O4WmQhXUXNFA2/XRsD0sVSxU8zoMTnF+o3OcYQrnqBhEIhmc9hXlCcGZIl67SBbS2WbT8Uci4vMGB6cE1Vhq+TDE09VzGu/y442jHCu2JaXEzQeKePjydt9yR2bU+IoSgtmCgYLB8bdPrPUQAh14QsDgDNW8Dp3TxAJiR6qjvSdTSrBQNHGomj7GG6Sg7Vqu6/fkpaVU6tG0SQgAuH2pHBE34TJFk0dF6tJ2Hp5rPUXxGLa1vMEhATRj5GvB4ChZHBc3+8/lsOZsaRQHK+r8KfJVXbe5ot5XzT45dhIUy1M7OljgYMLAlVoblsaQNxgqlo5Hrqj3vZKpoZmgADY1ihsXCnj0Sq1PyWlq/feSm9K+QkhIaJzAF8rOwPY85DRVSNHrkcgbbDSiH1Ap3+H17fV+7dq/BMJWNYyrUP2OykRIK6jX246TTAUoUccaFrmSQSaGpXOIsChb1/IElKvPkgpM2q7AdtsNvmeRB7YnJGq2ALdInzhurW6DM4ryADI0OtVEteeypfqCl926gIbj4rHlOvKG8kC9ebEYFdmLP/M0Svuu4zgwNYajMzl87dxm12SKlLLPLmG1buPcehO1lgedUzx8eRtCyj6hFoCuCV9LZ133aS/02PtCvM+p5nQcm+nuA4uGhjuPlPHwpW2k2dH2tuAjVavPYrM9pJDZ02tNnF7IPF6fkfjlv3x0pErzg/DOFx7Ha+88OKWIMlzv+KGX3YA//toFuL7AP2AfxU9q/xMA8Nv6z2NDFnAjvTD5xh/5KPBnPwq8YQxVYIYM1wooBd74HuC3Xwtc/Mpo63zsx9Ub2PN/cHdjy5AhwzWPnMFxQ8XCWsOG58vUbCiNEVUAZoAaKqcxmEHV8XApRglOzeVxUWujaHJIqbYVV3zldIb5wKNVSkVOhQRv2rjdFzKxuEYln+yrOQjhLkIl4mjLj8a8LpUtXNxK9uq2NIaFkgHOCB65XAMPql8vlk2VIh/L6n3WkQoqOR1tV2C1bmMjoRAXoM7dQabj8VU/UY3VizRihDOKIzM5XAgKk5VMjhsWipNJgcdcJ5V4TWMzB6wbDrw3Aj/QgsHRCqrYp2Emp4EzipmCHm4kFkLy/ruIcAIcmcn3FdbKG8pzMMTZ9SaefbSK25fKWK3ZaHvKr3K2oGOhaEaeqIwSbDVdNQExgBijhODydhvPOlwBpxTLtTY8IaFz5ZU5k9dT202IZx+pYjavY23IcowqFZvOKYgv4addtFhnkEZ6SyhSvGj2k1SAUq3G1WilgCxcKlt4pJ080TyT16ExCoeq9UyNJattpSLzF0smzq43YWosKmTHKIUfEKa9q6YVTYtiphQWVX0bIZ3+zuBsIPGqB/1sRw2o/ieE4PBMDiDATQf6CZxyTkNzq3+7hwJ7iBsWVUG19YYDU6PI6xyFngKJLJhgGYSiqanJOk8G3qROtE4vsd47YTaIKDVH9DeWkFEXMMyuJWxLri8SCxcCo08cFBIme3pT5AF0WVbkEo6JU5KYnZHTKW6bNfHgmsQV0b1ew/ZQa3td/qXjwOAMb7r7CC5stvCVsxtd3221XDwes0O5YbEAT0hsBtkJoV/0KBYtgMosCH12e09uq4fZ3GqrooLLNRs3LBZSvXQBYKVmRz6yKW4XHfRMpJ5eKMDU+gv6AcDR2RwWiibuOFTB5e02zq43+5bpfeYcnU3KAkgPaJJH5jBkxOs1gkcu1/B7Xzq3o218y4kZ/ORrb5lSRBmeCTgyk8P3PvcQjn35Z/Eu/rHo83myhXmytbONV09kBYQyXN/Qc8D3/J4qtrV1drR1/vzHAN8BXvRDuxtbhgwZrmlQorwYwwymlZqdmsLoDFG7tj0fZ9ebOFLNoe35gCTI6RTnA8VYPkXJVA28LgE1sC4YHNstNzGOmbyO7QFx0GD4L6WE68uhCi4A0cBqVEVgmnJPS/CKrOQ0XNpq9RfbIJ2iKDN5Hafm89A5xUxOx4n5/oFd0/FRycUVuYMOh6CgE2wOKWpmanSgIm22oKPWdlHJ6ZgtGBOPIB+7Usd2y0Xd9oLj1lNTf4Fk1VkIApW+bGmsq+J9Z+XewmCd3+ttD1stN1If9oJTAoMPJ5+S0EsqGpziZbcs4MJmMyI/02w6FkoGblsqww9SpBN3389jdCF+2DLYZq/6GxiuPNY5xULJHEq8FgyO25ZKAKSqmC5lordyfG9pWj0pJWzPx/HZPL55qdZFshIAx+dyXX7DIQlWMDkWikbfZNFirGp56ANLKcF80cSlze5JEE6BGxYKEUlHCekmDFNOV9lKVpiG8HwBX8q+om+JbTaG8DrSgLCOiykXikanoFgMRZPjQNFMVHVWcoqsY5RgqWJhvmgkTjowSvAtJ2dQzen46Ncv9X1/bCaHhuMFFggElk6j9dLQ19QG8KRshAmvEAdKJg5VLNiury4PSe+TAQxsy8P2OrD4oc6w3uMSUjQ5tgK7D0tjXdvP6Qx6ggUIACwVOSSSn2sbTQdpXGN8AmDQsVBKcGQm10e8li0NBYN3tYmypXUVywIwMvHa8Q4nw7NGYr/ndY5js3mc22gmEupO7D6S6PfVTdsuJQRFU0vuU9EpJBl6kofEa1gYsnd7ACLf4DhKFh+o2L+lx9N4p8iI12sAUkr8P//nG4kS7lFxsGziN7737oEdUYYMfWhv48e3fhoG/8vpbnf+ZuAdfwSUMvV1huschQXge/838L5XAu3N0db5+P8NNNeBv/Pv1Rtw7TJQPLCbUWbIkOEaQa3twvNV4iRnNBoxpBZgYQSMAimcFYAO4UgpSUxfT0N8fBYW5VkoGliJDfYoUQU79SFVwUJRpOMJfOPiNmrtdJLW1Cg0SjFX0HFiLo/TC51q6wvF9Kr1gCoY0gsaeNnFs8osnUV2AnGcmMvj226Yx+PLdbRcH4QQLJZMLPWkMIZ4fLmuihsNGcyOwxnOFcxUAjcsVjat930nKPACAHLIQCRNPLlYNHAx8I7N6cnEa9PxkUsg+Dml8KVMJV0JFAGu0pMHn8RRChkh2E5IfCUhJActnau0+AH73Wo6qA1Q6QIxf+KBpPzATQAYTDalgRISKVGTYur/o4Pwcmuc4rZDJazWHbRdX/l8Fo0+pVq8fRRN3ke8xndjcoa5ggFGCVhgrfL1C5tK6apRVII2nhR7+oEAMwUdzY1kJTugrFCSCM6SpQ3MOjU1Ctf2AQJ4gc1HFAJR3pq3HyrjSkCyHqnmMFfQR7LQeM0d3WOlMHW+V5FscNpHGIfEte+rImWbI/g1jzN9MfJkR/B80DkFo/2q2jiKQT/QGpTlO2S3lJJEpaSlUbCefWuMomBo2Gp5kY3DmZVG5CNasbTEPqtgcMxSjvVa8jklKZReISiU2L1cB6cWRvNnpj3P316UcxoWiiaWa8l2DXGEROaBsoGzMVZ6GPXECMFsQUclp6He9vD4SndRwq7JuJ6N9cYW7+N0TgfuPJzQ6Z3sK6fcpxqjicpjRfAmK/Y5o33FuXaKjHjdx/jik+t4/988hXtvnMcXnlifeDs5neG33vGcrgqhGTIMhduG956Xw1h7eLrbPXgX8PYPA/m56W43Q4b9ioWbgXd8GHj/GwBnRB/Xv/4VoLUOPPcfAO9/PXDPOztEbIYMGZ6xqLU92J4IBkrD+wNKCMqWhs2Gu6uFJMLhT87gOKIznJzLg1KC7ZarfgZ5OgKd1GYa/pl+bG1XoFzUcOvBEu48XOn6biDBS9KJgqSB60LJQDmnYa1uQ0ql1LtpsYiT8wWcmMvDFxJnlut4+Ep6vx522aN6Jg7jMRglmCvoKJgMLaf7iuqM4sbFIhgluP98ygaGoJrTo/R+AD1mn0PsAlI+zxk8IPVZ6iYajoc5dMYp4WJli49FSg9CeQCZ2ovDQaGxJCyWFMl+IPA6lgPMbc8OIPlCVHL6UOXgKKeAERLZdYRevoQQNBN8DOP3F+c0mMzpYK3hoBSo59LabvywWeAJPQjDij/Hd2PprMvewfUE1ntUow3Hw21LZTQCouWeY9XoO9+XYHRz8A6TYkj4rGhyGFxZRySp+jRGAk9mHxTA5c0W5irdy1ACnJov4NS8miRaGVGJmBhj4IvdG+xC0cDl7XZXkS2dUZyaz+Px5TqOz+ZxjjZxfr27TZqcQqMk8kHtvd6y5//u4xr/5mSUQmMUbspkSq+VQhIIgPmCgQsD7q9yYEETqjk1pnyX48gbHDM5DZQQVHM6SsG+44SeoTHMFQ34Qkak3nzRwPNPzuLJx1aiJQ+Wu9XLafXhZvMaWq6I4ooZ1cL2BDRK0LC9qKhe2OfHizuq7cfsJlImlY7MWKjkNFzeag28VuG9fqSawwPnRs9oLeeUvRCjBOVcf2ZANdbnxmx+AajMkS7iNfblXE+xzl6ERHHv7WhqDItFQ6mlg80VDI6jM7nEiakLmy0cm83j4cvbXfcNgfKE7S0stlNkxOs+xaNXavj77/8SttsePvaNyxNvR2cUv/WO5+COw+UpRpfhGQHNxIed5+GtmCLxeusbgL/7XwB99GqrGTJcFzh0j7Id+OCbAG/4QAwA8JXfAe7/kLIe+OtfAepXgNf/GsB1wG0DWrLCKkOGDNcvoqHJGANeTpVyI2kgU7Y6KZajwtIZWo7fPTiODYBCspczitWa3VUdOq3AEgEBY6RDzgw5vBNz+UR1rhjC7ozLExicYqnSKVZ0OSgiRghRxVmGKllJ8H+4/7Tl1edFnWJ9ACezUFIqwBeenMMjV+q4sNmClBILRRO3HCxGthAlSxto7ZCGal7rJl67jmXszUXrHZnJYevCaAP6+ZhqmRCCstVPOoSQUKQcJSo9XSIg3XqICJ3RgQQpoFKDV2s2PvfYKhopRVfmiwYOBe2BUYIjVSvZX3BEkGAywBuiJh6mjCRE+R4ene233XhipY6vDzj3Jqeo++nqwvQ2O14q5iArCmDwZEsS3AG+1RMbNCasZ2oMC0UDS2UTX3l6E3aMMGREedd2mhbp2E4MCG82b2CtoW70Uo/ibqnSebe7YYzCPpxRHKpYaDo+PCHBKMFth0rKZgCqnR2fzaNocHCmYmSUwhcS7oRptaP2Cb1taCan4UqCL3kuxdOzb3tQntq3+iU0HQ+rdTsqgBdeC0YUiaszBkbVxMtiyUgk4G5YKOCxmGdqb1vMGxyHKlZEvN+2VO5Y8AT7K5laIvFq+wKWL5AzOGbzOhaLJuqOhzPL9S4rAl9K1G0Xn3lstS++rWAC80isyFR47jVKBlrAFE2OolFEzU5/HpyaKwQxk+5mO6RZzOR0tF2/T2kdohIjY6XsPq9Fk3f57YbnS2cUdxyu4JOPLKfuN3zOVywNQkpVHFQqNbjBlQVS3uQ4Ws1BG9KedE5x21IZq3UbbVeAUUXqG1MmXYGMeN2XOLfexPe/74tRJzzsYZwGQoBf+a5n4cU3ZMrCDJNh/qX/Ak/+4cdwgl7Z4ZYIcO+PA9/+o5liL8MzF8dfBHzXB4H/+V2AGHFA7McGm/f/rrIduOddwMd+Qm1r6dm7E2uGDBn2NdKepCFpxQJisO348KXEWgJxRYAoxXIQFksmypaGluPD1CgKBsdXz212xdBLqoQDrPgrbE5n4DR5EEQAnJwr4ExPqmIvGCGo5jUULS2RyBnErRGkkzu3Likvtzc86xA+f2YVKynFyhaK3RNew8mk4P8RrQY0RmCkjPcYJSjoHCVTQ8HUcM+xapfKL457jlXxucdWU1VlaahaOkpmjCyPfTfs7W3QuT9UsbDdcuAJVXSmt2BL3EfY1BhiPBYWiwYubbUTlZsAsNFyFbHEFOnRdH0UmdqeySnansDJ+TwevtytTJ4tdCtgXU8VfgsJsV4cLFt49tFK17W883AFri9xKaUQ2zDYnsRa3R7ulbkDu7mktlcweJQ+nXTd4qRDGm1hamykonYhhg1nB24q5bvB0xj9GFakune9vM7wvOMzitiBIjcfvLiNRtsDpZ1z4AsBRjoEOSVk4DU7MmNF7Wwmb8S8ajsqQUJIFwk7DKG/ZfxeilSOsQPjjHaRj4wSaIykEtkhEZpk4zKKVQIAzOZ1UEIioi1ncMwD2Gw6cIOiZEWTo5rXcSyxCFIPiGq3iyUTNywW0XL9xPhLJscNi/3ktc5pd7p/z2H0TeCFZG5wvPHMiZC0Lpgc80UjenaEz5qm7eO2pXJkUQIoNe5NB4q4st1GOadhsWjiUNXCfU93e7mGKJoaHLffRgJAn4o3CacWVBGsp9Yafd9xSjvvDVRFXTQ4JJA4eRc/VYwSnF4o4sGL/RM7FUvrmhxNelYen82jYHCs1m0UDI4jMzncuFhMtASKI+xLvu3GeQCIinpOCqXY330xS0a87jOsNjz8k//2t4lG2+NAYwS/9NZn9fnCZMgwEqQEHvhfuPfjPwFC+2fexkL5KPDG3wSOvXA6sWXIcC3j9N8B3vo7wP/+/m5SdVQ88UngyU8DUgDvezXwhl8H7njz9OPMkCHDvkJBI2jHxl1JKfU6pygEr/bVnI6FooEnVupwhUofjVdy5lSlXeqcwtJoHxHWi6LJ+9SqXcTrCMTQ4WoOWy23i/xQCiWlzqrmNWClf9txHJnJgZDA5zBhnwPjCPOvh+BQxUolXuN+skP3B0T7G0cteqjEUetJa1bEtLJvSFI19qJkanjpzQt4crWBpuNBYxRPrvYPupPiPTlXwOXtdh9ZP4xkKefSh5UEqkr3wbwOX8i+WLq2HDupBmOKfC0ZcDzltZhU6TxtEqBgajhdNqIU/K54ewrRDOMQb1ws9KnlGCV43okZbLddtB0fOqf4whPrsL3kAi+JUDMCgwvPTFm0MB/zYu4lRAmUAvDsejMxpT3E0ZlcRHjU2h5cX3QsDkBACGBwgbW6jdmC0aU4HqW/GAmpzGvyF8MmIijpqAcLBke+ZxZkJq9jNqbS6+yOwAxtHoChvtrHZvOo2x7OrDQwW9DRcn2s1m0cn83B1BgYJbjjUHmg1zAAnFmuww/6wkGk8mx+MDlXMrXEYlYaI1GxqWJCkblRWyUNiK2m40XnrmBwFAwetYuwjRfNbg/UQQhTwdP8VJPue0B5CKcRr0LKgZkTJVPreg5stgXC6Ymj1RyKJsdqzUatzaBzirLFUUuw2skbHCfnC3jByTnMF42BkzeUqImiotnZlsaUz/mhWEZG+LmUwLHZHExNFd0rmRp8IVHrmVhilODuY5VoYoEGKuG5gIj1hezKlAkna6OzTcJnosTjgWKYENXe4kQzkHzPE6L6ovmigTsPV3AiVgBrkI1Lr+XH6YVCtP/9jIx43UfYaPv4959ew4XaeClfvTA1iv/69ntw700LU4oswzMGUgKPfkwV91l9ZOJMnQh3fQ/w6p8HzOlWBcyQ4ZrGza8Bvud/AR/6HsCdIEVRBi+LXgv4gx8Anv488Kr/CPDMxztDhusVBwoM5+pQBA1BcmqhVD5zq3UHR6oWNE5xy1IJqzUHQkocnbFQyukBCUajga5SvyVPBOUNjsMVCwtFUxFaUhE1+SBdNbbrRITjI1NTKfvVnI5HrtTgCwlLY5HS9LnHZyCxc6uAQesH/NZQHJvNY6Pp4ukeddDphUJXGvyw/QFxq4HR36gMTnF0qYSVmq08/xjpSn0cljIfwtRYV1Xm1bqdSAD0gjGCQ1ULh6oWNh61gRG0IOGAPA0y+BmXQNQ5xVLZ6qq6/eWn1/pJrW7mNcKhiglTY33Zg5WcjqrVTWoRANUEn8IQgxSbJVNDKSCmTs7n8c1L2wCUIm+YmCYMfRCxPXIRowHbj8PSWFQVvbcNzxWNwB8zvd2WLa2LiFup2YkWFQfLJr7wxDpee+fBoaLdaZLLqeYIQ4KYLegDr7PGKE7M5/HESh1xgWXJ1ECDvZLAm3Owtlalq5+Yy2Ot7uA5x2eQ0xk2my4oUe0m7i9539PreORyTd1HsYM4s1wHY3RgUUFG1f0cklVJ/UfJUsTcVsuNrpPBlRKSUoIjM7nENjjONbvrSBm1tovDVQvnY96s8W0cqihfzaMziphOIpN5UHBtvmDA1CkeGOBn3dtfh5gt6NiOFXDsZGhIPL3W7FM/xidzepWbXXOggWK5mtPBGY1I5kGZEeHhD1OE5wyOl9y0gLWGA8+XaLs+6rYHS2fI6Qw5jcPSWarPOaMELzo9G9yrLjgj0fkOQSnpmiRkRB2fEJ0+HERGFgnhe8jphSJOzBVQaytv2rT+ahxROyVAmptIbxs+XM0NJV71fVBgPiNe9xHef399LNI1SaEwXzTwm++4B3cfTU49ypAhEdIHHv4o8ImfBlZ27un6iDiML9zwI/j+7/x7UwguQ4brEKdeArzjj4D/8RbA7k/RGQtffi9w4T7gre8HqsenEV2GDNcVHn30UfzJn/wJPv3pT+PrX/86Ll9W3vkHDhzA85//fLzrXe/CK17xiqnt70Mf+hDe+9734oEHHsDW1hYOHjyIl7/85fjhH/5h3HLLLRNtk1OCgwWGJ5sEi0UzcWDj+AILRQMaI9huexFRWs1r4DSPtusnErbzRROeUOmeSu2jfONOzOdRMjW88rYD0DlVarZglNibjt2fmRkOzdQXYcqhpTPctlTCcs0GDzwHw/1c3GyB77CS0qhE6DA860gFR6oWLm+3A2WRkVjheGjBoOD/YUU6ekk3jXV7y46zzzSMQrr2Iq7wHHRpDldzg1W9cogNBOlaNFrW0hnuOFxGKdfxrF2r5/H4SocUjw+ny5bWtR/OKF5y0wKeWG3gm5dqIFCqxbmi0TfSDwvZpCGpsFISjs3m8PRaE03HQzWnpWjxulG2tETvSUBdg5sOFPHI5fQibqUENWKIxCZPFEH85Goj8mckAGYKOo5Ular82EwusXgRpxTPOzEDQKkgLY2lTgZUc3rULuKLJC09gdPA2J8Puw6UEohB3rFQ5/rITA5Nx4eUgK5R6Iyibvfbc4RI8+DM6Ry5mQ4dU01RuG423Wj7cTi+hDagbGI1p+OWgyU8eHFraDp2Na+jZGkoWxo8XwBEWRAsFI1U5e043bXBGV5y0wLmCwY+669CCAlfSHhCgBISEf6AKkAVFpeK3BICNfVs3kDO4GBMFZObLxrgjKCXo7U0lnreKzkdnDa7JmQaMaLX1NJJulH731E56XAxbcjJLBqq8NdOiqUTQrBQMrGQklbf+3ycL5nwJSJbEgC4damMwxULEoiUsYAidgcVt9Q5xQ0LRZQDX9awn5fB771tX01eJJ9sIQHHE9hsBZM9wWTwxY0WZPD2kdd5FE9e55Gq92oiI173AR5fruPzZ5v4+88uYrkp8OjaaOmnLVeZyYd9xrOPVvBf337PnnhUZLg+kL/0BZz8+rvB3S2gtUNLAQDrsoBf8t6C3/VfCvEQw21PreM5x2emEGmGDNchjn4L8M6PAB/4TqC5w/vv0teAP/5nansZMmSI8Eu/9Ev4kR/5kcTvnnrqKTz11FP40Ic+hDe96U344Ac/CNOc/B3K8zy87W1vw4c//OG+/bznPe/BBz7wAbzvfe/Dd3/3d0+0/aLBcDyXG2gLQECgc4aza004gSzw9HwBL75hDutNp2/wTokqVKUxghNzeSzXbDyx2gAhFGdWGqjmdHzsoU6R19uWyji9UEBe510FiHoVPeEALhykxodzWlAEppLTcdeRStd6nFGYGkMzgWSII23wO4gbIxjPZn62YAz1zxs2CA8J1fmigYcH1MrN6xzOiDah08rSHgVxT940ddvx2XyfX2ovwvYxCa1+cr6Ak/OFyHu3mteBGPHKWac4VcHg3RXJOUPO4Lj9UHmofzAZIoj6/JlVvOLWA0MH8AZneMGpWTx0cRtNx0NOZ/ClRHugnUf6VT0xl8fBspVKvBaMwaRCmq+xxihuXCzCExKtwCYhXthotmBgNm/g5FwBFzab4FQRwIerVldbuO1QObF412xBh6Wz6J4bVakNqHP44hvm8IlvXhl4DKmKy5SPqzkNjQF9y2LRjCaYQoV8EiFOCOnyUgU6HqtJIY1iDzIIYx4mANUuQg/MUZWpyutSEa06o9EzJD2u8e5oGqhve9PQe1HNG3jByTk8sdp9z5oaw7ffON81kXXPsSoub7fxtbOb0Wc6pzi1UAgyRPpT1v//9u48ToryzAP4r6q6uquv6Z7puQcYhnM4RBBRQIgaI27wXNzd4LVo1hgT0TUe0aybgG40mxivaJKNRzSJ8YpiNNEg3hJFRUUUgYDcDANz39M9fbz7R003PTN9T01PD/y+n087LXV2v2+/3fXU+z6vLAGlLi3S81YIAV8ghA5fAG6rmvAGXUW/c4+3avQ+ChOkegi/hx6HBbIkxb15OKHEEfPfjaT0n1wL+uf4QEt33+9WCagudSa84dOfqsgYU2DT2+8UJIpDh3tnr9vR2Off9jZ3RVJIVHnsKOj9Xqoqip03eHSBDfviTI7YP5+7ERh4HSZdPQG89Fktnl6/Dx/taYZdlfDgWUW44vh8fH/NoaTdzcPC6106vxK3nDk17t1SooiuZuDNHwOf/wlV3kH2tOtVL/LwUOBMPB48HV3obagE8P1nP8Nfrl4w4McJEfUqmwF8czXw+PlAy55B7EgCvvpDw06L6EjR1qYP+R03bhwuueQSnHbaaZgwYQJUVcUnn3yCH//4x1i7di2ee+45mEwmPPXUUxkf67rrrosEXZctW4YbbrgBJSUlWL9+Pa6//nps3boVy5YtQ1VVFebOnZvRMQrsFrT0TiYU7gHU2ROM9MZTZAkuq4ppFXno9AUgAMyr8mB8sQPjD9hxoNWLpg499YBTM6HcbYXVrOArk4rQExDoCYYivYTyNBWV/QIG4WvJyaVOfLI3aiKQqN+tVlU53IOz9xxjRQhC/X7shlMXlLk0HIyR785uNmF0b8/K4jwtdo/QhDleEyzLUKqTaxXYzagqtOPTfS0D1lF789seSvEnmWH5MVMQffEb6+2zmZWkQdfwtlPL8jCnKh/NXX78Yd2eSE+n/scBYr+vod4YkNuqD+WNHtouS/pM1GaTnHFg+uRJRXEnt4m8jhTrkMNiwglVBZhY7EBbtx81LV7sjpdjN8E+JxQ7IukiKj32AekvJEnPBZpIvl3FjFHuqDZD6vNatte1x+1pbreYcMwoF44ZFf8Y5S6tN71CO3z+IBRZQpHTgtLejkDhoLjdYsL88YUQQuBAazcUSUII4eHvel3q89ri/k/m3Da1zzD3aOGgY/9gYqHDgoYOX79/M6OhNwdymUt/nQ6zCXuaOnt77h0O5qiKjNH5gwy8JphdLF59jy7S6OeptB+aquCMaaVYv7sJB1oS5x5NVyrBWkkCplfkocBhxt7GLoSEgNumYnyRY8DoAYtJwVnHlMHnD6HTF4BJkeC2miP1u9CupxXw9csbW5KnQZVl1LZ1Q5YkmBV98q/+uZ/7G1fYNwAar2yi3xt3ghQm4dUUWUKpS4v5fmuqkjRPrxEkST+P8b2BynBdqfLY0dDhQ5c/iCmlTkwtd6HUlX5gMp04faLgtxBiwL4UWcLEYgd2N3ZFfvvor8WB8UWxg9aleVrcwGtJnvHvN6MhWSSEwGf7W/HU+n34y8YDfXoddPoF3trdjRe3d6ccdA37p+mlWHH2NMMTr9MRxNsKfP4nYN2vgKYdhu22zVyMezrPwJPBr8KLgQ3UzoZOXPfMRvz6olmQ48xkTHTUK5wIfOtN4OmLgb3vZbgTATz/bX3irrIZhp4e0Ug2ceJE/OlPf8L5558/4HfSokWLcNppp2Hx4sVYs2YNnn76aVx//fWYM2dO2sfZsmULfvWrXwHQg66PPfZYZNnixYtx/PHHY9q0aWhoaMD111+Pd999N639mxUJmipBUuS4PbbyNFPUZE5SJAejouj5XMvcVph6e530N7bQjmKnhp31GvxBAbMix+xFF+45VJxngVVVIkMQ1aiectF59VRZRjeCMfOr5fW7wHX35twssJtR6tLQ7g30CdqcNMET6WHjtqkxh/4nzxFr7G/lpKkGog53TIULnb4AdjV0RgLlmklGpcce6TihKsnPL1mw10h9OjnFeO+iy3XmaDd21HfETGnQ7Q9he30ngr1vmEmWIOIELGK9p15/sE96C7dNhVNT0O0/PKGTQ4t1WXt4Zx67ZUCKjLCqQjtcVnPSDizpVh/9BsThmxDpmlZ+OOA5o8IFh0XBroYuBIIhODQTJpc44w4bDnNqasyJkcJ2Jph0LZXcsr6APlR8Wnns+RzCdV1VDs+e3hMMwZUoGCXFnkAwWqJ8vPFYTEqfoGm0MpcWs45PLnXiOHM+gkIfGh8MCUwqdmL9niaEhDg8RNqNyLD3tgY9mKOpEuaMLRh8B5QM6k7fDoqHd5CsDkuSFJmwKWmP/iGKPUhR59F/8qhYzCYFp1UX44NdTX2+AzRVwawx+Wjo8PW9UdirwGFGmVvDKZOKsauxM26v9Oj3of9LjpvuondFt1VNWJej93fsKDe6eoJoibqpZDHJmFvlGVSe51TJkp7eIVZqiZLeQOtXp5QM+XkAfdMb9Fff4cMkMTCYqqkKqkud6OoJYGpZHqrL8uJOsAYA5W4rxnrs2N3vhlaZy9pnoi+jMPCaBS1dPXh+Qw2eXr8PWxPk5/nj5x3oCqT3Y2pKWR7u+beZDLrSQC37gG2r9dytu9YCYnCTtvVR9RXghCtgqjodr973Hrxx7h4DwCtfHMRFD3+IJ751IuspUTx2D/DvLwAvfQ/Y8Hhm+2jeBTxyOrD4TmDWJelfIRIdgS666KKEyxVFwR133IE1a9YAAF5++eWMAq+//vWvEQwGYTKZcMcddwxYXlxcjBtvvBE33XQT3nvvPXz66aeYOXNmyvs/oUKDpmnw57lR29Y94AJRAuKmmgoHS6eVu7B2e/2AXJVlLiuKeofUN3f5E/b46fTpF0MWk4ITqzz4ZG8z2rx+eOxmHGr1otSl9Qm8um2qvjxGr8j+PWbMJhmj8m3Y39wFt82MUflWhISAJOk96FIZ1pg0x2vSPaTHbVOBxvjLo/PWSZKEyaV5qG31oqsnCFnSe/FGX7k7zDI6kvxcC6U24bchnEkCRuFho6dWFyNPUyO9kMOBk3Avy+YuP9Zur0/9wP2KsSaqF1i4N7Uiy3BYZHR6A+iKukiXo97Q6OpQnBc/8Frs1FBgN2NcoWPA8OZo6QaaolePt2WBzZxwYrLIsWUJE4qdmFDsTOsckunf8zzaUP2MSKXXparIcNvMaOnqifneJUsDEs/oAhtMsgyTLCMQCsGkSCjN0+K2n2qMm1AFdjMgAdsO9b2un1WZj2MqXHj/k1b0+CQU5lnjTvCUjrjBPSBul9fo97jAbo7U/XC+7XgmlTgiQfRk7WkmhuqXaXGehtOnlmB3Yyf8AQG7RcGYAhtMvQF/VZHhj5E6odRlhaJI8XsVA2jt9mM00FtvUou8hlcrT5JWIfq4ZpOMr0wsRF27Dx2+AMy9ub6zEXQFBjeJXyoSvcfpStShy2Y2wW0zJwy6hh072o2KfCtqW7wQEChJ0BYMFgOvQyQQDGHtlw1Y9UkNXvniYCTfRCLpBl1dVhW/uXh2TiQLphwgBFC3Bdj6V2DLX4CDnxm7f9UGzLwImHM5UFwNALABuOOfj8G///bDhJuu29mIf3/kQ/zumycknLWV6KhmMgPnPAAUTwXW/FCf9C5dAS/w4tXAjjeBs+4BrG7DT5PoSDN9+vTI8wMHDmS0jxdffBEAsHDhQpSXl8dc5xvf+AZuuukmAMALL7yQVuA1TOkNvuxr6opMlmIxyajItw7oQdqfy6piwYRCbD3YjpYuPxRZQqXHhnGF9pRvjEb/UnXZVJwyuQhNnT0ICT3I2L+XSpHDgpDAgAugSo89Zk+mmaPdAAS8gRAOtnqhSBI8DjNGu/v20p0YJ/iUdNRYnJfZ5vVDCOBQm1ef8AOi96+eOiFW71qgN3i8L/7hBuQDhF6Gzpi9M4G8FAKv2ezxmqinniz19rLG4YBkqinPJCl+8C3W65Ogp2nrP1w4+lzC68Xu+arnOm5o96G+37DxqkJ75CZAskCTkm7gNcH/hVlVJZJmYzhEz+7eX7IJmYChCc6Gd1ld6sT7OxsHHMRhMcX9DCUjS3qe0a9PL9Un+em9uZOuKWV5KHdbcbC1N2Dj1CI3IlyaAi9kwzqchIRAhdva5wYEoKdxMMepO7IkocMXgMNiwhiPDdvr9CCx2SQj36aiuetw2U4odsAfDGFqWR7mjivsc9xEhqzHa4b71Xs8Dux5rakKZlfmY/3upj43HgvsZhxT4YqkMuhujf27O9zuFDkHpqLIs8hQVRMmluZFet9Lkt7TXJFkmJON+Owfx5UkPfiX/OUabsgv0Q3cf7JdpXPPoNBhGdSkZali4NVAXn8Q7+9sxBtb6/DSZ7Vo7ExtkqxMSBJw79KZg07WTSNcKATUfKQHWrf+FWjaafwxXKOB+dcAxy4FtIFfZl+ZVIR/mT0Kz368P+Fu1n7ZgPN+9S6e+fY8PPPRPtS2enHDoslZu4tHNCJIEjDvKqBiNvCny4D2zIJA+GIVsO8DYMlDwNiTjD1HoiPMoUOHIs9drsT5EmNpbGzEnj17AADz5s2Lu15lZSXKyspQW1uLjz/+OP0ThX4xYTHJmFDsQCAYQkj0DvdO8FUaff3htpkxd5wno2PHIklSpOfZSRMK8d6ORnRFTbplt5hwybRStHn9ONTmBdDbwzZOLzBFljC7sgDTyl1QeycaUfsN01RkKe4wY18g8Q2reBdjO+o64LFb9CBPPxVuKwrssScKtZj0XlV7Y+SJG5VvGxBwThZPSOVaMZs5XlVFhs1s6lOmYYUODaZUA639/r/AHnu4d1j/TiWSJGFLbZxRg1F5S/v3Dot+q2RZwrzxHhxo9aKuzRsZyhxdF4PJAk1p/maVJCnpxGKxJv8ZSZL1YkvWwzKRkjwNc8YWYPMBPVe3JAEeuxkVbmufoF+f2et7b5j0D6j272EvyxJkSLCYlISTSCX6zLqsatKcoEZo9waQZzWhpmXgsnjnXug0RwKnDosJxU4Nde16G1zpsUOSutDc2YNChz6Z1uh8K2aMcvfdSdLJA9N8IRi+wVglvT1i9zd3IxgSyNPUSJ0QQYECuxm1rd6426uKjMklA2/4uSwySjQzJpf2XabIMtoT3NQIy6XBaUM9MtXI3RvxXZptDLxmyBcI4mCrF/842I7Pa1rx6b4WrN/dlGTGSuNce9oknDq5OCvHohzUWgN8+gSw4Q+DnJAnjoln6HknJ54OVJ2ctHW79Zxp2LC3GTvq4+eJAoDP9rfi+B+/ik5fEALAhr3NuG/prCHr0k80Yo2ZC1y5Flh1BbDj9cz20VYDPLZYD+R+7VZA6b04EAJ4737gmH8B8mL3zCM6mjz33HOR5/Pnz097+61bt0aejxs3LuG648aNQ21tbZ9tMpVq0CtbMR27xYTTqotxoFVPhWA1KyjL0yDLEqxmJa3vek1V8JXJRXhvR+OAoNSsMflxX3u8nqlhE0ucffLnhUmSFDeAkuztCwcr9jV3R4I9o/KtOLZ/ECMFeqAkd67EJQkodlpQ36GfVfjsivM0jEoh92L0fqLpExbFDryaFSVhTtLYBwAqC2wo7BfQ71/3k+WNTBQAzaR3nxR9DsNUrEKISE/wcG88wLggS7JYdGmMz32yQ0f3AC53W1Hm0tuR1u6ePuWwqaYVuxo6UeSwDJgYbXdjF8YUWKHIMmRJT+kQy/QKV8z8n4B+U6t/ug0hDveGj54gLtxTPlY+68EaX+TAjvoOlLm0AcHB/j1/JejvWb7N3KeH9uzKfGzY24yDbV4osoRxRQ4UV5kxuTQPVrMyYNIqIPkIAiOHjvfd79CwmJS4Ey1pqjJg0r5oJ00oTCvInmrv+Nxp7UeWZHUvF29mMfCaxD8OtuOnq7eiqyeA7p4gOnsTHie6SzvUTqsuxtVfnTBsx6dhEujRc7Zu+APw5WuAMDjILyl6oPWM2wFPevXLbjHh1xfPxuL71kYmwoinw3e4N8r7O5uw+L61+Pm/HotTq3kjgagPeyFw0bPAe/cBb94BBDP83ln3S/1GzdduBY77d2Dnm8CrPwRev03vyX7ilUDp9OT7IToCNTQ04Pbbbweg90hdvHhxRvsIKylJPECwuFj/rmtsTJAYNIFklxLzxnsigYlwns3+s4UnMthYjCxLGDXIGbzDCh0WnDK5CF/WdaC7JwiLSca4IkfC4KrNbILLqsYcIm03m3DC2Hy8s70B3n4pETx2c9zJfpJdvymyhFlj8jGlLA++QAgWkxwziAGkcLGY+FApnU+mLCY55lB+SQJG5VsxtSwPPYEQLKoyINiW7kWu3WxCnmZCW4yJuGKlUEv0rknQg3/9g65A+mkZihwaVEVGSOiTQoneCZVCIrPPhiRhYE7IKBaThP0tXTGHzY9KkhsyVYny60qShIYO36CG2SYL4MYqg2Jn4pswU8r6jrCTJAmTShwDgqu+QAgmOX4bFxKARZYwpsAWNzVfkdMSyffaX2mMCbd2NXTi85rWuOd+yiTjr2fGFtqxr6kL5W4rHBYTGjp6EAzpvTTnjM2H3WzS06VA790aTvkRHaQ2m2ScOM6DTl8APYEQNFVJmq4w367GzYsMAHZL+ukOUwnWZrsXaLiMx3psMMn6Z0JA/+yW5GkodWlp92xWUkwfcjTNf2LkK7WaFRw3Jl9P7yAdrlVS7wiITFORDKXcO6Mc09kTwBtb64b7NCIqPTbc/Y2ZzJN5NKnfBmz4PbDhCaA7swu1REKSCfWTL0bJkv8FzJn/yJtU4sR3TxmPX7zxZVrbNXb24LLH1uOM6SX4n3OnJ/0xRnRUkWVgwfeAiYuA578NHPw8s/10NwN/uUYPuJp77/aH/PqNnA1/ACqOB2YvA6YtASyxewMQHWmCwSAuvPDCSBD0vvvug9mcuMdkLJ2dh0d7aFri7zCrVf+e7eiIP4FPPD6fD3t27MDB3iSgIvKfww4pTYO6kNtZ78OhBElGAy0mmFqHPhdaNHPvAwAOdADJErDY/SFsP+hFT9TcCSYFOLbUih3b6uEJhLC/1Y9WXwiyBJQ4TBCdPuzvbIq5v/37AFunMTMcd/SEsL8m9oSk/oAfQijwB/zYvy9++qamgxKklvSD24EWHw62xy5blyZDmGXUtPVd3tQdRFNHAIU2BbWh+BMEbwk1wmaO39OvwxfE/gN9e+qZQwKBTj/afHr3QUUGPDYFTYc6sWlTW591a9r8aGqMffy27gD8QcR8z2QZ2CTHLtd45N5HrIvkTZtq09qXLxBCT2s3zL4gOtq9CIb0gH8wFERHeweCQYHOgA8NDX7sR982wemzYFOm6YaitHqD2F8bfwh1szcAb4IgxSZT7N6gYSEhsH/fwFQbYYEWE+SWgW1GW3032rwDg52yDByUmtAYI3Cldfmxu6UH4Ywi3W09cMsCLc0DX19Hux/dig/lBWZ0NnWg/8c7+nXZuwPYXO/rc1PDYZFRKWvY1FbTZ7uaNj/2N8a/Eb452AAz9M+Rz+fDpk2b4q6bjjxfENsbe9DZE4IZgM0sI2QOoLX+EKLDwNFjD7dKTVAHkT84UXsFCRgrN6GlJr39x2oL+tsSbIAzg6BupqLrsAzAIwmEhIAiJATaOrC/LfbnwOfzRf72L+emrgD2H4oftA7bIhphVY3vJZ2p/fsSj15N1B4k23aLaIQtxdeabF/bkrRLDQmXpid6HoDBYOA1Cfsg8tIYzWZW8H8Xz85KLhkaZj2dwOfPAh8+CBwy5gt7AMWC2infRE3lEmhWG0oGEXQNu27RZLR5A3jsvd1pb/vKpkP4aFczKj02uG1muKwqrGYFiiRBkSVct2hSSjMaEx2RSqYBl78BvHMnsPauzCbeAgBvq/7or+Yj/fH2ncB/bswscRfRIPl8PuzatWtQ+ygsLERhYWHyFQFce+21ePXVVwEAy5cvx7nnnpvRMaN7+w1l7xUhBMY4gDGOgRek4XMIXwhmqqenB35//PalpycErzf3hvBFkwDMKJRQ1xmCL6BPPlNsV2AK9cDbe70/yg6MsofLKoig349ErarXa0wQwOcPwe+PH7TRg+ki4Tp2zQSvN3HgIuZ2cjDufp12FR4LsD/kRyB4uHyDgRAggnCYpITn5PVJkEPxvzd8PbFfd7EGFJglCOiBVxn6ev3fb683gEAwdtA4FAwiJBBz/5IkZfReGUkK+REMBBEK9a1hwVAQqgxYTTICgQD8/qjh9U4T8pQAvDF6BKfL60tc50xCwB8nVd6ovOR1TQiBQi0U6XEWmeist+eZXQnEbDPGOgQ2dvoHjJSbXGhG0O9DMEZ6TI8ZcBfK8AYEZAnw+4F2n0BNx8BPrxAhFGkCwUDsz3Z0HXMowLFFMuo6gwiGBOxmGYVWINDjQ/8S6OkJwO+Pn7vT65WgWuTecxCG1T8LgOkeCd0B/Q3WFODdzgASnAp8PhnBQXTWUoSAJgfQ7htYP4rtCvw9PiTPYtrvnOK0BX3W8UlQRfZ+h4b6tbn+kH7TCTjc+3brwcPvgceqwGk5fH6xyjmYpK0P83olSMHc+c2d7JwTfRemUq5yiq/VYwlFbjL3Z1PlYW/XM5E7UcUclc7wrKFkVmQ8eMnxA4Ze0AhWvw1o2Kb3OvN3A+0HgdrPgJr1QOsBAEOUL1ixAHO/A3zlRjRu3w0Y3HB995TxeOKDvQkT1cfT2NkTd1K6q06dALAzLB3NTGbgq7cA05cAL98I7F5r/DEC3cCfv6PneC6aDBSMA/IqAM2VWzMA0BFpy5YtmDVr1qD2sWLFCqxcuTLperfeeiseeOABAMCSJUtw7733ZnxMh+NwL/Hu7ji9g/otj94mVZIkwWIZ2t6mZrMENcZESoeXm6Bp2e3xmqmqNO4nq2qCsKuUvCdzqoJyCKoaO3Ct93gFIElQTfFvNJe5NWha+tcnozSgK2RCbb9er/lWBeOK9Nm6jzdbsLOpB829QYcis0CeTcCSJG+l02ZN2LMukOB1x3ql/d9v1dsDkxL796GsAKYQoKpRvdWjZhc3quwyVZEvo7nHC0kKAFEhQEVWYFMl5FtNqHSrmFCsf64KrQocBvb28yIY970HAIcG+OJU/9IU69q0DPpuaBpwks2KmjY/untTBpQ7VdgT9JwOC/c/nxxSsbOpB0IOoKErGMlJapKBYocMl23gLPSHj9+3XmgAXCl0bLf4/VDV+HXdbLFAkgKRfM9Gt9nRZ62qia+1bFYto9zE0WZWWLC53tend7LHrmBKoSWjCZITtQVhmsUCLYs9XoUQfd7LQCCEdv/hc3SYZRzqPlwv8+wqNE2Fz+eLW84hJfnrBACTObuvNZmE34VI3J4m3daiQUuxx2upy4TGODeSS1wqNC390UnDjYHXJJLlPskGSQLuXToTCyam1oODRojPntJ7rmWDpAAQwPR/Bb76X0D+2CE5jBAC//X85xkFXZP51ZtfYuYYN0YX2KCZZNzy/CY9NN2b2P7UycX43umTDD8uUc4pngIs+wvwxSrglVuA9vSGPibUWa+3Tf2pdn0irrwywOYBLHmAxRn1N+qh2gBJ1vPGmo0ZnktkpHvuuScSnF20aBGefPJJKErmv/eie9geOnQo4bp1dXr6Ko/Hk/ZxLBaLYUPe4vHvbYbaFH/Y8JgCG6aPyR/ScxgOXkcTalpiB82nlOVhUozZrDMRCglMmxaMBAUlSJF7Wps3b0Z7ZzcafTJGjR4Vdx8LZ1ZkfPzpAOravTjQot90L3ZaUNYvj+VcHO5Bva+pGxv2JR7SmWdVMSvJhL9tXj8Oyamnbps+ve9rNB1sQ0Hj3pjr5gsBp2bCd8+ozsl8idOEgLqpFlvb9unpBUJBKLKCooI8lOTp731ZiRNfP2FMRoGsZOrbfWg0xR94O6PChV2NnWjv17t2fJED0ytchp9Pf4O51Ta6y4+ebXUYBSAQDKGrJwhIep7Tli5/3HzQ4wodmD4qs9fmbOxEt7Ul7vLqCYWo3b0dXq93yNvsHYGahMuPmV5uyGdiNoCWrh70BPRJE9Oe/C5KsrZgalkeJhQ7sv5Zbrc2oL5DD/R1+gJokw+nNhlfZIc7anK2SaPcGFtox6ZNm+KWsy8QRK10MOlxZ0wpgd2SOyG5ZHWqf9uczrZT03yteXubsa/f75E8q4qFEwpTnlw0l+ROKeeoXEg1cPt5x2DxMWXDfRpkJF8HUP+PoT9OwXhg1sXAsRcAJgtgKxjSwz2/oQavbRmanMiPvrcbeC/+8soCYybzIBoRJAmYfj4w8Qzg73cD636l91YdKv5OoHG7/kjVlX8HSo+Jsz8v0H5A7+nfUacHfDvqgM46oLMB6OnQJxQsOxb4+v8a8xoo582cOXPIZ6J98MEHcd111wEAFi5ciOeffz6jvK7RqqurI8937tyZcN1wKoXobWj4VRXaUdvqRahf/bOYZIw2aLIwQJ98zBHnwtOsSEkHFlSXDn7kW7FTS5pPPxz0SCX2kUpQOp0QyuTSgfsLhQBVluCPMYGrJEmQJSkng66Afn7HVLixNr8Btf4uBIMCmllBqatvN9HhOnuTIuPkScXY3diJ5s4eSBIwusA2IuZccNlUTCh24Mu6DpgUGXlWPRhjVmQsmOjC5gNtA7aRJAnl7sxfWyqTQ+UKIz8T0YHHoRSeLCnbppTlofHLBoSE6Jfr14S8fmkeUzk9cwqBQauq5FTQNdfMGu1GSZ6GmuZuhIRAocOiT4A2AoOuAAOvSWmqDElKbQZRj90cd5h0JiQJ+OmSGfi3OaMN2ycNo7YDwPY1wLY1wJevA8Ehyk1idgBTzgZmXQJUzs/q8OA9jV0pf16Mxgnn6KhkcQCn/Qg48TvAu/fqvVHbaoCPf6enMRlOW18G9n0IdDfpAda2A0Drfv1vV4pp7+XhH3VCR47HH38c3/nOdwAAc+bMwUsvvQSbbfBBNY/Hg8rKSuzZswfvv/9+3PX27t2LAwf0yXJmz5496OOScTwOC2ZX5uOLA23o6k214LKqmDHKndXRb8l+Pg1Fj8hE1CQXuEUOCyrcg58jIFpp3sCgWEgIzBjtTmubXKMqMhxmBYGgGBA4EBBD9nNdJKlVQuj1anyRAygamnMYSlPL8pBvM2NPYxeCIQGXVQ/GWnvf6+11HZEberIkYVp5HjyOzIf/9785019uZ8Aefsmq+XBcQwJAvt2MeeM92FLbhh31HZAlCYUOM8pcmaVrSCV4PLbw6BoVlm7RSpKECrfV8O+Y4cLAaxy/fmsH9jR2wmySYVMVSJL+hWlRFWgmGW6rGR6nGYV2M0YV2DDKbcPG/S0ZTSoUi9kk4+5/OxZnzSg3ZH+UZX6vnr/10CZgz7vA7neB5sFNGJKQpOjB1ulL9NnP1eFpoL53+iQsmFiIW//yBTbVDLzLPJQYdqWjmqMIOOP2w///tZXAqyuADX8AgsbdEEzLW3cMfh/Dde50xFm1ahUuvfRShEIhzJgxA6tXr4bTaczwcQA455xzcP/99+Odd97BwYMHUVpaOmCdp59+OvI804m8aOiUu60ozdPQ0ROABAxqOG3GcixqYzYlDrx29aQ20WOqPdiqCu0xe9YlC3ZlOyCdLptZQYHNDH+HhEBAhqpKkWHw4WvMoTJcgaxs0XuwWlEeIzgzpSwPYwpsqGv3QQJQ6tKgqYO7kZIsCJfbNZESKXRYsHBiEfzB0IDUG0NhYnH6ud6H2pgCG/bGSTdUOIgbFsTAa1yvbzmEj/b0z2kUBCJz98XPfzVYRU4LHrxkNmYdgTm0cp4QQCgIhAJRj6Decyz8/z1dgK8d8LXpj65mPajavAto2af36Opuys75WpxA9VnAqf8NuOPnA8umOWML8JflC/DWtno8+9F+vL71ELxxZks10hH+u5IoPRYncNbdwKL/AV66Qc/bKob+c2g4bwvQfgiw5uuTixFlYPXq1bjgggsQDAYxefJkvPrqqygoMDb1zpVXXolf/vKXCAQC+K//+i/89re/7bO8vr4eP//5zwEA8+fPx8yZMw09vlFc1sTBxv5DLo80siwhbzgCrr0CSZrpnmQrGMySJPDamWAitmipBKOqS/PiBiKCMVIM9Nl/jqYZCHNZVZS6NAQ7TPD7BVSzSe+l23vaZlkestdQ5LBAlqS4wesS15EdTLFbTKgycDh3cV7890uRJeTbzDAw835C44sc2FHfEXNZrgbJktXzkXA9Z9TNjFxst0rytLiB12Ln4OrUUKeSynUjNvDa4Qvgd+/thlmRYTbpD4tJhs2swGo2obLAllb37dZuP7YfakdDhw/7m7uxs6FzCM8+vilFFvz28pNQ5joyulQPuaZdwHP/oQcUQkG9JRQhQAR7/4ZiLAsBQR/Q1Qh83m8o7j+uHJ7XkS7ZBFz0HDDu5JycaVySJJw6uRinTi5GV08A63c34+PdTdjb1IWalm7UtnrR1u1Hhy+AJL+lU2bUfoiOKGY78M+/Br5yA/D5s8Ax/wp8+aqe7mT/h0B34klThl39P4C7eifNO+UHwCk3p75tRx3w7n0AgJLGRgQDAZhkCdibr99EO+Zf9HQsqQiF9BttwR7AkXgSGcotf//737FkyRL09PSgoqICf/7zn2Gz2dDREftiVVEUWK0Df4OdcsopePvttwHEvniYOnUqrrrqKtx///149NFHAQDXX389iouL8dFHH+G6665DXV0dVFXFXXdlaWLNDJS7rfi8pjXu8iNlyF+uavOFkChM2WRgSrNUJAu8GqnSY4ubNspjt8QNBujLc/vGXGu3H5tr29DU7EcgGIBJAVqlwyPDxnqGbsixLEuYUpaHLw4M/FxPLHbCYmJKn3RoqoJxhQ7sbBj4HVJd6sxq6rMylxY38Frqyv30G7lqJOXxNVq52xqz12uRw6KnI0mg2Kmhrj1+KsVkIyiOdCM28Nra7cedr8SfnOg/FlThh2dNTXl/H+9pwjcf+8iIU8uISQb+dYoDS48tYNA1HQEfUPPxcJ9F9pXPAgqqcjLo2p/NbMLJk4pw8qT4iaNqWrrx2uZDWLu9Ae/vbESHL/3hHUf7XTSihDzjgVNu6n3+beDEb+s3o/56HfDxbxNvmyvMMX7wBXzAzrf13rCK5fBfxayPPlj3AIA4aetCAf3mna/98CgGbwvQ3aL/9bZGPW8DIICK44FvvT5EL5CGwsMPP4zubn3iuZqaGkyZMiXh+ieffDLeeuutjI519913o6amBqtWrcKjjz4aCcCGaZqGRx55BHPnzs1o/9mgqQoq3FbUtAycrK/CbR30MF0aWYyaxMSqKgl7XSqylDDIW+KyAPvi7z/WMPNcMty/UCcUO6DIErYfake3PwiLScGEYnvSQArFNq08D2aTjJ31HegJhqCpCiYUO7L+fnocFkwrz8Pm2vY+10Gj8q0Yl6P5Q3M1x2s0j8OMNm/8eRJSDWpXl+Zh68HYqfdGGThpo9FmjclHee/vACH0nq6j8q1Je+iOK7LHDbzmaepRf5NnxAZekw21saWZCN9jH77u+P80rRRLJsgoUIM5n6Mo50hH0Z2TwsnAjH/TZzIvqBruszFUhduKZfPHYtn8sQgEQ9i4vxWf7mvB5/tb8FlNK3bWJ+6BblUVlPHOLlF6JEn/BSyr8SfiKpoK1G/O6mnFZYsxNLy7GXjiXzPb3ye/0x/p8MbvCUhkMpnw3HPP4amnnsIjjzyCjRs3oq2tDWVlZfja176G6667LmngNxfMHO2GAHAgKvha7rZiZoLJjYgSkWUJJXkaalsHBvQBfXhroot6i0mJm3uw0mMf8T2psnH1V1VoR1WOBuNGGlmWMLnUiUklDgjR+3NqmDrDTCh2otRlxYEWfeb3IodlUJOHUfI8vqlOtjWmwIZdDR3w9YtbyZKE8UW5/VksydNQkuakhYUOC9w2M1q6Bo7MmJCD+Wyz7YgNvKY7A2nhIHNWpEuSgEVTS/CtheNw/NgCbNq0CV5vagnqKcqROOO1vRiY/HWgdAbwye+B6jP1R8m0EdHDdbBMiozZlfmYXXk4x3G7149dDZ3Y29SFPY1dONjqRacvgI7ex9SyPNxyZuo93Imo11n3AGfcAexfD+x5D9j9d/15oPeOtZJDbaw1RuA14MvuOXhbsns8GrTHHnsMjz322KD3k04v2KVLl2Lp0qWDPuZwMSky5owtQKcvAF8gBItJht3AHIl0dJoxyoV2r3/AqCanZsIxFa4UtndDliTsbepCSAjIkoQxBbaUth1uudCLj4wnSVJOXJo5LCZMKjFussihlOz9EsPePzy5VM/RalYwd5wHG/e3RoKRDosJ08pdMScRHOkUWcIJYwvw2f4WHGzTryMsJhmTSpwYXZC7PXyzZcT+ikra4zXNoVDZyg1UXerEGdNK8S+zR7ECGiEXvu0GTQIqZgOTzgAmng6UHgvIvXfuT7h8eE8tRzg1FTNGuTFjlHu4T4XoyKNagaqv6A8ACPqBhm3ArrXA6puG99yixerxGsxuvkN0tyDSvYXoCGe3mDCMA8KOSskuX2yW7N8Mq/TYsacx9sij0jR6RGmqglMmF2NvU1ckCOG2mTGmwJbSiD9FlnDsaDeqy5zoCYR65/fIoZuDRJTUSMifqqkKnJpJP9fewWGSJPX+Te81uG1mnDypCJ29N5xsZiUnJ9UyitWs4MRxHnj9QQRDApqqcER3r5EbeA0mSzWQ3kvTVAUOiymj3JLxmE0yxhXaMXO0HjA6aYIHlUOYPP2oNBJTDcgmPUfr6BP1R+V8wF443GdFRKRTVL2HffMePVdqtoOb8cTq8Zrtcwv5AX83YOaNUyIynsemYE97/Guc4cjbWOG2xg28VuSnl1tVkaXe4e6Zvw6LSWHAlWiEMptknFCl/54LBzDDcUgJgC0HRldMKHYYPjT+aBs1wnzwA43YGmB0qgFAT6ScKPD6+2+egJI8DV5/UH8EQvD6g/AHQ1AVWb/zqshwairK3Bo8dvMRfUcjJ4yUwKukAIvvBMqOBUqmAyrzkRJRjqteDNy8T5/AcM97QM1HwMFNQNv+4TmfWD1es51qANDTDTDwSkRDQJUl5FtjX8M4NRNcVjXLZwQUOS2YVu7C5tq2PhP4jC9y5PQEMbkk6dBkXi7SUUKRJU4kTkelkRt4TdLj1ZpBlL3QYcGexsNJ2zVVRlWhA1NKnZg1xo1p5XlMVp1rFAtQVK0HYCW5t/+/EvX/vQ9ZiVou6z2WWvYA1nYgFNRntAYQ+eWjmPSeqZD6bifJeg8w1QqoNsBsByxOwFEKNH6pn4+zFHCPBoqrgbxRQP5YwFl2OH0AEdFIoWrA2JP0R1hXE3DwM6BxB9CyV29LW/YCLfuArkZADCJf+cyLgGMvALqb9OOE/3Y1AVqMPH7D0Ru3uwXIK8/+cYnoqDClyIJWTUVr9+FJD62qghOqPMM4gY8D5W4Nta163r5Ch2VYgsAjldOiYlKJA7t8rfAHBFSTgpJI0Fpk1GGIiIhGjhEbeD1hbAHeuP5k9ARD8AcEeoJBdPeE0NUTQLc/iOkZJFpf/tUJ6O4JwmM3Y4zHhhKnBpk5KXKbswS46oPMt3/yyb7/f8EFgzsfIqIjna0AGHeK/ugvFAJ8rYeDpV2N+qO7CejpAvydvX+7gJ7O3r9R/156DFC1MPVzGYrAq2IBrG5Ac+vB3v7PrW7jj0lE1EtVJJw8qQh17T509QRhNskoyxv+axKb2YTxRZyZOhNWs4KTJhShtf4Q/P4QVNWEkrzDnXnYA5CI6Mg2YgOvVrOCcQZ/+Z86udjQ/RERER1VZBmw5usPz/ihP17RFOBfHtUDsAGf/jf6OSRAVnCwvhH+oIBitqC8YjSg9o5WiDzyAItDD7AyFQwRDTNJklCSxsRVlPsq3FZYVQl+f99/lyUJEw3OJ0lERLllxAZeiYiI6CjnKAKmL0m6WsOmTfB6vdA0DeXTp2fhxIiIiA4zm2RML9Gw9WAA7b1TiuRpKqaV5yHfbh7ekyMioiHFwCsRERERERHRELKpMqYWmaGoFkydVgqzInMiZiKiowADr0RERERERERZoCoSLCZOqEVEdLRg4JWIiIiIiIiIiI5qXT0BNHbok7eGO6SHe6ZLAArsZmgqb5xQehh4JSIiIiIiIiKio1pzlx+f7G2Ou3zeOA8Dr5Q2ebhPgIiIiIiIiIiIaDgJIRKvwLTMlAEGXomIiIiIiIiIiIgMxsArEREREREREREd1Zo6exIu7/QFs3QmdCRh4JWIiIiIiIiIiI5qHd5AwuU9gVCWzoSOJJxci45qF1xwwXCfAtGQYz0nIiIiIiJKrMSlob7DF3d5vk3N4tnQkYI9XomIiIiIiIiI6KhW4bbGXabIEgodliyeDR0pGHglIiIiIiIiIqKjmqYqqCq0x1xWXeqELEtZPiM6EjDVABERERERERERHfWml7ugKjJ2NXTCHwzBYlIwodiBCcWO4T41GqEYeCUiIiIiIiIioqOeLEuYUpaHySVOhISAIkuQJPZ0pcwx8EpERERERERERNRLliXIYMCVBo85XomIiIiIiIiIiIgMxsArERERERERERERkcEYeCUiIiIiIiIiIiIyGAOvRERERERERERERAZj4JWIiIiIiIiIiIjIYAy8EhERERERERERERmMgVciIiIiIiIiIiIigzHwSkRERERERERERGQwSQghhvskiIiIiIiIiIiIiI4k7PFKREREREREREREZDAGXomIiIiIiIiIiIgMxsArERERERERERERkcEYeCUiIiIiIiIiIiIyGAOvRERERERERERERAZj4JWIiIiIiIiIiIjIYAy8EhERERERERERERmMgVciIiIiIiIiIiIigzHwSkRERERERERERGQwBl6JiIiIiIiIiIiIDMbAaxZt27YNd911F8455xxUVVXBarXCarWiqqoKF1xwAdasWWPo8Z566imcfvrpKCkpgaZpqKqqwhVXXIEtW7YYehzKbfX19XjppZewYsUKfP3rX0dhYSEkSYIkSVi5cqUhx3jrrbci+0z2aGhoMOSYlNuyUe+isb2jsP379+N73/seJk2aBJvNBo/HgwULFuA3v/kNgsHgoPbNto6y6ZVXXsG5556L8vJyaJqGMWPG4KKLLsIHH3ww3Kd21AoEAnj11Vdxww03YMGCBSgqKoKqqnC73Zg9ezZuvvlm7NmzJ+X9GVHGrCfZU19f3+f3zKWXXpp0G5bxyPHuu+/i8ssvx8SJE2G32+FyuVBdXY2lS5fiN7/5TcJtWc65r7a2Fj/84Q8xZ84cuN1uqKqKgoICzJs3D7fddhvq6+uT7oPlTBkTlBV33XWXAJD0cf7554vu7u5BHcvv94slS5bEPYamaeKJJ54w6JVRrjv55JPj1oUVK1YYcow333wzpfoNQNTX1xtyTMpt2ah3QrC9o75ef/114Xa749aHBQsWiLa2toz3z7aOsuWaa66JW7cURRF33nnncJ/iUemYY45J+tm32WziscceS7ovI8qY9SS7Lrzwwj7v8bJlyxKuzzIeGbxer1i2bFnSz3Y8LOfct3r1auFyuRKWb0FBgXj77bfj7oPlTIPBwGuWrFixQgAQ48aNEytWrBDvvPOOOHDggKivrxevvPKKWLhwYeRD941vfGNQx7r66qv7/CD4/PPPRV1dnXjppZdEdXW1ACBUVRXr1q0z6NVRLgsHwOx2u1i4cKH45je/OaSB1y+++EK0t7fHfdDRIRv1Tgi2d3TYjh07Ij+qy8rKxNNPPy1qa2vFtm3bxA033BCpJ2effXbGx2BbR9kQfbP+zDPPFB9++KGor68Xb731lpg7d25k2XPPPTfcp3rUqaysFLIsi9NPP108+OCDYtOmTaKxsVHs3LlT/PKXvxQej0cAEJIkiZdeeinufowoY9aT7Prb3/4WuZZLJfDKMh4ZAoGAWLx4ceS9vPDCC8Ubb7wRuU7/4IMPxMqVK8X48eNjbs9yzn179uwRdrtdABAOh0Pcfvvt4vPPPxf19fXik08+Ed/73veEyWQSAER+fr6oq6sbsA+WMw0WA69Z8vjjj4s//elPIhQKxVweCATEokWLIh+4Dz/8MKPjbN68WSiKEvfHwKFDh0RhYaEAIObPn5/RMWhkWbNmjfjss89EIBAQQgixa9euIQ287tq1y5B90siWjXrH9o6iLV26VAB6L+fNmzcPWP6jH/0oUgfXrFmT0THY1tFQq6+vF06nUwAQp556qggGg32Wd3V1icmTJwsAYuzYscLn8w3TmR6dbrzxRvGPf/wj7vItW7ZELvCnTp0acx0jypj1JLs6OjrE2LFjBQCxevXqpIFXlvHI8bOf/SxSng8//HBa27KcR4ZbbrklUsbPPPNMzHX+93//N7LOvffe22cZy5mMwMBrDvnoo48iH/iVK1dmtI9w7y+TySRqampirvPTn/40cpwNGzYM4oxpJGLglYbDUNQ7tncUVl9fHwnCf/e73425Tnd3t8jPzxcAxLnnnpvRcdjW0VCL7hET7yb8008/HVnn+eefz+4JUlLLly+PlM/u3bsHLDeijFlPsuvaa68VwOFRickCryzjkaG5uVnYbDYBQFxwwQVpb89yHhnOPPNMAUBYrdZIh5D+ampqIu/xlVde2WcZy5mMwMm1csj06dMjzw8cOJDRPl588UUAwMKFC1FeXh5znW984xuR5y+88EJGxyEiGm5s7yjsr3/9a2TirOgyj6ZpGs4991wAwOGYmRgAAA7lSURBVJo1a9Dd3Z218yNKVbhdq6qqwpw5c2Kuc+6550LTNABs13JRst/zRpQx60n2rF+/Hvfffz9cLhfuueeelLZhGY8Mjz/+OLq6ugAAN954Y9rbs5xHBovFAgCQZRmSJMVcR1GUyPPi4uI+y1jOZAQGXnPIoUOHIs9dLlfa2zc2NkZmUp03b17c9SorK1FWVgYA+Pjjj9M+DlEqenp6hvsU6AjG9o6ihctWURSccMIJcdcL15Xu7m5s2bLFkGOzrSMjffLJJwASt2sWiwWzZs0CwHYtFyX7PW9EGbOeZEcgEMC3vvUtBINB3HHHHZHfE8mwjEeGl19+GQAwevToyPsIAMFgEKFQKOn2LOeRYfbs2QCAzs5O/O1vf4u5zjPPPBN5/vWvf73PMpYzGYGB1xzy3HPPRZ7Pnz8/7e23bt0aeT5u3LiE64aXR29DZITzzjsPVqsVFosFVqsVxx13HG655RbU1tYO96nREYTtHUULl21ZWVmkt0As0XVlsPWBbR0ZraamBu3t7QBSb9e2bdsGIcSQnxulbtWqVQCAgoICTJ48uc8yI8qY9SR77rzzTmzcuBEnnngirrzyypS2YRmPHOvXrwcAzJkzB36/H3feeSemTZsGTdOgqioqKytxxRVXYPv27QO2ZTmPHFdddVWkF+sll1yCBx54AHv37oXX68WOHTtw2223RXo8X3/99Zg7d25kW5YzGYWB1xzR0NCA22+/HYDeQ2vx4sUZ7SOspKQk4brhxqexsTHt4xAlsnHjRni9XgCA1+vFhg0bcMcdd2Dy5Ml49tlnh/ns6EjB9o6ihetDqnUBGHx9YFtHRsukXfP5fOjo6BjS86LUPfroo9i4cSMA4Nvf/naf4auAMWXMepIdX375JW677TYoioL/+7//gyyndtnMMh4Zuru7I+9zQUEBFi5ciO9///vYvHkzAoEAQqEQ9u7di4ceeggzZswY8L3Och45XC4X1q5dixkzZqC5uRlXX301KisrYbVaMWHCBKxYsQLHHXccnnzySfz85z/vsy3LmYzCwGsOCAaDuPDCCyMXgffddx/MZnPa++ns7Iw8T9TjBwCsVisA8ANNhlBVFUuWLMETTzyBTZs2obW1FV1dXfj0009x8803w2w2o729HUuXLsWrr7463KdLRwC2dxQtXB9SrQtAZvWBbR0NpUzaNYBtW67YvHkzrrnmGgB6J4qbbrppwDpGlDHrSXZcccUV8Hq9uPbaazFz5syUt2MZjwytra2R57///e/xwQcf4JRTTsG6devQ3d2N+vp6PPTQQ3C73fB6vbj44ovx6aefRrZhOY8skyZNwvPPP4/TTjst5vIDBw5g586dCAQCff6d5UxGMQ33CeQin8+HXbt2DWofhYWFKCwsTGnda6+9NnKBtnz58sjkH+mK7o4eL3E05a5s1zsjnXTSSTjppJMG/Puxxx6LY489FosXL8aiRYvg9XqxfPlybN68eUAvEBoeI7Xesb0buYaizoXrw1DXBbZ1NJTYro1cdXV1OOecc9DR0QGz2YwnnngiZn5XI8qY9WToPfLII3jzzTcxZswY3HrrrWltyzIeGaJzuPb09ODEE0/EmjVroKoqAD1Advnll2PatGlYsGABfD4fVqxYEZn0iOU8svzsZz/DD37wA7hcLtx3331YvHgxPB4Pamtr8eyzz+KOO+7ALbfcgjfffBMvvPACbDYbAJYzGYeB1xi2bNnSJ8F2JlasWIGVK1cmXe/WW2/FAw88AABYsmQJ7r333oyP6XA4Is+TzdYcXh69DQ2vbNa7bFu4cCGWL1+On//859i2bRvWr1/fJ38ODZ+RWu/Y3o1cQ1HnwmWbal2I3sZIbOtoMDJp1/pvR9nX2tqKM844Azt27ICiKHjiiSfiztVgRBmzngytQ4cORfI93n///bDb7WltzzIeGfq/VytWrIgEXaPNmzcPZ555Jv7yl7/glVdegdfrhaZpLOcR5O6778ZNN90ETdPwzjvvYPr06ZFl+fn5+NGPfoQTTzwR//RP/4TXXnsN//M//4Of/OQnAPh5JuMw1cAwuueeeyIXjosWLcKTTz45qJ4x0b1/omdUjaWurg4A4PF4Mj4eUTrOO++8yPPwzI5EmWJ7R9HC9SHVugAMXX1gW0eZyqRds1gsvDgbRp2dnVi8eDE+/fRTSJKEhx56COeff37c9Y0oY9aTofWDH/wAzc3NOO+883DOOeekvT3LeGRwOp2wWCyR/1+4cGHcdcPLfD4fvvzySwAs55HC7/fjxz/+MQDgwgsv7BN0jXbGGWfglFNOAQA8/PDDkV6qLGcyCnu8xjBz5swhn0XuwQcfxHXXXQdAb8yff/75jPK6Rquuro4837lzZ8J1w8M8o7eh4ZWNejecoie1aWlpGb4ToT5Gar1jezdyDUWdq66uxmuvvYba2tpIb5RYolMcDFV9YFtHmaqoqIDT6UR7e3vK7dqkSZM4dHGYeL1enHPOOXjvvfcAAL/4xS9w2WWXJdzGiDJmPRla4ff0z3/+c9L37He/+x1+97vfAdAnVrv00ktZxiOEJEmorq7Gxo0bYTKZEga58vPzI8/b2toA8LM8UnzxxRdobm4GABx//PEJ150zZw7eeustNDQ0oL6+HsXFxSxnMgx7vA6Dxx9/HN/5zncA6B/wl156KZJHZDA8Hg8qKysBAO+//37c9fbu3YsDBw4AAGbPnj3o4xKl4uDBg5Hn0T9giDLB9o6ihcs2GAxi/fr1cddbt24dAH3ygilTpgzJubCto8E47rjjACRu13w+X6Q3Ndu14eH3+3H++efjjTfeAAD85Cc/wfLly1Pa1ogyZj3JbSzjkWHOnDkAgEAgEAmoxhKeABsA3G535DnLOfdFD91PdtM/Xi5WljMZgYHXLFu1ahUuvfRShEIhzJgxA6tXr4bT6TRs/+EhMe+8806fi79oTz/9dOR5phN5EaVr1apVkefhLx+iwWB7R2FnnnlmJFVPdJlH8/l8kUkxFi1a1GfmWCOxraPBCLdrO3fuxEcffRRznRdffBFerxcA27XhEAwGceGFF+Lll18GAPz3f/83br755pS3N6KMWU+GzsMPP4wNGzYkfISdffbZkX+LTkvAMh4Z/vmf/zny/K233oq7XniZ3W7HxIkTI//Ocs595eXlkefx3t+w8I17h8PRJx0Vy5kMIShr/va3vwmz2SwAiMmTJ4tDhw4ZfowvvvhCyLIsAIjLLrtswPK6ujpRXFwsAIj58+cbfnzKfbt27RIABACxYsWKQe+vp6dHHDx4MOE6r7/+eqTuT5o0SQSDwUEfl0YWo+udEGzvqK+lS5cKAMJqtYqtW7cOWL5y5cpIHVyzZk3a+2dbR9lQX18vnE6nACBOO+20AXWou7tbTJkyRQAQY8eOFT6fb5jO9OgUCoXEsmXLIm3Jtddem/Y+jChj1pPhFS7/ZcuWxVzOMh4Z/H6/qK6uFgDErFmzRHd394B13njjDSFJUszyZjmPDBMnThQAhKZp4vPPP4+5zurVqyOf6yVLlvRZxnImIzDwmiVr164VVqtVABAVFRViy5Ytor29Pe6jq6sr5n5OPvnkSKMQz9VXXx1Z57LLLhObNm0SdXV14uWXX458uaiqKtatWzdUL5dySF1dnVi3bl3ksWrVqkj9+I//+I8+yz755JOY+0hU75qbm4WmaeLiiy8WTz31lNiyZYtobGwU9fX14r333hPXXHONMJlMAoAwmUzitddeG+qXTDlgqOtdGNs7CtuxY4dwuVwCgCgvLxfPPPOMOHjwoNi+fbv4/ve/H7lwOvvss+Pug20d5YK77rorUg/POusssX79elFfXy/efvttMW/evMiy5557brhP9aizfPnyyPt/0UUXJfwt397eLvx+f8z9GFHGrCfDJ1ngVQiW8UixZs0aoSiKACDmzp0rXn31VdHQ0CB2794t7r33XuFwOAQAUVBQIHbv3j1ge5Zz7vvjH/8YeQ8LCgrEL37xC/Hll1+K5uZmsXnzZnHbbbcJTdMEAGE2m8WGDRsG7IPlTIPFwGuWRN8dT+Vx8sknx9xPKoEIv98vlixZEnffmqaJP/7xj0P0SinXPProoynXu8rKypj7SBaMSGXfHo9HvPDCC0P8ailXDHW9C2N7R9Fef/114Xa749aHBQsWiLa2trjbs62jXBF9U6n/Q5Zlceeddw73KR6V0vktD0A8+uijcfdlRBmzngyP8HucKPAqBMt4pPjtb38rLBZL3Pe5pKQk4Q18lnPu++lPfxoJsMd7OJ3OhEFPljMNBgOvWZLNwGvYk08+Kb72ta+JoqIiYbFYxNixY8Xll18uNm/ebPCro1w21AGwQCAg/vCHP4irrrpKnHDCCWL06NHCarUKi8UiSktLxemnny7uvvtu0dTUNMSvlHJJtgKvYWzvKGzfvn3iP//zP8XEiROFpmkiPz9fnHTSSeLXv/61CAQCCbdlW0e5ZPXq1eKcc84RpaWlwmw2i1GjRokLLrhAvP/++8N9akctIwOvQhhTxqwn2Zdq4FUIlvFIsXnzZnHllVeKcePGCU3ThNPpFMcdd5xYuXKlaGxsTLo9yzn3bdq0SVx99dVixowZwul0CkVRhNvtFnPmzBG33HKL2LdvX9J9sJwpU5IQSaZ3IyIiIiIiIiIiIqK0yMN9AkRERERERERERERHGgZeiYiIiIiIiIiIiAzGwCsRERERERERERGRwRh4JSIiIiIiIiIiIjIYA69EREREREREREREBmPglYiIiIiIiIiIiMhgDLwSERERERERERERGYyBVyIiIiIiIiIiIiKDMfBKREREREREREREZDAGXomIiIiIiIiIiIgMxsArERERERERERERkcEYeCUiIiIiIiIiIiIyGAOvRERERERERERERAZj4JWIiIiIiIiIiIjIYAy8EhERERERERERERmMgVciIiIiIiIiIiIigzHwSkRERERERERERGQwBl6JiIiIiIiIiIiIDMbAKxEREREREREREZHBGHglIiIiIiIiIiIiMhgDr0REREREREREREQGY+CViIiIiIiIiIiIyGAMvBIREREREREREREZ7P8B+BZ7WNERqnEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 211, + "width": 687 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "#| fig-cap: Trace plots for the community level means of occupancy and abundance in the known $N$ version of the BBS model. The estimates from @royle2008 are shown by vertical and horizontal lines.\n", + "#| label: fig-trace_known.\n", + "mu_hat_royle = [-1.11, -1.7]\n", + "az.plot_trace(known_idata, var_names=['mu'], figsize=(8,2),\n", + " lines=[(\"mu\", {}, [mu_hat_royle])]);" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "fig-probs", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABAEAAAMFCAYAAAAFte+AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB2HAAAdhwGP5fFlAAEAAElEQVR4nOzdeXxU1f3/8fedyUwmQ1aSQDRBJIAElBLBKsENUFrFumClLtHWorSVr2K/31/tonXHtl+1dZe6UG2VYos2bijWNthajbgghIhBWWSJQBbIkDBJZjL3/v7IN2MGCGSZLcnr+Xjk0TnJPed+Qq+ZuZ97zucYlmVZAgAAAAAA/Z4t1gEAAAAAAIDoIAkAAAAAAMAAQRIAAAAAAIABgiQAAAAAAAADBEkAAAAAAAAGCJIAAAAAAAAMECQBAAAAAAAYIEgCAAAAAAAwQJAEAAAAAABggCAJAAAAAADAAEESAAAAAACAAYIkAAAAAAAAAwRJAAAAAAAABgiSAAAAAAAADBAkAQAAAAAAGCBIAgAAAAAAMECQBAAAAAAAYIAgCQAAAAAAwACREOsA+ovy8nJVVFSoqqpKiYmJys3N1UknnaS8vLyoxWCapiorK/Xxxx+rpqZG+/btU3JysoYOHaqJEydq9OjRMgwjavEAAAAAAOILSYBeWrJkiRYsWKB169Yd8DObzaapU6fqnnvu0cSJEyMWQ1NTk37729/qscce0/bt2zs9btSoUZo3b56uvfZaORyOiMUDAAAAAIhPhmVZVqyD6ItaW1t15ZVXavHixYc91uFw6He/+52uvfbasMfx+eefa+bMmdqwYUOX+0yYMEGvv/66jjjiiLDHAwAAAACIXyQBemjevHlauHBhsO12u1VcXKzCwkL5fD6tXLlSL7zwgvx+vyTJMAwtWbJEF198cdhiqKur04QJE1RVVRX8Xmpqqr797W/r+OOPV0pKinbv3q2VK1fqpZdeUktLS/C4sWPHatWqVXK5XGGLBwAAAAAQ30gC9MDLL7+s888/P9geN26cli9frmHDhoUct2bNGs2cOVNffvmlpLZEwcaNG5WTkxOWOPZPRMyYMUNLlixRZmbmAcdu3rxZF1xwgcrLy4Pfu/POO/XLX/4yLLEAAAAAAOIfSYBuMk1TEyZMUEVFhaS2G/u1a9cqPz//oMe/++67OvXUU2WapqS2G/dHHnmk13H4/X4NGTJE9fX1kqQjjzxSn332mQYNGtRpn23btmnMmDFqamqSJB1zzDFav359r2MBAAAAAPQNbBHYTW+++WYwASBJ8+fP7zQBIElTpkzR7Nmzg+1FixapoaGh13Fs3LgxmACQpOLi4kMmACRp2LBhOuecc4Ltzz77LJgQAAAAAAD0fyQBuqmkpCSkffXVVx+2z9y5c4OvW1pa9Prrr/c6jrq6upD2qFGjutRv/+P27NnT61gAAAAAAH0DSYBueu2114KvR44cqZEjRx62z6mnnhpSgG/ZsmW9jmPw4MEh7X379nWpX8fj7Hb7AeMAAAAAAPovkgDdUF9fr23btgXbRUVFXerndDo1adKkYLtjcb6eGjNmTMgN/IoVK7rUr+NxJ554IrsDAAAAAMAAQhKgG9atWxfS7sosgIMdu379+mChwJ6y2Wz60Y9+FGy/+uqrh11m8Mgjj4TUM7jhhht6FQMAAAAAoG8hCdANmzdvDmkPHz68y307HtvU1KSdO3f2Op5f/vKXwRkGlmXpggsu0K233qrt27eHHFdZWal58+bpuuuuC35v3rx5mjVrVq9jAAAAAAD0HSQBumHv3r0h7YyMjC73TU9PD2mHY4eApKQk/eMf/9Cll14qSfL5fLrjjjs0bNgwZWVlacSIEUpPT9fYsWO1cOFCWZaljIwM3X///Xr44Yd7fX4AAAAAQN9CEqAbGhsbQ9rdWU+flJR0yLF6Kj09XX/+859VVlam8ePHB79fV1enL774Qh6PJ/i9KVOm6J133tH1118vwzDCcn4AAAAAQN+REOsA+pLm5uaQttPp7HLfxMTEkHZTU1NYYmppadGdd96pBx988LCzC95991197Wtf01VXXaV7771XycnJPT5vZWVl2BIZAAAAANBXnHDCCbEOoVdIAnTD/k/+fT5fl/u2tLSEtPefGdATu3fv1je+8Q199NFHwe/Nnj1bV199tSZOnKi0tDR5PB6tWrVKTz75pJYuXarW1lY99thjeu+997RixYpuLWnoqLGxUYZhHJDcAGKppaVFlmVxbSLucG0iXnFtIl5xbSJe7X9f1xeRBOiG/Z+c7z8z4FD2f/Lfm6fw7S677LJgAsAwDD3zzDMqLi4OOSYrK0vf+MY39I1vfEPPPvusvvvd78qyLK1Zs0ZXX321XnjhhR6fPzExUccdd1yvfgcgnCoqKtTc3My1ibjDtYl4xbWJeMW1iXjVcbe1voqaAN2Qmpoa0t6zZ0+X+9bX14e0U1JSehXL8uXL9cYbbwTb11133QEJgP1dfvnlITsE/O1vf9OHH37YqzgAAAAAAH0HSYBuGDFiREh769atXe67ZcuW4OukpCTl5OT0KpYlS5aEtDve3B/KtddeG9IuKSnpVRwAAAAAgL6DJEA3jBs3LqS9YcOGLvfduHFj8PWYMWNks/Xun768vDz4OjU1VaNGjepSv9GjR4fMaPjkk096FQcAAAAAoO8gCdAN6enpGjZsWLBdVlbWpX4+ny+keF/Hrfx6at++fcHX3a0vMGjQoODrcO1SAAAAAACIfyQBumnmzJnB1xs3btSmTZsO2+ftt98OKSJ4zjnn9DqOjlX9a2tr5ff7u9TP5/Oprq4u2M7MzOx1LAAAAACAvoEkQDfNmjUrpP3EE08ctk/HY5xOZ0gioac6Tv/3+Xz617/+1aV+b731VsjWhsccc0yvYwEAAAAA9A0kAbppxowZIbUBHnroIW3evLnT48vKyrR06dJge86cOZ3uDPDWW2/JMIzg15VXXtnpuN/85jdD2jfffPNhZwP4fD798pe/DPneN77xjUP2AQAAAAD0HyQBuslms+muu+4Ktvft26dzzz1X27ZtO+DY8vJyzZ49W6ZpSmrbFeDmm28OSxzf+c53lJeXF2y/9957uuiii7R79+6DHl9XV6cLL7xQH3zwQfB7RUVFmjJlSljiAQAAAADEv4RYB9AXXXDBBZo7d25wmv8nn3yisWPHqri4WIWFhfL7/Xrvvff0/PPPhzydf/LJJ3XkkUeGJQaXy6Xf//73Ov/88xUIBCRJL7/8soYPH65Zs2bphBNOUGpqqvbu3asPP/xQJSUlamxsDPZPSUnRwoULwxILAAAAAKBvIAnQQ48++qgaGhr03HPPSWqbEfD4448f9NiEhATde++9uuyyy8IawznnnKPFixdr7ty5amhokCQ1NjbqmWee0TPPPNNpvyOOOELPPfecJkyYENZ4AAAAAADxjeUAPZSQkKAlS5bo2Wef1dixYw96jGEYmjp1qsrKynT99ddHJI6LL75Ya9eu1bx585SamnrIY4cMGaKf//znqqio0GmnnRaReAAAAAAA8YuZAL1UXFys4uJirV69WhUVFdqxY4ccDodyc3NVVFQUsm7/cKZOnSrLsrodw/Dhw/XII4/ogQceUHl5udauXau6ujp5vV4lJycrKytLxx9/vMaOHSubjbwPAAAAAAxUJAHCpLCwUIWFhTGNISEhQRMnTtTEiRNjGgcAAAAAID7xWBgAAAAAgAGCJAAAAAAAAAMESQAAAAAAAAYIkgAAAAAAAAwQJAEAAAAAABggSAIAAAAAADBAkAQAAAAAAGCAIAkAAAAAAMAAQRIAAAAAAIABgiQAAAAAAAADBEkAAAAAAAAGCJIAAAAAAAAMECQBAAAAAAAYIEgCAAAAAAAwQJAEAAAAAABggCAJAAAAAADAAEESAAAAAACAAYIkAAAAAAAAAwRJAAAAAAAABgiSAAAAAAAADBAkAQAAAAAAGCBIAgAAAAAAMECQBAAAAAAAYIAgCQAAAAAAwABBEgAAAAAAgAGCJAAAAAAAAAMESQAAAAAAAAYIkgAAAAAAAAwQJAEAAAAAABggSAIAAAAAADBAkAQAAAAAAGCAIAkAAAAAAMAAQRIAAAAAAIABgiQAAAAAAAADBEkAAAAAAAAGCJIAAAAAAAAMECQBAAAAAAAYIEgCAAAAAAAwQJAEAAAAAABggCAJAAAAAADAAEESAAAAAACAAYIkAAAAAAAAAwRJAAAAAAAABgiSAAAAAAAADBAkAQAAAAAAGCBIAgAAAAAAMECQBAAAAAAAYIBIiHUA/UV5ebkqKipUVVWlxMRE5ebm6qSTTlJeXl6sQwMAAAAAQBJJgF5bsmSJFixYoHXr1h3wM5vNpqlTp+qee+7RxIkTw3rep59+Wt///vd7Pc7mzZt19NFH9z4gAAAAAEDcYzlAD7W2turyyy/XZZdddtAEgCSZpqnS0lJNnjxZDz/8cJQjPDybzaaUlJRYhwEAAAAAiBJmAvTQ/PnztXjx4mDb7XaruLhYhYWF8vl8WrlypV544QX5/X75/X7Nnz9f2dnZuvjii8Ny/tTUVI0cObJbffbt26edO3cG29/4xjeUmZkZlngAAAAAAPGPJEAPvPzyy1q4cGGwPW7cOC1fvlzDhg0LOW7NmjWaOXOmvvzyS1mWpTlz5uj0009XTk5Or2O48MILdeGFF3arzw033KB777032L7qqqt6HQcAAAAAoO9gOUA3maapm266Kdh2u9165ZVXDkgASNKECRO0dOlS2Wxt/8xer1d33nln1GLtyO/365lnngm2MzMzdd5558UkFgAAAABAbJAE6KY333xTFRUVwfb8+fOVn5/f6fFTpkzR7Nmzg+1FixapoaEhojEezKuvvqpdu3YF21dccYWcTmfU4wAAAAAAxA5JgG4qKSkJaV999dWH7TN37tzg65aWFr3++uthj+tw/vCHP4S0WQoAAAAAAAMPSYBueu2114KvR44c2aXifKeeeqpcLlewvWzZsojE1pkdO3aEJB5OPPFEHXfccVGNAQAAAAAQeyQBuqG+vl7btm0LtouKirrUz+l0atKkScF2eXl52GM7lD/+8Y8KBALBNrMAAAAAAGBgIgnQDevWrQtpd2eLvo7Hrl+/XqZphi2uw+m4FMDtduuSSy6J2rkBAAAAAPGDJEA3bN68OaQ9fPjwLvfteGxTU5N27twZtrgO5e2339bnn38ebM+ePVupqalROTcAAAAAIL6QBOiGvXv3hrQzMjK63Dc9PT2kHa0dAhYtWhTSZikAAAAAAAxcCbEOoC9pbGwMaXcs9nc4SUlJhxwrEhoaGrR06dJg+5hjjtGpp54atvFbWlpCtksEYq2lpSX4v1ybiCdcm4hXXJuIV1ybiFft12ZfFvUkwPLly3XWWWdF+7Rh0dzcHNJ2Op1d7puYmBjSbmpqCktMh/Lcc8/J6/UG23PmzAnr+JZlHfBvAsQDrk3EK65NxCuuTcQrrk0g/KKeBJg5c6by8/P1wx/+UHPmzFFmZma0Q+ix/Z/8+3y+LvfdP2O0/8yASOi4FCAhIUHf/e53wzq+YRgHJDeAWGppaZFlWVybiDtcm4hXXJuIV1ybiFfMBOihzZs36+c//7luueUWzZ49Wz/60Y80ZcqUWITSLcnJySHt7mQl93/yv/9Y4bZu3TqtXLky2J45c6aOOOKIsJ4jMTFRxx13XFjHBHqjoqJCzc3NXJuIO1ybiFdcm4hXXJuIV/1heUrMCgNalqWWlhYtXrxYp556qgoLC/X4449r3759sQrpsPavqr9nz54u962vrw9pp6SkhCOkTlEQEAAAAACwv6gnAdLS0mRZlqS26eRSW0KgvLxc11xzjXJzc3Xdddfpk08+iXZohzVixIiQ9tatW7vcd8uWLcHXSUlJysnJCVtc+/P7/XrmmWeC7ZycHM2cOTNi5wMAAAAA9A1RTwLs2LFDTz75pE444QRZlhVc62MYhizL0t69e/Xoo4/qa1/7mk477TT95S9/UWtra7TDPKhx48aFtDds2NDlvhs3bgy+HjNmjGy2yP3Tv/LKK6qpqQm2v/e97ykhgY0gAAAAAGCgi3oSwOVyac6cOXr//ff14Ycf6vvf/76SkpIOSAZYlqV33nlHl112mfLy8nTTTTeFPE2PhfT0dA0bNizYLisr61I/n8+njz76KNgeP3582GPraP+lAOHeFQAAAAAA0DfFrCaAJE2cOFGLFi1SVVWV7rvvPo0ZM+agSwWqq6v1m9/8RqNGjdJ5552n119/PWYxd5xWv3HjRm3atOmwfd5+++2QIoLnnHNORGKTpC+//FJvvPFGsH3qqafqmGOOidj5AAAAAAB9R0yTAO3S0tJ0/fXXa926dSotLdVFF12khISEA2YHBAIBLVu2TN/61reUn5+vu+++W7W1tVGNddasWSHtJ5544rB9Oh7jdDojuj7/6aefViAQCLYpCAgAAAAAaBcXSYCOpk6dqr/+9a/aunWr7rjjDg0bNuygswO++OIL/eIXv9CwYcN0xRVX6J133olKfDNmzAipDfDQQw9p8+bNnR5fVlampUuXBttz5szpdGeAt956K5j0MAxDV155Zbfje+qpp4KvU1JSNHv27G6PAQAAAADon+IuCdBu6NCh+uUvf6lNmzbpxRdf1De/+U1JOmB2QEtLi/785z/rtNNO04QJE/TYY4+psbExYnHZbDbdddddwfa+fft07rnnatu2bQccW15ertmzZ8s0TUltuwLcfPPNEYvtX//6V0ixwksvvVRutzti5wMAAAAA9C1xmwRoZ7PZgnUANmzYoBtuuEFZWVkHLSS4du1azZs3T7m5uZo/f74+++yziMR0wQUXaO7cucH2J598orFjx+qHP/yhFi5cqAcffFCXXXaZTjjhBFVVVQWPe/LJJ3XkkUdGJCbpwIKALAUAAAAAAHQU90mAjkaMGKH//d//1VtvvaWCgoKQZQIdEwINDQ165JFHNG7cOF188cURSQY8+uijuuSSS4Ltffv26fHHH9e8efN0/fXXa8mSJfL7/ZKkhIQE3X///brsssvCHke7vXv36oUXXgi2jzvuOJ144okROx8AAAAAoO/pM0kAy7L06quv6pxzztH48eO1fv36YI2A9p/vPzvANE09//zz+trXvqbf/OY3YY0nISFBS5Ys0bPPPquxY8ce9BjDMDR16lSVlZXp+uuvD+v597dkyRJ5vd5gm20BAQAAAAD7S4h1AIdTXV2tJ598Uo8//nhw3X37zX77a0kqLCzUWWedpRdeeEGff/65JAWTAT6fTzfddJOqqqr00EMPhTW+4uJiFRcXa/Xq1aqoqNCOHTvkcDiUm5uroqIi5eXldXmsqVOnBn+f7vrhD3+oH/7whz3qCwAAAAAYGOI2CfDvf/9bCxcuVElJifx+/wFT/y3LksPh0KxZs3Tdddfp5JNPliT96le/0j/+8Q898MADWrZsWUiy4NFHH9WFF16oadOmhT3ewsJCFRYWhn1cAAAAAADCJa6WAzQ0NOjhhx/Wcccdp2nTpumvf/2rfD7fAU/+hw4dqltuuUVbtmzRc889F0wAtDvzzDP1yiuv6L333gupHSBJjz/+eFR/JwAAAAAA4kVczARYvXq1Fi5cqD//+c/yer0HfepvWZaKiop07bXXavbs2UpIOHzoJ554ov71r39p9OjR2rt3ryzLUllZWaR/HQAAAAAA4lLMkgA+n09/+ctf9Oijj+r999+XpJCb//a2y+XSJZdcouuuu07HH398t8+TlZWl4uJiPfroo5KkXbt2hek3AAAAAAD0RMC05PW1yh+w5LAbcjsTZLcZh++IXot6EmDjxo36/e9/r6efflq7d++WpAOq+luWpeHDh+uaa67R1VdfrcGDB/fqnKNGjQq+9vl8vRoLAAAAANAzHq9fa6s8KttUq5qGFpmmJZvNUHZKooryszQ+N01pbkesw+zXop4EOOaYYyTpoFP+JemMM87Qtddeq3PPPVc2W3hKFiQlJQXPBQAAAACIroBpqbRyl1ZU1miP1ye3067UJIfshqGAZWmnp1mLV25RhtupaQXZml4wlJkBERL1JEDHp/7t7ZSUFF1xxRW69tprVVBQEPFzAwAAAACiI2BaKlm1XaXrq5We5NSoIcmy7XdflupyyLQs1TX6VPJxlTxev2ZNzCMREAExqwlgWZbGjBmj//qv/9KVV16p5OTkiJ2ruLhYZ511VsTGBwAAAAAcXGnlLpWur1ZOqksprs6n+tuMtmUBLodNpeurleZ2aMa4nChGOjBEPQlgs9l0zjnn6Nprr9WMGTOics7k5OSIJhkAAAAAAAfyeP1aUVmj9CTnIRMAHaW4HGr2m1pRWaMTR2QqLYkaAeEU9STAhg0bdPTRR0f7tAAAAACAKFtb5dEer0+jhnTvoWxmslOfVzdq7XaPThmdFaHoBqbwVN7rBhIAAAAAAND/BUxLZZtq5XbaD6gBcDg2w5DbYVfZplqZphWhCAemqM8E+Pe//x18fcwxxygnp3drPHbu3KnPPvss2D7ttNN6NR4AAAAAoPe8vlbVNLQotYfT+dOSHKptaJHXH1ByYszK2fU7Uf+XnDp1arBC/8KFC/WDH/ygV+O99NJLmjdvnqS2LQBbW1t7HSMAAAAAoHf8AUumacnewx3a7DZDAdOSr9WUEsMc3AAWk3RKuLfqsyymhwAAAABAPHHYDdlshgI9vF8LmJbsNkPOhKivYu/XYvKvGc4EAAAAAAAg/ridCcpOSdTeJn+P+nua/MpKSZTbYQ9zZAMbKRUAAAAAQNjZbYaK8rPk9QVkdnM2gGlZ8voDKsrPks3GQ+Rw6vNJAJ/PF3ztdDpjGAkAAAAAoKPxuWnKcDtV1+g7/MEd1DX6NNjt1Pi8tAhFNnD1+SRAVVVV8HVKSkoMIwEAAAAAdJTmdmhaQbbqm3xqaO7asoCGZr/qm3yaVpCttB7uLIDO9fl9Ft544w1JbXUGhg0bFuNoAAAAAAAdTS8YKo/Xr9L11Wr2m8pMdsp2kDpxpmWprtGn+iafpo8ZoukFQ2MQbf/X55IAlmXJ4/Ho008/1aOPPqo1a9YEfzZhwoQYRgYAAAAA2J/dZmjWxDyluR1aUVmjDdWNcjvtSnU5gtsAepr8avIHlOF2atbxuZpeMFR2agFERNiTALfffrvuuOOOQx7TvqXfNddco2uuuSZs5z7//PPDNhYAAAAAIDzsNkMzxuXoxBGZWrvdo7JNtaptaAluA3hEuktF+Vkan5fGEoAIi8hMAKuLlR+7elxnDMOQYRiyLEvjx4/Xt771rV6NBwAAAACInLQkh04ZnaUpIzPl9QfkazXlTLDJ7bCzC0CURGw5gHGQNR5S6I1/Z8d0VftY48aN0wsvvCC7nf0jAQAAACDe2WyGkhMTpMRYRzLwRCwJ0JWn/D2ZCWC325WSkqKcnBwdf/zxOu+883ThhRfK4WDKCAAAAAAAhxL2JMCtt96qW2+9tdOf22y24AyAhQsX6gc/+EG4QwAAAAAAAAdhi3UAAAAAAAAgOmKyRWBvCwICAAAAAIDui3oSwDTNaJ8SAAAAAACI5QAAAAAAAAwYJAEAAAAAABggSAIAAAAAADBAkAQAAAAAAGCACFthwDvuuOOA791yyy1dOi6cDnZOAAAAAAAQxiTAbbfdJsMwQr53sBvygx0XTiQBAAAAAAA4uIhsEWhZ1mFv9C3LCtv5DMPo0jkBAAAAABjIwpoE6OqNfTgTAJEYDwAAAACA/ihsSYBbb701rMcBAAAAAIDwIgkAAAAAAMAAwRaBAAAAAAAMECQBAAAAAAAYIEgCAAAAAAAwQJAEAAAAAABggCAJAAAAAADAAEESAAAAAACAAYIkAAAAAAAAA0RCuAay2+3hGqrHDMNQa2trrMMAAAAAACAuhS0JYFlWuIYCAAAAAAARELYkgNT2JD5WSEIAAAAAAHBoYU0CcCMOAAAAAED8ClsSwDTNcA3VJ5WXl6uiokJVVVVKTExUbm6uTjrpJOXl5cUknh07duiDDz7Qjh07tHv3bg0ePFhDhgzR0UcfrfHjxyshIaz5HwAAAABAH8CdYC8tWbJECxYs0Lp16w74mc1m09SpU3XPPfdo4sSJUYln6dKlevDBB/Xuu+92mpgZNGiQzjjjDC1cuFBHHnlkVOICAAAAAMQeWwT2UGtrqy6//HJddtllB00ASG2zI0pLSzV58mQ9/PDDEY1n586dOuuss/Sd73xH//nPfw45M2Pfvn16+eWX9eWXX0Y0JgAAAABAfGEmQA/Nnz9fixcvDrbdbreKi4tVWFgon8+nlStX6oUXXpDf75ff79f8+fOVnZ2tiy++OOyx7Ny5U1OnTtX69euD38vIyNA555yj8ePHKzs7W16vV1988YXef/99vfvuu2ylCAAAAAADEEmAHnj55Ze1cOHCYHvcuHFavny5hg0bFnLcmjVrNHPmTH355ZeyLEtz5szR6aefrpycnLDF0tLSohkzZgQTADabTb/4xS900003KSkp6aB96uvr9cwzzygjIyNscQAAAAAA4h/LAbrJNE3ddNNNwbbb7dYrr7xyQAJAkiZMmKClS5fKZmv7Z/Z6vbrzzjvDGs/tt9+uiooKSW1bND711FNasGBBpwkASUpPT9d1112nkSNHhjUWAAAAAEB8IwnQTW+++WbwpltqWxaQn5/f6fFTpkzR7Nmzg+1FixapoaEhLLFs2LBB99xzT7A9Z84cffe73w3L2AAAAACA/ockQDeVlJSEtK+++urD9pk7d27wdUtLi15//fWwxPLYY48F1/Y7HA796le/Csu4AAAAAID+KWw1Ae64444DvnfLLbd06bhwOtg5w+m1114Lvh45cmSXptSfeuqpcrlcam5uliQtW7ZM3/nOd3oVh9/v19NPPx1sn3vuuRoyZEivxgQAAAAA9G9hSwLcdtttMgwj5HsHuyE/2HHhFMkkQH19vbZt2xZsFxUVdamf0+nUpEmT9M4770iSysvLex3L6tWrVVtbG2zPnDmz12MCAAAAAPq3iCwHsCyrS8eE66ur5+ytdevWhbS7U1iv47Hr16+XaZq9iuX9998PaU+ePFmS9MUXX+iWW27RxIkTlZmZqaSkJA0bNkzf+MY3dO+992r37t29Oi8AAAAAoO8KaxKg40354Y4L93mjYfPmzSHt4cOHd7lvx2Obmpq0c+fOXsWyevXq4GvDMDR69Gjdd999Gjt2rO688059/PHH2r17t5qbm7V9+3a9+eabuuGGGzRixAg99NBDvTo3AAAAAKBvCttygFtvvTWsx8WjvXv3hrQzMjK63Dc9PT2k3dsdAmpqaoKvs7KydOedd2rBggXB79ntdg0dOlQ+ny9k2cDevXs1f/58ff7553rwwQd7FQMAAAAAoG8hCdANjY2NIW2Xy9XlvklJSYccq7vq6+tDXrcnALKysnTXXXfpkksuUWpqqiRp+/bteuSRR3TvvfcGdxN46KGHVFhYqDlz5vQ4hpaWlpDtEoFYa2lpCf4v1ybiCdcm4hXXJuIV1ybiVfu12ZeFLQkwELRX92/ndDq73DcxMTGk3dTU1KtYOiYR/H6/pLYEwDvvvKNjjjkm5Ni8vDz9+te/1te//nVddNFFweUTP/vZz3TxxRdr0KBBPYrBsqwD/k2AeMC1iXjFtYl4xbWJeMW1CYQfSYBu2P/Jv8/n63Lf/TNG+88M6G0sknTfffcdkADo6MILL9ScOXO0aNEiSVJtba0WL16sH/zgBz2KwTCMA5IbQCy1tLTIsiyuTcQdrk3EK65NxCuuTcQrZgIMMMnJySHt7mQl93/yv/9Y3ZWSkhLSHjJkiC655JLD9vvv//7vYBJAkv7xj3/0OAmQmJio4447rkd9gUioqKhQc3Mz1ybiDtcm4hXXJuIV1ybiVX9YnhKRLQL7q/Y19u327NnT5b4d1/BLB97E9zaWk08+WQkJh8/pHHvsscrKygq2V61a1as4AAAAAAB9B0mAbhgxYkRIe+vWrV3uu2XLluDrpKQk5eTk9CqW/Pz8kPZRRx3V5b4dj+24ywAAAAAAoH+Lq+UAn376qcrKyrRmzRrV1dUFn7RnZGQoMzNTEyZM0OTJkzVu3LiYxLf/eTds2NDlvhs3bgy+HjNmjGy23uVfjj322JB2d9ZKdawnQKEVAAAAABg4Yp4EaGho0BNPPKHf//73ITfKh5Kfn69rrrlGV1999QHT4iMpPT1dw4YN07Zt2yRJZWVlXern8/n00UcfBdvjx4/vdSyFhYUh7e4sTairqwu+zszM7HUsAAAAAIC+IabLAV577TWNGzdON9xwgzZs2CDLsoJf++v4s40bN+qGG27Q2LFj9eqrr0Y15pkzZwZfb9y4UZs2bTpsn7fffjvkifs555zT6ziOO+64kOUJq1ev7lK/ffv2hcxg2H+JAwAAAACg/4pZEuBXv/qVzj33XFVVVQW3/2j/kkJv+tuTAh2PsSxLO3bs0Pnnn68FCxZELe5Zs2aFtJ944onD9ul4jNPpDEkk9Ma3v/3t4OuPPvqoSwmJ559/XoFAINiePn16WGIBAAAAAMS/mCQB7rvvPv3yl78Muflvv9kfMmSIzj77bF1zzTX6+c9/rp/97Ge65pprdPbZZ2vIkCHB4zr2u/XWW/W73/0uKrHPmDEjpDbAQw89pM2bN3d6fFlZmZYuXRpsz5kzp9OdAd56662QRMeVV155yFiuvfbaYC0A0zT1s5/97JDHNzY26rbbbgu2bTabLr/88kP2AQAAAAD0H1FPAlRWVuoXv/jFAU/9L7vsMr3zzjvasWOHli1bpkceeUS/+tWv9Otf/1qPPPKIli1bph07dujdd9/VpZdeGjI7wLIs3Xjjjfr0008jHr/NZtNdd90VbO/bt0/nnntusE5AR+Xl5Zo9e7ZM05TUtivAzTffHLZYhg8fruuuuy7Yfv755/XjH/9YPp/vgGNramp0zjnn6Isvvgh+74orrtCYMWPCFg8AAAAAIL5FvTDgz3/+c/l8vuDNe1paml544YUuT0ufPHmyJk+erKuuukoXXXSRPB6PJMnv9+vGG29USUlJJMOXJF1wwQWaO3ducJr/J598orFjx6q4uFiFhYXy+/1677339Pzzz8vv9wf7PfnkkzryyCPDGsudd96psrIyvfPOO5KkBx54QC+99JK+853vaPTo0fL7/fr444/117/+NfhvJUljx47Vww8/HNZYAAAAAADxLapJAI/Ho+XLlwcTAA6HQ2+++aZOOOGEbo81ffp0vfHGGzr55JMVCARkWZZef/117d27Nyo7Bjz66KNqaGjQc889J6ltRsDjjz9+0GMTEhJ077336rLLLgt7HC6XSy+//LLOP/98/ec//5EkffHFF7r77rs77VNUVKS//e1vSk5ODns8AAAAAID4FdXlAG+//XZwqrphGLr22mt7lABo9/Wvf13XXnttcGmA3+/Xv/71r7DEejgJCQlasmSJnn32WY0dO/agxxiGoalTp6qsrEzXX399xGIZPHiw/vWvf+mBBx5Qfn5+p8cdddRRevjhh/XWW28pJycnYvEAAAAAAOJTVGcCbN++XZKChf0OV/iuK+bMmaP7778/WF+gqqqq12N2R3FxsYqLi7V69WpVVFRox44dcjgcys3NVVFRkfLy8ro81tSpUw+6PWJX2Gw2zZ8/X/Pnz9dHH32kTz/9VDt27JBhGMrOztakSZN03HHH9WhsAAAAAED/ENUkwO7du4Ov7Xa7xo8f3+sxjz32WCUkJAS3vduzZ0+vx+yJwsJCFRYWxuTc+5s0aZImTZoU6zAAAAAAAHEmqssBOq5B72ybvO4yDEMpKSnBJ+iscwcAAAAA4OCimgQYNWpU8LXH41Fra2uvx2xtbVV9fX1wOcDIkSN7PSYAAAAAAP1RVJMAU6ZMUUJC2woEy7L073//u9djvv3227IsS5ZlyW636+STT+71mAAAAAAA9EdRTQKkp6fr3HPPDbYfeeSRXo/50EMPSWpbFnD++ecrLS2t12MCAAAAANAfRTUJIEl33XWXEhMTJUkvvviinnrqqR6P9Yc//EEvvviiDMNQYmKiFixYEK4wAQAAAADod6KeBCgoKNDjjz8uqW1JwNy5c3XXXXd1qz5Aa2ur7rrrLv3gBz8Ifu/xxx/XmDFjwh4vAAAAAAD9RdSTAJJ0xRVX6Pnnn1d6erpM09Qtt9yicePG6d5779Xnn3/eab/PP/9c99xzj4499ljdcsstMk1TGRkZeuGFF3T55ZdH8TcAAAAAAKDvSQjXQNOnT+92n6FDh6q+vl6WZWnDhg362c9+pp/97GdKTk7WUUcdpdTUVBmGIY/Ho61bt6qxsVGSgtsBGoahoUOH6sEHH9SDDz4owzD0z3/+M1y/EgAAAAAA/UrYkgBvvfVWcJu+7ujYp/3mvqGhQZ988knwZ+3fP1if9evXa/369bIsq0fnBwAAAABgoAhbEiAcOruJ5+YeAAAAAIDeC2sSYP8n9gAAAAAAIH6ELQmwYsWKcA0FAAAAAAAiIGxJgNNPPz1cQwEAAAAAgAiIyRaBAAAAAAAg+kgCAAAAAAAwQMTV7gBAdwRMS15fq/wBSw67IbczQXYbO0kAAAAAQGdIAqDP8Xj9WlvlUdmmWtU0tMg0LdlshrJTElWUn6XxuWlKcztiHSYAAAAAxB2SAOgzAqal0spdWlFZoz1en9xOu1KTHLIbhgKWpZ2eZi1euUUZbqemFWRresFQZgYAAAAAQAckAdAnBExLJau2q3R9tdKTnBo1JFk2I/QGP9XlkGlZqmv0qeTjKnm8fs2amEciAAAAAAD+T9wkARobG/XBBx9o69atqq+vV0NDg0zT7PY4t9xySwSiQ6yVVu5S6fpq5aS6lOLqfKq/zWhbFuBy2FS6vlppbodmjMuJYqQAAAAAEL9imgRobW3VX/7yFz388MP68MMPe3TTvz+SAP2Px+vXisoapSc5D5kA6CjF5VCz39SKyhqdOCJTaUnUCAAAAACAmCUBNmzYoNmzZ6u8vFySZFlWj8cyDEOWZckwmPbdH62t8miP16dRQ5K71S8z2anPqxu1drtHp4zOilB0AAAAANB32GJx0s8++0wnnniiysvLgzf/HW/gDcMIfnXU8fsdf96bBALiW8C0VLapVm6n/YAaAIdjMwy5HXaVbaqVaXKNAAAAAEDUZwL4fD5dcMEFqq+vD97IW5alr3/965o8ebI2bdqkZcuWSWq76b/11lvV2Nio6upqffDBB6qsrAz+TJJOO+00TZs2Ldq/BqLE62tVTUOLUns4nT8tyaHahhZ5/QElJ8ZNCQwAAAAAiImo3xX98Y9/VGVlZfDmPzMzU3/5y180ffp0SdJjjz0WTAJI0q233hrSf8OGDfrNb36jp556SpL0n//8RzNmzNBNN90UvV8CUeMPWDJNS/YeLvWw2wwFTEu+VlNKDHNwAAAAANDHRH05wEMPPRRMANjtdr366qvBBEBXjBo1Sk8++aReeeUVJSUlyTRN3XLLLfrNb34TwagRKw67IZvNUKCHSz4CpiW7zZAzISYrXwAAAAAgrkT1zqi2tlYVFRWS2qbzX3rppTrppJN6NNbMmTP15z//WVJbTYCbb75Zq1atClusiA9uZ4KyUxK1t8nfo/6eJr+yUhLldtjDHBkAAAAA9D1RTQKsXLlS0leF/K644opejXfeeefpggsukCSZpqk77rijV+Mh/ththorys+T1BWR2czaAaVny+gMqys+SzcbOEQAAAAAQ1STAzp07Q9pf//rXD9vH5/Md8uc//OEPJbUlFl577TXt3bu35wEiLo3PTVOG26m6xkNfC/ura/RpsNup8XlpEYoMAAAAAPqWqCYBdu/eHXydlJSk9PT0A45xOp0h7ebm5kOOefrpp0tqW14QCAT03nvv9T5QxJU0t0PTCrJV3+RTQ3PXlgU0NPtV3+TTtIJspfVwZwEAAAAA6G+imgQIBALB1263+6DHpKSkhLSrq6sPOabL5VJaWlpwicGGDRt6GSXi0fSCoZo+Zoh27m1WTUNLp0sDTMtSTUOLdu5t1vQxQzS9YGiUIwUAAMBAETAtNTT7tXtf28OqgNmzYtZANEV1i8DU1NTg68bGxsMeI0nbtm3TqFGjDjmuaZoy/m8LOY/H08soEY/sNkOzJuYpze3QisoabahulNtpV6rLEdwG0NPkV5M/oAy3U7OOz9X0gqGyUwsAAAAAYebx+rW2yqOyTbVtD6hMSzaboeyURBXlZ2l8bprS3MxGRXyKahIgNzc3+LqlpUUtLS1KTAzdvH306NGSFLyp/+ijjzRt2rROx6ytrVVDQ0PweIeD/9j6K7vN0IxxOTpxRKbWbm/7o1vb0BLcBvCIdFfbH928NJYAAAAAIOwCpqXSyl1aUVmjPV5f20OpJIfsRtuW1js9zVq8cosy3E5NK8jmoRTiUlSTAGPHjg1pf/rppyosLAz53ogRIzRo0CB5vV5J0rJly/STn/yk0zFffvllSW2FAQ3DUHZ2dniDRtxJS3LolNFZmjIyU15/QL5WU84Em9wOO7sAAAAAICICpqWSVdtVur5a6UlOjRqSLJsR+tkz1eWQaVmqa/Sp5OMqebx+zZqYRyIAcSWqNQFGjRoVMt1/9erVBz3uzDPPlGVZsixL//73v/XWW28d9Ljdu3fr9ttvD84CkKRJkyaFM2TEMZvNUHJiggYPcio5MYEEAAAAACKmtHKXStdXKyfVpeyUxAMSAO1sRtuygJxUl0rXV6u0cleUIwUOLapJAJvNplNPPTXYfuONNw563CWXXCKpbUmAZVm68MIL9cc//lEtLS3BY9566y2ddtpp2rZtW/B7Rx11lI477rgIRQ8AAABgIPJ4/VpRWaP0JKdSXF1bdpricig9yakVlTXyNHVthysgGqKaBJCks846K/j6jTfekM934N7vs2fP1rHHHiupLRFQX1+vOXPmKDU1VXl5eUpNTdUZZ5yhdevWBRMFhmHohhtuiNrvAQAAAGBgWFvl0R6vT5nJzsMf3EFmslO7vT6t3U7xcsSPqCcBLrroItlsNlmWpfr6ei1evPjAoGw2PfHEE0pKSpL01YwAv9+vL7/8Uo2NjcEb/3Znnnmm5s2bF7XfAwAAAED/FzAtlW2qldtp73QJQGdshiG3w66yTbUy2T4QcSKqhQElaejQoXr55ZfV0NAgSRo2bNhBj5s8ebJeeuklXXbZZaqpqQm54W9n/d9e8eedd57+/Oc/Ry5oAAAAAAOS19eqmoYWpfZw96m0JIdqG1rk9QeUnBj12y/gADG5CmfOnNml48444wytX79e9913n0pKSrRu3TqZpilJcrvdmjp1qn70ox/pW9/6ViTDBQAAADBA+QOWTNOSvZuzANrZbYYCpiVfqyklHv54INLiPhWVnp6u22+/XbfffrtM01Rtba0cDocyMjJiHRoAAACAfs5hN2SzGQpYPZvOHzAt2W2GnAlRX4kNHFSfuhJtNpuGDBlCAgAAAABAVLidCcpOSdTeHlb49zT5lZWSKLfDHubIgJ7pU0kAAAAAAIgmu81QUX6WvL6AzG7OBjAtS15/QEX5WbLZeracAAg3kgAAAAAAcAjjc9OU4XaqrvHA7c0Ppa7Rp8Fup8bnpUUoMqD7SAIAAAAAwCGkuR2aVpCt+iafGpq7tiygodmv+iafphVkK62HOwsAkRBXhQEbGxv1/vvva82aNaqrq9OePXskSRkZGcrMzNSECRN04oknKjk5OcaRAgAAABhIphcMlcfrV+n6ajX7TWUmO2U7yI4BpmWprtGn+iafpo8ZoukFQ2MQLdC5mCcBTNPUiy++qIULF+qtt94KbgHYGZvNptNPP13z5s3TBRdcIJuNyQwAAAAAIstuMzRrYp7S3A6tqKzRhupGuZ12pbocwW0APU1+NfkDynA7Nev4XE0vGCo7tQAQZ2KaBFizZo2+//3va82aNZIkqwuFNgKBgFasWKEVK1boa1/7mp566ikVFhZGOFIAAAAAA53dZmjGuBydOCJTa7d7VLapVrUNLcFtAI9Id6koP0vj89JYAoC4FbMkwDPPPKOrr75ara2tsixLhmHI6DCdZv+EgLHfVBvLsrRmzRqddNJJeuKJJ/Td7343KnF3pry8XBUVFaqqqlJiYqJyc3N10kknKS8vL6ZxAQAAAAivtCSHThmdpSkjM+X1B+RrNeVMsMntsEdtF4CAacnra5U/YMlhN+R2JjDrAF0SkyTAc889p+9///vBqf+GYQRv+m02m8aMGaOjjz5aaWlpsixLe/fu1RdffKH169eH9JEkv9+vq666Sg6HQ5deemnUf5clS5ZowYIFWrdu3QE/s9lsmjp1qu655x5NnDgx7Od++umn9f3vf79HfZuamuRyucIcEQAAADBw2GyGkhMTpMTondPj9WttVdsshJqGFpmmJZvNUHZKYtsshNw0pbmZhYDORT0JUFVVpR/+8IcyTTN4I29ZlqZMmaL/+q//0vnnny+3233Qvl6vVy+99JIeffRRvfPOO8HZA4FAQD/60Y902mmnKTc3Nyq/R2trq6688kotXry402NM01RpaakmT56s3/3ud7r22mujEhsAAACA/iVgWiqt3KUVlTXa4/W11SNIcshuGApYlnZ6mrV45RZluJ2aVpBNPQJ0KupJgF/84hdqaGgIPv13Op1auHBhl55ou91uXXrppbr00kv1hz/8QfPmzZPf37ZFR2Njo2688Ub98Y9/jPSvIEmaP39+SALA7XaruLhYhYWF8vl8WrlypV544QX5/X75/X7Nnz9f2dnZuvjiiyMW08iRI7t8LAUVAQAAgL4hYFoqWbVdpeurlZ7k1KghyQfsTJDqcgR3Jij5uEoer1+zJuaRCMABopoEaGpqUklJSTABYLPZ9Le//U0zZ87s9lhz5szR0KFDdd555wXH+9vf/qbf//73SkpKikD0X3n55Ze1cOHCYHvcuHFavny5hg0bFnLcmjVrNHPmTH355ZeyLEtz5szR6aefrpycnIjEtWHDhoiMCwAAACB2Sit3qXR9tXJSXUpxdT7V32a0LQtwOWwqXV+tNLdDM8ZF5t4DfVdUHwf/+9//1r59+yS1ren/3ve+16MEQLtzzjlH3/ve94L1BLxer/7973+HJdbOmKapm266Kdh2u9165ZVXDkgASNKECRO0dOnS4FN3r9erO++8M6LxAQAAAOg/PF6/VlTWKD3JecgEQEcpLofSk5xaUVkjT5M/whGir4lqEmDr1q2Svqr8/8Mf/rDXY/7oRz+S9FWhwPZzRMqbb76pioqKYHv+/PnKz8/v9PgpU6Zo9uzZwfaiRYvU0NAQ0RgBAAAA9A9rqzza4/UpM9nZrX6ZyU7t9vq0drsnQpGhr4pqEqCmpuarE9tsOuGEE3o95gknnBCyvr22trbXYx5KSUlJSPvqq68+bJ+5c+cGX7e0tOj1118Pe1wAAAAA+peAaalsU63cTvsBNQAOx2YYcjvsKttUK9O0Dt8BA0ZUkwAd1+qnpaWFpTidzWYLbiW4/zki4bXXXgu+HjlyZJeK8Z166qkh2/EtW7YsIrEBAAAA6D+8vlbVNLQoNalnW/6lJTlU29Airz8Q5sjQl0U1CTBixIjga4/HI9M0ez2maZryeDzB5QBHH310r8fsTH19vbZt2xZsFxUVdamf0+nUpEmTgu3y8vKwxwYAAACgf/EHLJmmJXs3ZwG0s9sMBUxLvtbe33eh/4hqEqCoqCh4s26apj788MNej/nhhx/KNE1ZliXDMDRlypRej9mZdevWhbS7syVfx2PXr18flgTI/ubMmaNx48YpNTVViYmJOuKII3TiiSfqf/7nf/Svf/0r7OcDAAAAEDkOuyGbzVDA6tl0/oBpyW4z5Exge3B8JapXw9ChQzV9+vRg+4knnuj1mI899piktsKA06dP15AhQ3o9Zmc2b94c0h4+fHiX+3Y8tqmpSTt37gxbXO2eeuopffrpp2poaJDP59POnTv1wQcf6L777tPUqVN10kknac2aNWE/LwAAAIDwczsTlJ2SqL09rPDvafIrKyVRboc9zJGhL4t6SujOO+8M1gJ46qmn9MYbb/R4rOXLl+vpp5+WYRiy2WwR335v7969Ie2MjIwu901PTw9pR2KHAMMwlJmZqeHDhx80tvfff1+TJ0/W0qVLw35uAAAAoK8JmJYamv3avc+nhma/AnFWQM9uM1SUnyWvLyCzm7MBTMuS1x9QUX6WbLaeLSdA/5QQ7RNOnjxZCxYs0I033ijLsjRr1iw98cQTKi4u7tY4ixcv1ty5c4MFARcsWKCTTjopEiEHNTY2hrQ7Fvs7nP0LFu4/Vk/l5eWpuLhYZ599tiZOnKiUlJTgz2pra/X666/rnnvu0dq1ayVJzc3NuuKKK3TkkUfq5JNP7tW5W1paQrZLBGKtpaUl+L9cm4gnXJuIV1ybiFeRvjYbWwLasNun8p3N2tMckGlJNkPKcNn1tRyXRg12KjkxPp6eJ7QEZDU36vOtjcpI6npMe5raigEmNHypiorwz0IeqNqvzb4s6kkASfr5z3+upKQk/fSnP1Vzc7O++93v6oknntC1116rb33rW53eXDc3N+uVV17Ro48+qn//+9+yLEtOp1N333235s+fH/G4m5ubQ9pOZ9f36kxMTAxpNzU19Tqe8847T1dccYXs9oP/McjKytIVV1yhSy65RNddd11w6URLS4t+8IMfaO3atb3aocGyrAP+TYB4wLWJeMW1iXjFtYl4Fe5rM2BZWrWjRat2+NTgM5VoN5TsNGSzSaYl7WoI6NX6FqU4bZp4hFMTj0jscVG+cEmQNGGIXf/e0iy7AnI7Dv/53es35Wk2ddpRLiWYPvGfNzoKWxJgzpw53e4zfvx4rVq1SpZl6e2339bbb78tu92ugoICDR8+XKmpqTIMQx6PR1u2bFFlZaUCgbaMVnshwPHjx2v16tWaM2eODMPQokWLwvUrHWD/5ITP5+ty3/0zRuHYynDw4MFdOs7hcGjhwoXatm1bcIvDdevW6YUXXtDs2bN7fH7DMA5IbgCx1NLSEvzbwLWJeMK1iXjFtYl4FYlrM2Ba+s/mffqgyqcUp13DMxyy7XeDn5rUNo3e02zqP9t9arESNG3EINljPJ1+ytGJarES9EGVVwEZSnPZDohd+ir2Bp900rBkTTk69rH3N8wE6KB9bX53tfdpn9bf2tqqiooKffLJJyHHWfutgWnvt2rVqmAiIdJJgOTk5JB2d7KS+z/533+sSDMMQ/fee28wCSBJr776aq+SAImJiTruuOPCER4QFhUVFWpububaRNzh2kS84tpEvIrEtfnmup36rNGnMcOGKsXlOOSxOZIamv36bG+zjk3I1oxxOWGJoTeOO85SaeUurais0R6vT26HXakuR3AbQE+TX03+gAYPdurbBdmaXjCUBEAE9IelUzFZDnAwh0sg9CTBEG6pqakh7T179nS5b319fUi749r9aBk7dqwKCgpUWVkpSXrvvfeiHgMAAAAQbR6vXysqa5Se5DxsAqBdisuhZr+pFZU1OnFEptKSutYvUuw2QzPG5ejEEZlau92jsk21qm1oCW4DeES6S0X5WRqflxbzWBHfwpoE2P9pfX8zYsSIkPbWrVu73HfLli3B10lJScrJiU02ccyYMcEkQHV1dUxiAAAAAKJpbZVHe7w+jRrSvdm4mclOfV7dqLXbPTpldFaEouuetCSHThmdpSkjM+X1B+RrNeVMsMntsLMLALokbEmAp556KlxDxa1x48aFtDds2NDlvhs3bgy+HjNmTK8K8vVGx1oEXq83JjEAAAAA0RIwLZVtqpXbaT/oOvpDsRmG3A67yjbVasrIzLi6ybbZDCUnJkiU80A3hS0J8L3vfS9cQ8Wt9PR0DRs2TNu2bZMklZWVdamfz+fTRx99FGyPHz8+IvF1xa5du4Kvs7LiI5sJAAAARIrX16qahhal9nCKfFqSQ7UNLfL6A2033UAfF5vH0X3YzJkzg683btyoTZs2HbbP22+/HVJE8JxzzolIbIfj8/n0wQcfBNv7L28AAAAA+ht/wJJpWj3e6q+98J6v1QxzZEBskAToplmzZoW0n3jiicP26XiM0+kMSSRE0x/+8Ac1NjYG2zNmzIhJHAAAAEC0OOyGbDZDgR7WL2svvOdM4NYJ/QNXcjfNmDEjpDbAQw89pM2bN3d6fFlZmZYuXRpsz5kzp9OdAd566y0ZhhH8uvLKKzsdd/8tBw/nk08+0c9//vNgOyEhQZdddlm3xgAAAAD6GrczQdkpidrb5O9Rf0+TX1kpiXI77GGODIgNkgDdZLPZdNdddwXb+/bt07nnnhusE9BReXm5Zs+eLdNsmzqUlJSkm2++OSxx3H333TrvvPNUWlqqQCDQ6XGWZemvf/2rTj31VHk8nuD3f/CDH2j06NFhiQUAAACIV3aboaL8LHl9AZndnA1gWpa8/oCK8rPiqigg0BtUtuiBCy64QHPnzg1O8//kk080duxYFRcXq7CwUH6/X++9956ef/55+f1fZRyffPJJHXnkkWGJwbIsvfLKK3rllVc0ZMgQnXzyyRo/fryGDBmi5ORkNTQ06LPPPtPy5cv1+eefh/Q95ZRT9Nvf/jYscQAAAADxbnxumjLcTtU1+pSd0vVy+nWNPg12OzU+Ly2C0QHRFTdJgC+++ELLly/XO++8o/Lycu3evVu7d++WYRjKyMjQ4MGDNWHCBE2ZMkVnnXWWjj766JjG++ijj6qhoUHPPfecpLYZAY8//vhBj01ISNC9994bsen31dXVKikpUUlJyWGPveKKK/TII4/I5XJFJBYAAAAg3qS5HZpWkK2Sj6vkctiU4jr8TgENzX7VN/k06/hcpfVwZwEgHsU8CfDhhx/qrrvu0quvvhqcNm/tN03H6/WqqqpKFRUVWrx4sWw2m84991zdeOONOuGEE2IRthISErRkyRJ961vf0l133aVPP/30gGMMw9Dpp5+ue+65J+xxnnHGGfr8889VVlZ2yJoE0lfFCOfPn69p06aFNQ4AAACgL5heMFQer1+l66vV7DeVmeyU7SA7BpiWpbpGn+qbfJo+ZoimFwyNQbRA5MQsCWBZlu666y7dcccdCgQCITf+Rifbd7QfEwgE9NJLL+nVV1/VrbfeqhtvvLHTPpFWXFys4uJirV69WhUVFdqxY4ccDodyc3NVVFSkvLy8Lo81derUAxIgnTn11FN16qmnSpJ27dql8vJybd26Vbt371Zzc7MGDRqkjIwMHXPMMZo0aRJP/gEAADCg2W2GZk3MU5rboRWVNdpQ3Si3065UlyO4DaCnya8mf0AZbqdmHZ+r6QVDZacWAPqZmCUBrrrqKv3xj38M3vS238RblnXIG+GOx7W2tuqWW27Rpk2btGjRosgHfQiFhYUqLCyMybmHDh3Kdn8AAADAYdhthmaMy9GJIzK1drtHZZtqVdvQEtwG8Ih0l4ryszQ+L40lAOi3YpIEWLBggZ5++mlJoTf1brdbZ511lk444QTl5+crLa2tAIfH49GmTZv04Ycf6o033tC+fftC+j399NMaOXKkbrzxxlj8OgAAAAD6kLQkh04ZnaUpIzPl9QfkazXlTLDJ7bCzCwD6vagnAbZs2aIFCxaE3MSnpKTotttu09y5c5WcnHzI/vv27dMTTzyh2267TQ0NDTIMQ5Zl6c4779Tll1+uo446Khq/BgAAAIA+zmYzlJyYIHV9wwCgz7NF+4QLFiyQz+eT1JYAGDVqlMrLy/Xf//3fh00ASNKgQYP04x//WGvWrNHIkSOD3/f5fFqwYEHE4gYAAAAAoK+LahLAsiy9+OKLwaf3KSkp+sc//qHhw4d3e6zhw4frH//4h5KTk4PjdWWLPAAAAAAABqqoJgE+/PBD1dXVSWqrBfDTn/60V9P3jzrqKP30pz8NFhLcvXu3Pvzww7DECgAAAABAfxPVJMCGDRskfbXV3yWXXNLrMS+99FJJXxUY/Pzzz3s9JgAAAAAA/VFUkwA1NTXB1w6HI2RNf0/l5+fL6XQe9BwAAAAAAOArUU0CeL3e4Gu32x22cTuO1dTUFLZxAQAAAADoT6KaBMjKygq+9ng8amlp6fWYLS0tqq+vD7YzMzN7PSYAAAAAAP1RVJMAQ4cODWn/85//7PWYpaWlkr6qM5CTk9PrMQEAAAAA6I+imgSYPHmyDMMIFvG7//77ez3mfffdF3xtGIYmT57c6zEBAAAAAOiPopoEyM7O1sSJEyW1Pbn/5z//qd/+9rc9Hu/+++/XP/7xj2BiYeLEiSFLDgAAAAAAwFeimgSQpHnz5smyLBmGIcuy9NOf/lQ///nPu1UfoKWlRb/4xS/0//7f/wuO0z42AAAAAAA4uKgnAa688kqNGzdOkoI38Pfcc4/GjBmjX/3qV6qsrOy0b2VlpX71q1+poKBAd999d/Dm3zAMHXvssfre974Xld8BAAAAAIC+KCHaJzQMQ88//7xOOeUU7dmzJ5gI2Lp1q26++WbdfPPNGjRokIYPH67U1FQZhiGPx6MtW7Zo3759khRy829ZlgYPHqylS5cGaw0AAAAAAIADRT0JIEkFBQV6+eWXNWvWLNXU1ARv3ttv7hsbG/XJJ58c8P12Hb+fnZ2tF198UWPGjInibwAAAAAAQN8T9eUA7aZMmaLy8nKdddZZsiwrWCeg41e7/b/ffvzMmTNVXl6uoqKiWP0aAAAAAAD0GTFLAkjS0KFD9dprr+mDDz7Q5ZdfrszMzOANfmdfmZmZ+u53v6sPPvhAr776qoYOHRrLXwEAAAAAgD4jJssB9jdp0iT96U9/kiR99tlnWrt2rerq6rRnzx5JUkZGhjIzMzV+/Hgdc8wxsQwVAAAAAIA+Ky6SAB0dc8wx3OgDAAAAABABUV0O8Je//EWDBw8Oft13333RPD0AAAAAAANaVGcCbNmyRfX19ZLaiv2df/750Tw9AAAAAAADWlRnAgQCgeDrhIQE5efnR/P0AAAAAAAMaFFNAqSlpQVfp6SkRPPUAAAAAAAMeFFNAowcOTL4ur6+XqZpRvP0AAAAAAAMaFFNAkyePFl2u12SZFmWPvroo2ieHgAAAACAAS3qywHOOuusYHvJkiXRPD0AAAAAAANaVJMAknTzzTfLZms77cKFC/XJJ59EOwQAAAAAAAakqCcBTjzxRN1yyy2yLEstLS36xje+odWrV0c7DAAAAAAABpyoJwEk6ZZbbtHtt98um82mHTt26KSTTtL8+fO1du3aWIQDAAD6gIBpqaHZr937fGpo9itgWrEOCQCAPich2iecM2dO8PWYMWP06aefyu/365FHHtEjjzyizMxMjR8/XpmZmUpOTu7W2IZhaNGiReEOGQAAxJDH69faKo/KNtWqpqFFpmnJZjOUnZKoovwsjc9NU5rbEeswAQDoE6KeBHj66adlGEaw3f7astqy+bW1tXrrrbe6Pa5lWSQBAADoRwKmpdLKXVpRWaM9Xp/cTrtSkxyyG4YClqWdnmYtXrlFGW6nphVka3rBUNltxuEHBgBgAIt6EqAzHRMDAABgYAuYlkpWbVfp+mqlJzk1akiybPt9Vkh1OWRaluoafSr5uEoer1+zJuaRCAAA4BBikgRof+oPAABwMKWVu1S6vlo5qS6luDqf6m8z2pYFuBw2la6vVprboRnjcqIYKQAAfUvUkwBPPfVUtE8JAAD6EI/XrxWVNUpPch4yAdBRisuhZr+pFZU1OnFEptKSqBEAAMDBRD0J8L3vfS/apwQAAH3I2iqP9nh9GjWkewWCM5Od+ry6UWu3e3TK6KwIRQcAQN8Wky0CAQAADiZgWirbVCu3035ADYDDsRmG3A67yjbVymT7QAAADookAAAAiBteX6tqGlqU2sPp/GlJDtU2tMjrD4Q5MgAA+geSAAAAIG74A5ZM05K9h7sG2W2GAqYlX6sZ5sgAAOgfSAIAAIC44bAbstkMBXq4k1DAtGS3GXIm8BEHAICD4R0SAADEDbczQdkpidrb5O9Rf0+TX1kpiXI77GGODACA/iHquwN0ZuvWrVq2bJnKysq0Zs0a1dXVac+ePZKkjIwMZWZmasKECZo8ebLOOeccDR8+PMYRAwCAcLPbDBXlZ2nxyi0yLatbxQFNy5LXH1BRfpZstp4tJwAAoL+LeRLg/fff14IFC/T666/LNNvW71n7TQFsamrSl19+qYqKCi1evFjXX3+9zj77bN1000066aSTYhE2AACIkPG5acpwO1XX6FN2SmKX+9U1+jTY7dT4vLQIRgcA8SFgWvL6WuUPWHLYDbmdCbKTAEUXxCwJ0NraqhtvvFH33XefTNMM3vgbhiHjEFl/y7IUCAS0bNkyvf7667r++uv161//Wg5Hz6oIAwCA+JLmdmhaQbZKPq6Sy2FTiuvw7/ENzX7VN/k06/hcpfVwZwEA6As8Xr/WVnlUtqlWNQ0tMk1LNpuh7JREFeVnaXxumtLc/B1E52KSBPD7/fr2t7+tZcuWhdz8SwfOAthfx+MCgYDuu+8+VVZWqqSkhEQAAAD9xPSCofJ4/SpdX61mv6nMZOdBlwaYlqW6Rp/qm3yaPmaIphcMjUG0AxNPIYHoCpiWSit3aUVljfZ4fXI77UpNcshutBVT3elp1uKVW5ThdmpaQbamFwzlv0kcVEySAN///vf16quvSgq9qU9LS9NZZ52liRMn6uijj1ZaWposy9LevXv1xRdfaNWqVVq+fLk8Hk9Iv9dff11XXnmlFi9eHItfBwAAhJndZmjWxDyluR1aUVmjDdWNbR94XY7gNoCeJr+a/AFluJ2adXwuH3ijhKeQQPQFTEslq7ardH210pOcGjUk+YDEaKrLEUyMlnxcJY/Xr1kT8/i7iANEPQnw2muv6c9//nPITXxWVpZ+9atf6fLLL5fL5Tpk/5aWFv3pT3/STTfdpNraWhmGIcuy9Nxzz6m4uFgzZ86Mxq8BAAAizG4zNGNcjk4ckam129tuOmsbWoLbAB6R7mq76cxLYwlAFPAUEoid0spdKl1frZxU1yGXSNmMtoScy2FT6fpqpbkdmjEuJ4qRoi+IehLgjjvuCGkXFhbqjTfeUHZ2dpf6JyYmau7cuTr//PP1zW9+U2vWrAkmAu644w6SAAAA9DNpSQ6dMjpLU0ZmyusPyNdqyplgk9thZxeAKOEpJBA7Hq9fKyprlJ7k7FKNFElKcTnU7De1orJGJ47IJFGKEFFNAmzZskXvv/9+8KY9KytLf//735WVldXtsYYMGaK///3vOvbYY1VXVydJ+uCDD7Rly5aYbB9YXl6uiooKVVVVKTExUbm5uTrppJOUl5cX9VgAAOiPbDZDyYkJUtc3DECY8BQSiJ21VR7t8fo0akhyt/plJjv1eXWj1m736JTR3b/fQv9li+bJPvjgg+BrwzB000039SgB0C47O1u/+MUvQooJvv/++72KsbuWLFmiY489VhMmTFBxcbF++tOf6vrrr9dFF12k4cOH64wzztCqVauiGlNHN9xwQ3DHhfavp59+OmbxAACAvqWnTyHTk5xaUVkjT5M/whEC/VfAtFS2qVZup/2gxVEPxWYYcjvsKttUK9M8dPF1DCxRTQJ8+eWXkr7aAeCiiy7q9Zjf+c53JH1VYLD9HJHW2tqqyy+/XJdddpnWrVt30GNM01RpaakmT56shx9+OCpxdbRq1Srdd999UT8vAADoP9qfQmYmO7vVLzPZqd1en9Zu90QoMqD/8/paVdPQotQeTudPS3KotqFFXn8gzJGhL4vqcoB9+/YFX7tcLuXm5vZ6zNzcXLlcLrW0tEiSmpqaej1mV8yfPz9kNwK3263i4mIVFhbK5/Np5cqVeuGFF+T3++X3+zV//nxlZ2fr4osvjkp8ra2tuuqqqxQI8B88AADomXA9hZwyMpP6DUAP+AOWTNOSvZv//bVr303F12qylApBUU0CDB48OPja4QhfcQqn06nm5mYZhqGMjIywjduZl19+WQsXLgy2x40bp+XLl2vYsGEhx61Zs0YzZ87Ul19+KcuyNGfOHJ1++unKyYn82rh7771Xq1evliSNHTtWn376acTPCQAA+pdwPoVMTozJztRAn+awG7LZ2nbg6In23VScCVGdAI44F9WrYezYscHXDQ0Namho6PWYDQ0N2rt3b7A9bty4Xo95KKZp6qabbgq23W63XnnllQMSAJI0YcIELV26VDZb2z+z1+vVnXfeGdH4JOnzzz/X7bffLqmtbsKCBQsifk4AAND/hPUpJIBuczsTlJ2SqL09rK3hafIrKyVRboc9zJGhL4tqEqCoqEgpKSnB9uuvv97rMV977bXg65SUFE2ePLnXYx7Km2++qYqKimB7/vz5ys/P7/T4KVOmaPbs2cH2okWLwpL86IxlWZo7d66am5slSffdd1/IDAwAAICu4ikkEFt2m6Gi/Cx5fQGZ3fzv0LQsef0BFeVnsRwHIaL6F9nhcGjOnDnB9q9//eterVkPBAL69a9/LamtMOBVV10V1mUGB1NSUhLSvvrqqw/bZ+7cucHXLS0tYUl+dOaJJ57Qv/71L0nSmWeeqeLi4oidCwAA9G88hQRib3xumjLcTtU1+rrVr67Rp8Fup8bnpUUoMvRVUU/L3nrrrTriiCMkSeXl5brmmmt6PNY111yj8vJyGYahI488Urfccku4wuxUx5kHI0eO1MiRIw/b59RTT5XL5Qq2ly1bFpHYvvzyS/30pz+V1FZ48fe//31EztMXBUxLDc1+7d7nU0OzXwG2SQEA4LB4CgnEXprboWkF2apvavsc2xUNzX7VN/k0rSBbaT2s6YH+K+oVWtLT07Vs2TKdeeaZ2r17txYtWqStW7fqkUce6dINtSRt3LhR8+bN0z/+8Q9JbQUHX331VaWlRTbLVV9fr23btgXbRUVFXerndDo1adIkvfPOO5Lakh+R8F//9V/yeNq24bn55pu7/O/Zn3m8fq2t8qhsU61qGlpkmpZsNkPZKYkqys/S+Nw0pbn5wwgAQGc6PoXMTul6eXGeQgLhM71gqDxev0rXV6vZbyoz2XnQHTtMy1Jdo0/1TT5NHzNE0wuGxiBaxLuYlGktLCzUypUrdcUVV+i9997Tm2++qbFjx2rGjBm64IILNGnSJA0fPlypqamSpL1792rLli366KOP9OKLL+rNN99UIBCQZVkqKirSM888c8h1+eGybt26kHZ3brJHjhwZTAKsX79epmkGCwaGw/PPP68XX3xRknTsscfqhhtuCNvYfVHAtFRauUsrKmu0x+uT22lXapJDdqNtXeNOT7MWr9yiDLdT0wqyNb1gqOw8pQAA4ADtTyFLPq6Sy2FTiuvwyfP2p5Czjs/lKSQQBnaboVkT85TmdmhFZY02VDe2fb51OYIFOD1NfjX5A8pwOzXr+Fw+36JTUU8C2O2ha8IMw5BlWWptbdXy5cu1fPnyw45h/d90NMMw9N5772n06NFdPr9hGGptbe1e0P9n8+bNIe3hw4d3uW/HY5uamrRz504deeSRPYpjf/X19bruuusktf1+jz32WMRrI8SzgGmpZNV2la6vVnqSU6OGJB+QKU11OYKZ0pKPq+Tx+jVrYh5/KAEAOAieQgKxZ7cZmjEuRyeOyNTa7W0zXWsbWoIFOI9Id7XNdM1LI/mGQ4p6EsA6yHoy4//eRA72s4Pp7vHh0nErQknKyMjoct/09PSQdjh3CPh//+//aefOnZLaihCefPLJYRu7Lyqt3KXS9dXKSXUd8mmFzWhbFuBy2FS6vlppbodmjMuJYqQAAPQNPIUE4kdakkOnjM7SlJGZ8voD8rWacibY5HbYqb+BLonJcgCjk71mO/t+d8fpTG+TBo2NjSHtjsX+DicpKemQY/VUaWmp/vCHP0iShg4dqv/93/8Ny7hd0dLSErJdYjxobAnohY/rJUlNalLT3kMf385sCuiFd9crpblayU62MeqrWlpagv8bb9cmBjauTcSr7l6bR0g672hLG+pMle/0qsoTUMCS7IaU7rLr5ByXRmVaSjZr9em62ghHj/6Mv5uIV+3XZl8WkyRAtJ/gh0tzc3NI2+l0drlvYmJoIZ2mpqZex9PU1KQf/OAHwfb9999/wIyDSLIs64B/k1hbt6tF9U1+5aXY1dra9essOcHStoaA1u1o0NeGdr3oEeJTPF6bgMS1ifjVnWszQVJBhqFj0l1qabXkNyWHTUpMMNqWCJg+cZkjXPi7CYRf1JMApmlG+5Rhs/+Tf5+v63t17p8x2n9mQE/ccsst2rhxoyTprLPO0iWXXNLrMbvDMIwDkhuxFDAtVe5uktuZIIej+5f2IKehyt2mTjgq8aDrHBH/WlpaZFlW3F2bANcm4lVvr013BGICJP5uIn4xE2CASU5ODml3Jyu5/5P//cfqro8++kj33XefJMntduvRRx/t1Xg9kZiYqOOOOy7q5+1MQ7Nf+mydhqcnKLULlYv350rxy+trVf4xY5WcyH8afVFFRYWam5vj7toEuDYRr7g2Ea+4NhGv+sPyFO50uqF9y8J2e/bs6XLf+vr6kHZKSkqP42htbdXVV1+tQCAgSbr11ls1YsSIHo/XX/gDlkzTkr2HT/HbCxv5Wk2JhDMAAIiwgGnJ62uVP2DJYTfkdiZQTBFAxJEE6Ib9b7S3bt3a5b5btmwJvk5KSlJOTs+r0D/66KNavXq1JGn8+PH6n//5nx6P1Z847IZsNkOBHtacaN9exZlAYUAAABA5Hq9fa6vatniraWiRaVqy2dp2LSrKz9L43DSludniDUBkkATohnHjxoW0N2zY0OW+7Wv3JWnMmDGy2Xp+o7lp06bg66qqKhUUFBzy+P2XIvzsZz/TggULgu3f//73OvPMM3scT7xwOxOUnZKonZ7mHi0H8DT5dUS6S26HPQLRAQCAgS5gWiqt3KUVlTXa4/W1bbOY5JDdaHuIsdPTrMUrtyjD7dS0gmy2WQQQESQBuiE9PV3Dhg3Ttm3bJEllZWVd6ufz+fTRRx8F2+PHjw9bTLt379bu3bu71ae6ulrV1dXBdri2K4w1u81QUX6WFq/cItOyulXcz7Qsef0BFeVnsb8qAAAIu4BpqWTVdpWur1Z6klOjhiQf8Fkl1eWQaVmqa/Sp5OMqebx+zZqYRyIAQFgx77mbZs6cGXy9cePGkKfynXn77bdDigiec845EYkN0vjcNGW4napr7PrODZJU1+jTYLdT4/PSIhQZAAAYyEord6l0fbVyUl3KTul8JyKb0bYsICfVpdL11Sqt3BXlSAH0dyQBumnWrFkh7SeeeOKwfToe43Q6QxIJPXH//ffLsqwuf61YsSKk/1NPPRXy8wsuuKBX8cSTNLdD0wqyVd/ka9stoAsamv2qb/JpWkG20pJYfwcAAMLL4/VrRWWN0pOcSuniksUUl0PpSU6tqKyRp6lrn2kAoCtIAnTTjBkzQmoDPPTQQ9q8eXOnx5eVlWnp0qXB9pw5czrdGeCtt96SYRjBryuvvDJscQ8k0wuGavqYIdq5t7mt2E4nhQJNy1JNQ4t27m3W9DFDNL1gaJQjBQAAA8HaKo/2eH3KTHZ2q19mslO7vT6t3e6JUGQABiKSAN1ks9l01113Bdv79u3TueeeG6wT0FF5eblmz54t0zQlte0KcPPNN0ct1oHKbjM0a2KeZh2fK0naUN2o7Xu82tvk176WVu1t8mvbbq82VLfVQph1fC7r7QAAQEQETEtlm2rldtq7Va9Ialsa4HbYVbapVqbZs92PAGB/FAbsgQsuuEBz584NTvP/5JNPNHbsWBUXF6uwsFB+v1/vvfeenn/+efn9X03fevLJJ3XkkUfGKuwBxW4zNGNcjk4ckam129u24KltaAluA3hEuqttC568NJYAAACAiPH6WlXT0KLUHn7eSEtyqLahRV5/QMmJfHQH0Hv8JemhRx99VA0NDXruuecktc0IePzxxw96bEJCgu69915ddtll0QwRanvjPGV0lqaMzJTXH5Cv1ZQzwSa3w84uAAAAIOL8AUumacnezVkA7ew2QwHTkq/VlBLDHByAAYnlAD2UkJCgJUuW6Nlnn9XYsWMPeoxhGJo6darKysp0/fXXRzlCdGSzGUpOTNDgQU4lJyaQAAAAAFHhsBuy2QwFOqlRdDjtsxidCXxsBxAezATopeLiYhUXF2v16tWqqKjQjh075HA4lJubq6KiIuXl5XV5rKlTp8rq4RtELMYFAADAobmdCcpOSdROT7NSu7gzQEeeJr+OSHfJ7bB3ekzAtOT1tcofsOSwG3I7E6h1BKBTJAHCpLCwUIWFhbEOAwAAAHHEbjNUlJ+lxSu3yLSsbhUHNC1LXn9ARflZB53F6PH6tbaqrfZRTUOLTNOSzWYoOyWxrfZRbprS3NQ+AhCKJAAAAAAQQeNz05Thdqqu0afslK4v7K9r9Gmw26nxeWkh3w+Ylkord2lFZY32eH1yO+1KTXLIbrQtO9jpadbilVuU4XZqWkG2phcMZWYAgCAWFwEAAAARlOZ2aFpBtuqbfGpo9h++g6SGZr/qm3yaVpAdspNRwLRUsmq7Sj6ukiSNGpKsvAy3Ul0ODUpMUKrLobwMt0YNSZYklXxcpZJV2xVgi0EA/4eZAAAAAECETS8YKo/Xr9L11Wr2m8pMdh50aYBpWapr9Km+yafpY4ZoesHQkJ+XVu5S6fpq5aS6lHKIGgM2o21ZgMthU+n6aqW5HZoxLifsvxeAvockAAAAABBhdpuhWRPzlOZ2aEVljTZUN7ZN43c5gtsAepr8avIHlOF2atbxuQdM4/d4/VpRWaP0JOchEwAdpbgcavabWlFZoxNHZIbMKgAwMJEEAAAAAKLAbjM0Y1yOThyRqbXb2wr61Ta0BLcBPCLd1VbQLy/toDfra6s82uP1Baf6d1VmslOfVzdq7XaPThmdFa5fB0AfRRIAAAAAiKK0JIdOGZ2lKSMz5fUH5Gs15Uywye2wH3QXAKmtFkDZplq5nfZu7TAgtS0NcDvsKttUqykjMzs9B4CBgSQAAAAAEAM2m6HkxASpCxsGeH2tqmloUWoPp/OnJTlU29Airz/Qdk4AA1bM/wLs2bNHL730kj788EN9+umnqq+v1969exUIBLo9lmEY2rhxYwSiBAAAAGLHH7Bkmpbs3ZwF0K697oCv1exS0gFA/xWzJMDu3bt1ww03aMmSJWppaQl+37J6vn2J0cM/igAAAEA8c9gN2WyGAj38rNxed8CZwA7hwEAXkyRAeXm5vvnNb6q6ujp4099+A9/TG/neJA8AAACAeOZ2Jig7JVE7Pc1K7eLOAB15mvw6It0lt8MegegA9CVRTwXu2rVL3/zmN7Vr1y5ZliXDMGQYhizL6tUXAAAA0F/ZbYaK8rPk9QVkdvOzr2lZ8voDKsrPoigggOjPBLjtttu0a9eu4BN/y7I0dOhQFRcX6+STT1Z+fr5SUlJkt5OlBAAAANqNz01ThtupukafslO6vrC/rtGnwW6nxuelRTA6AH1FVJMAzc3N+uMf/xh88m8Yhq688ko99NBDGjRoUDRDAQAAAPqUNLdD0wqyVfJxlVwOm1K6sCygodmv+iafZh2fq7Qe7iwAoH+JahLgP//5j5qbm4NLAM4880z94Q9/iGYIAIBuCJiWvL5W+QOWHHZDbmeC7EwlBYCYmV4wVB6vX6Xrq9XsN5WZ7JTtIDW1TMtSXaNP9U0+TR8zRNMLhsYgWgDxKKpJgE2bNklScBbAL3/5y2ieHgDQRR6vX2urPCrbVKuahhaZpiWbzVB2SqKK8rM0PjdNaW6eKAFAtNlthmZNzFOa26EVlTXaUN0ot9OuVJcjuA2gp8mvJn9AGW6nZh2fq+kFQ0ngAgiKahKgrq4u+Npms+nkk0+O5ukBAIcRMC2VVu7Sisoa7fH62j5YJjlkN9q2pdrpadbilVuU4XZqWkE2HywBIAbsNkMzxuXoxBGZWru9LWFb29AS3AbwiHRXW8I2L40lAAAOENUkQGLiVwVM0tPTZbOxTykAxIuAaalk1XaVrq9WepJTo4YkHzDFNNXlCE4xLfm4Sh6vX7Mm5pEIADCgxWrpVFqSQ6eMztKUkZny+gPytZpyJtjkdtjZBQBAp6KaBDjqqKOCr/fu3RvNUwMADqO0cpdK11crJ9V1yGJTNqNtWYDLYVPp+mqluR2aMS4nipECQHyIl6VTNpuh5MQEqesbBgAYwKKaBCgqKgq+bm1t1aZNm5Sfnx/NEAAAB+Hx+rWiskbpSc4uVZuWpBSXQ81+Uysqa3TiiEymnAIYMFg6BaAvi+p8/NzcXJ1++unB9iuvvBLN0wMAOrG2yqM9Xp8yk53d6peZ7NRur09rt3siFBkAxJf2pVMlH1dJkkYNSVZehlupLocGJSYo1eVQXoZbo4YkS5JKPq5SyartCphWLMMGgKCoL8q//fbbZfzfGtO7775bjY2N0Q4BfVjAtNTQ7NfufT41NPt5QwXCIGBaKttUK7fTftBtpg7FZhhyO+wq21Qrk/8eAQwAHZdOZackdvp3s33pVE6qS6Xrq1VauSvKkQLAwUV1OYAknXbaafrJT36ie+65Rzt37tTFF1+skpISOZ3de/qEgSVe1twB/ZHX16qahhal9nA6f1qSQ7UNLfL6A21rUgGgn2LpFID+ICbl+X/zm99o7ty5sixLy5cvV1FRkVauXBmLUBDnAqalN9ft1P8ur9TilVu009OsQYkJSnc7NSgxIbjm7n+XV+rNdTuZGQD0gD9gyTQt2bs5C6Bd+77UvlYzzJEBQHxh6RSA/iDqj2z+9Kc/SZJOPvlkffLJJ3r33Xf18ccfa8qUKRo/frymTZumo48+Wunp6cFlA93x3e9+N9whI0bYrgyIDofdkM3WVsyqJ9r3pXYmsO0rgP4rXEunpozMZPs+ADEV9STAlVdeGXJzbxiGLMuSZVkqLy/X2rVrezU+SYD+g+3KgOhwOxOUnZKonZ5mpXZxemtHnia/jkh3ye2wRyA6AIgPLJ0C0F/E7LGN1eGJk2EYwa/2hEBPvtB/9HTNXXqSUysqa+Rp8kc4QqD/sNsMFeVnyesLyOzm31LTsuT1B1SUn8WTLQD9GkunAPQXMUkCtN+wcyOPzrDmDoiu8blpynA7Vdfo61a/ukafBrudGp+XFqHIACA+sHQKQH8R9blI3/ve96J9SvQxrLkDoi/N7dC0gmyVfFwll8PWpRk4Dc1+1Tf5NOv4XKpdA+j3WDoFoL+IehLgqaeeivYp0cew5g6IjekFQ+Xx+lW6vlrNflOZyc6DJuLai3HWN/k0fcwQTS8YGoNoASC62pdOLV65RaZldetBBUunAMQT7pAQd8K65i4xzMEB/ZjdZmjWxDyluR1aUVmjDdWNcjvtSnU5gv9deZr8avIHlOF2atbxuZpeMJTdOAAMGB2XTmWndP1DBkunAMQTkgCIO6y5A2LHbjM0Y1yOThyRqbXbPSrbVKvahpbgf1dHpLtUlJ+l8XlpLAEAMOCwdApAf0ASAHGHNXdfCZiWvL5W+QOWHHZDbmcCT10RFWlJDp0yOktTRmbK6w/I12rKmWCT22FnKisQR3ifiD6WTgHo60gCIO6w5q5ti8S1VW1PYWsaWmSalmw2Q9kpiW1PYXPTlObmaQIiz2Yz2mprsLQGiCu8T8QOS6cA9HUkARCXBuqau4BpqbRyl1ZU1miP19f2oSLJIbvRtjxip6dZi1duUYbbqWkF2XyoAIABhveJ+MDSKQB9WVwlASorK/XOO++ovLxcu3fv1u7du2UYhjIyMjR48GBNmDBBU6ZMUUFBQaxDRYQNxDV3AdNSyartKl1frfQkp0YNST5gFkSqyxGcXljycZU8Xr9mTczjAx4ADAC8T8Qflk4BPcdyptiJeRKgsbFRixYt0kMPPaTNmzd3qc+IESM0f/58zZkzR8nJyRGOELEy0NbclVbuUun6auWkug6Z9LAZbdM9XQ6bStdXK83t0IxxOVGMFAAQC7xPxC+WTgFdx3Km2ItpEuBf//qXrrjiClVVVcnarxK8sd/NXsefb9q0Sf/93/+t3/72t3rmmWd02mmnRSVeRNdAWnPn8fq1orJG6UnOLs16kKQUl0PNflMrKmt04ojMPjn7AQDQNbxPAOjrWM4UP2K2h9oTTzyhM888U9u3b5dlWTIMI/gltd30d/ySFHKMZVnatm2bzjjjDC1atChWvwYirH3N3c/OLlDxScOVk+aS19eqeq9PXl+rjkh3qfik4frZ2QWaMS6nz/6hWFvl0R6vT5nJzm71y0x2arfXp7XbPRGKDAAQD3ifANCXtS9nKvm4SpI0akiy8jLcSnU5NCgxQakuh/Iy3Bo1pG2Wd8nHVSpZtV0Bs2dbhuPQYjIT4NVXX9W8efMUCARCbvolKTMzU5MmTVJ+fr7S0tqKu3k8Hm3atEmrVq1SbW2tpK9mCgQCAV1zzTU64ogjNHPmzBj8NoiG/rzmLmBaKttUK7fT3q2dEKS2KZ9uh11lm2o1ZWRmn/+3AAAciPcJAH0dy5niS9STAPv27dPVV199QALg3HPP1fXXX6/p06cfsv+KFSv0wAMP6OWXXw7OCmhtbdWcOXO0ceNGDRo0KBq/BmKkP6658/paVdPQotQeTtNMS3KotqFFXn+g7d8GANCv8D4BoC9jOVP8ifpygN/+9reqrq4OTul3uVx6/vnn9dJLLx02ASBJ06ZN04svvqi//e1vSkpKCn6/pqZG9913XyRDByLCH7Bkmpbs3Xy60669PoKv1QxzZACAeMD7BIC+jOVM8SfqSYA//elPwQSAzWbTSy+9pAsvvLDb41xwwQV66aWXJCk43h//+MdwhwtEnMNuyGZrK4jSE+17EjsTYlbiAwAQQbxPAOirwrWcyaQ2QFhF9d1gw4YN2rRpk6S2G/c5c+bozDPP7PF4Z5xxhq666qpgPYFNmzZpw4YNYYkViBa3M0HZKYna2+TvUX9Pk19ZKYlyO+xhjgwAEA94nwDQV4VzORPCJ6pJgDVr1kj6qgjg3Llzez3m/mO0nwPoK+w2Q0X5WfL6AjK7+ZTHtCx5/QEV5WdR7AkA+ineJwD0VSxnik9RTQJUV1d/dWKbTZMmTer1mJMmTZLNZgsWGex4DqCvGJ+bpgy3U3WNvm71q2v0abDbqfF5aRGKDAAQD3ifANAXsZwpPkX1X7O+vj74Oi0tTTZb709vs9mCWwnufw6gr0hzOzStIFv1TT41NHdtumdDs1/1TT5NK8imYioA9HO8TwDoi1jOFJ+imgRIT08PvvZ4PDLN3k/rME1THs9XFSM7ngPoS6YXDNX0MUO0c2+zahpaOp3yaVqWahpatHNvs6aPGaLpBUOjHCkAIBZ4nwDQ17CcKT5FdbPY7Ozs4GvTNPXRRx/p61//eq/GXLVqVTCZYBhGyDmiqby8XBUVFaqqqlJiYqJyc3N10kknKS8vLyrn//LLL1VZWalt27aptrZWTU1NSkpK0uDBg3Xsscfqa1/7mlwuV1RiQc/YbYZmTcxTmtuhFZU12lDdKLfTrlSXI7geytPkV5M/oAy3U7OOz9X0gqGy80cRAAYE3icA9EUdlzNlpyR2uR/LmSInqkmACRMmSFJw/f6iRYt6nQRYtGjRQc8RLUuWLNGCBQu0bt26A35ms9k0depU3XPPPZo4cWLYz/3Xv/5Vzz77rN59913V1dUd8tjk5GTNnj1bN954o0aNGhX2WBAedpuhGeNydOKITK3d7lHZplrVNrQE10Mdke5SUX6WxuelMbUTAAYg3icA9DXty5lKPq6Sy2FTiuvwf5valzPNOj6Xv2URYFhWD6s09NDIkSP1xRdfyLIs2e12/fOf/9Rpp53Wo7HefvttTZs2TZZlybIs5efnR22LwNbWVl155ZVavHjxYY91OBz63e9+p2uvvTasMVx00UV64YUXutXH5XLpd7/7na655ppenfvDDz+Uy+XScccd16txcGim2TYNytdqyplgk9thZzrUIVRUVKi5uZlrE3GHaxOR0tv3Ca5NxCuuzf4lYFoqWbVdpeurlZ7kVGayU7aD7BhgWpbqGn2qb/Jp+pghmjUxL+5mM1VUVPT5azKqMwEk6fLLL9edd94pwzAUCAT0rW99S3/5y1909tlnd2ucN954Q9/5zneCCQDDMHT55ZdHKOoDzZ8/PyQB4Ha7VVxcrMLCQvl8Pq1cuVIvvPCC/H6//H6/5s+fr+zsbF188cVhj8UwDBUUFOiEE07Q6NGjlZ2dLZfLpb1796qyslLLli3T1q1bJUnNzc2aN2+eEhISwrJF40AQMC15fa3yByw57IbczoSo/TGy2QwlJyZIXZ85BQAYQHifANAXsJwpvkR9JkBDQ4NGjhwZnL7efgM/e/ZsXXfddTr55JMP2f/dd9/VQw89pL/+9a/BvpZlKTs7Wxs3blRycnLEf4eXX35Z559/frA9btw4LV++XMOGDQs5bs2aNZo5c6a+/PJLSW2Jgo0bNyonJycscTz66KNKTU3V2WefrczMzE6PM01TDz74oH7yk58oEAhIalse8Pnnn/c4loEwE8Dj9WttVdtUy5qGFpmmJZvNUHZKYttUy9w0pbmZnhRPeGqAeMW1iXjFtdm5WD4EANdmf+Zp8h90OVNW+2fsOF/OxEyAHkhJSdFjjz2m2bNnh9zEL126VEuXLtWQIUM0adIkjRgxQqmpqTIMQx6PR5s3b9ZHH32k6upqSQrpa7fb9fjjj0clAWCapm666aZg2+1265VXXjkgASC11SdYunSpTj31VJmmKa/XqzvvvFOPPPJIWGKZN29el46z2Wz68Y9/rMbGRt18882SpMbGRj333HP68Y9/HJZY+pOAaam0cpdWVNZoj9fXlqVMcshutO1xutPTrMUrtyjD7dS0gmyylAAA9CM8BAAiKy3JoVNGZ2nKyEyWvcZI1JMAkjRr1iw9+OCDuu666yQpeDMvSbt27dLrr79+0H4dJy209zEMQw8++GDIk/lIevPNN1VRURFsz58/X/n5+Z0eP2XKFM2ePVt/+ctfJLUVMvzNb36jlJSUiMe6v//6r//SbbfdFpwN8P7770c9hni3/3qlUUOSD1ivlOpyBNcrlXxcJY/XH5frlQAAQNfxEACILpYzxY4tVieeN2+e3njjDeXk5ARv5tu/JAXX+rd/SQo5xrIsHXHEEfr73//e6yJ33VFSUhLSvvrqqw/bp+Pa+5aWlk6THJGWkZERsoVibW1tTOKIZ6WVu1S6vlo5qS5lpyQetGCJJNmMticCOakula6vVmnlrihHCgAAwqX9IUDJx1WSpFFDkpWX4Vaqy6FBiQlKdTmUl+HWqCFts05LPq5SyartCphRXVULAGERsySAJJ155pn69NNPdffdd+uoo4464Ka/o44/O+qoo3TPPffo008/1RlnnBHVmF977bXg65EjR2rkyJGH7XPqqafK5XIF28uWLYtIbIdjWZb27dsXbB+qjsBA5PH6taKyRulJzi5tXSJJKS6H0pOcWlFZI0+TP8IRAgCASOAhAICBJCbLATpKTU3VT37yE/3kJz/RJ598onfeeUdr165VXV2d9uzZI6ntCXZmZqbGjx+vk08+Wccee2xMYq2vr9e2bduC7aKioi71czqdmjRpkt555x1JUnl5eUTiO5y3335bDQ0NwfYpp5wSkzji1doqj/Z4fcEsf1dlJjv1eXWj1m736JTRWRGKDgAAREJPHwI0+02tqKzRiSMy47qIGQDsL+ZJgI6OPfbYmN3gd8W6detC2l2ZBdDx2PYkwPr162Wapmy26E3EqKmpCVk2MWTIEF1xxRVRO3+8C5iWyjbVyu20d5r974zNMOR22FW2qVZTRmaGFDShsjAAAPGNhwAABpq4SgLEu82bN4e0hw8f3uW+HY9tamrSzp07deSRR4Yttv1ZlqXGxkZt2LBBr7/+uu6//37V1NRIkpKSkvTcc88pNTU1Yufva7y+VtU0tCi1h5n8tCSHahta5PUHlJyYQGVhAAMGyU70ZZF6CAAA8YwkQDfs3bs3pJ2RkdHlvunp6SHtjtPyw+WEE07QRx99dMhjioqKtHDhQk2YMCHs5+/L/AFLpmnJ3s0PAO3sNkMB01KTL6CyjbVUFgbQ75HsRH8Q7ocAANAX8NeqGxobG0PaHYv9HU5SUtIhx4o0u92ua6+9VnfccQczAA7CYTdks7XdqPdE4P8+/L5RsUPvbqpje0EA/RbbqKE/CddDAF+ryTZnAPoMkgDd0NzcHNJ2Op1d7puYGPrO0NTUFJaYOho2bJjq6+slSYFAQPX19SHtBx54QE899ZRuueUW/c///E9wO8aeamlpUUVFRS+jjg8B05Ka9mpLXUBDk7v/n8Wuxla1BExt31Wr7EEOWWpS7WH+L3b4TZW8/7k8NTt00jB3p3G1tFrym5YcNkOJCQYfpg+hpaUl+L/95dpE/9Bfrs2AaWnF5n36oMqrFKddaS6bbH5DzR02R3FKSpCl3bsb9fRbNfrk8y80bcQg/nbFqf5ybfaU12fK46mXb59Ng5zdr9W0z2equdXUhs8q5XbEdNOtiIv2Z5KBfm0ifrVfm30ZSYBu2P/Jv8/n63Lf/S+W/WcGhENJSckB39uxY4deffVV3X333dqwYYP27t2rn/zkJ1q3bp0WLVrUq/NZlnVAYqQvKxhs09/rW+T3W91KkFiWJU9zqyxLykyyyWmYam01D9vPaUhuu6X3tjZqVJpCPnw0+kxt2uNXRbVP9S2mTEuyGVJ6ok3HDXEqP8Oh5B58WBko+tu1if6jr1+bH3zZrJVbmzU4ySa3w5IZCKizv3YpDskuaeXWRiUarfr6kV2fPYfo6+vXZk9ZlqWUBEt1TX4l2uzd7u9pCigzySa1tqg50D8TXbH+TDJQr00gksKWBLjjjjsO+N4tt9zSpePC6WDnDJfk5NCqsd35g7T/k//9x4qUI444QnPnztXll1+uSy65RC+//LIk6Q9/+IOmTJmiq666qsdjG4ZxwAyHvmxcjkPv72hVY6uUkdT1DwJ7mgKyGTYZNmnwIGe3CgsNHmTXNo9f2/YZKkx1KWBa+rCqSR9UNWlvS0CuBJuSEx2yGZJpSfU+U//4okWpO1r19dwknZCbxNO1DlpaWmRZVr+7NtH39Ydrs7EloDXV+5SW5FBqF/9GpiZIAQW0pjqg4/OcJC/jUH+4NntrYp702mcNstm7VxzQtCz5LVMT85LljsDDnViL9WcSrk3EK2YCdHDbbbcd8PT0YDfkBzsunCKZBNh/Lf2ePXu63Ld9Wn67lJSUcITUZUlJSVqyZIkKCgq0bds2SW0Jme9///s93qowMTFRxx13XDjDjLmGpJ0q+bhKSamuLu0V3NDsV73VrGyXpSRngnIyDj6t/1D8Dq92mC5dXHCMXlpdpY92+zR48GCNTj54QqG9psBHu31Ky06npkAHFRUVam5u7pfXJvq2/nBt/ufzWhmu1oPWOzmULMvS59WNak05UsexjVrc6Q/XZm8Ny/drXUOlJCk7pes3mzUNLTraLZ17SoHSelhYMF4FTEslq7bH9DMJ1ybiVX9YnhKRlLzVheJqlmWF7aur5+ytESNGhLS3bt3a5b5btmwJvk5KSlJOTk7Y4uoqt9sd8uR/69atWrt2bdTjiGfTC4Zq+pgh2rm3ua3adSfXlWlZqmlo0c69zTp5ZKbciQm9riy8/JMdKl1frZxUl7JTEjv9kG0z2qpv56S6VLq+WqWVu3p0XgDoqnBto2aakX+vBrorze3QtIJs1Tf51NCxwMUhNDT7Vd/k07SC7H6XAJCk0spdfCYB+rGwJgE63pQf7rhwnzcaxo0bF9LesGFDl/tu3Lgx+HrMmDE9fvreW4WFhSHt7vwOA4HdZmjWxDzNOj5XkrShulHb93i1t8mvfS2t2tvk17bdXm2obtvdYdbxufrmcUdIlnpVWbjJH9CKyhqlJzm7NANBklJcDqUnObWiskaepq59aAGAngjnNmpAPOrJQ4DpY4ZoesHQKEcaeR6vv99/JgmYlhqa/dq9ry3xEyBBiQEmbMsBbr311rAeF4/S09M1bNiw4HT6srKyLvXz+Xz66KOPgu3x48dHJL6u2H9NVSDAB7L92W2GZozL0YkjMrV2e9se2LUNLQqYluw2Q0eku9r2wM5LU1qSQw3N/l5vL+hpapXTbig3o3trCjOTnfq8ulFrt3t0CtNsAUQI26ihv2t/CJDmdmhFZY02VDe2bX/pcgSvX0+TX03+gDLcTs06Prffbn+5tsqjPV6fRg3pXv2qvvCZxOP1a21V22e7moYWmf+3xXN2SmLbZ7vcNKW5+9/MDmB/JAG6aebMmXrssccktT3d37Rpk/Lz8w/Z5+233w4pInjOOedENMZD2bx5c0h76ND+l8EOl7Qkh04ZnaUpIzPl9QfkazXlTLDJ7bDL1uFN3+1MUHZKonZ6mpXaxYx5R/VNPjU2+zU8092rabZTRmaGxAUA4eKwG71OdtpthpwJFAZE/OruQ4D+KFxLf+LtM0nAtFRauUsrKmu0x+trS/AkOWQ32v6u7fQ0a/HKLcpwOzWtILvfJniAdmwR2E2zZs0KJgEk6YknntCvf/3rQ/Z54okngq+dTqdmzpwZsfgO5/nnnw++TkhI0Ne+9rWYxdJX2GyGkhMTOn16ZbcZKsrP0uKVW2RaVrcrCzc0tyrZlaA0t7NH8XWcZpucyH/SAMKvt8lOT5NfR6S75HZ0fws2INq6+hCgPwrn0p94+UzSXuSwdH210pOcBy1umupyBIsclnxcJY/XT+Fl9Guk5LtpxowZIbUBHnrooQOerndUVlampUuXBttz5szpdGeAt956S4ZhBL+uvPLKTsdtbGzsduzPPvusSktLg+0zzjhDGRkZ3R4HBxqfm6YMt1N1jb5u9atr9Ck1yaE0lyM802wBIALak51eX6DTtdKdMS1LXn9ARflZ/f4GCv1L+0OAwYOcSk5MGBDXb1iX/sQJihwCByIJ0E02m0133XVXsL1v3z6de+65wToBHZWXl2v27NkyzbY/hElJSbr55pvDEsdvf/tbnX322Vq+fLlaW1sPeey+fft0++23hyQV7Hb7YWcwxKN4LeTSm8rCU4/JlstpZ5otgLjWm2TnYLdT4/PSIhQZgHDpb0t/BkKRQ6Anoj5Pp+O2epmZmRo0aFCvxtu3b5/q6uqC7aOOOqpX43XFBRdcoLlz5wan+X/yyScaO3asiouLVVhYKL/fr/fee0/PP/+8/P6v/ng8+eSTOvLII8MSg2VZWr58uZYvX67BgwerqKhIEyZMUE5OjlJTU9Xc3Kzq6mqtXr1af//73w+YOXD//ffr+OOPD0ss0dAXCrlMLxgqj9ev0vXVavabyjzMnrr1TT5NHzNEZx13hNbvamCaLYC41p7sLPm4Si6HrUsfqNuTnbOOz+23a6iB/qS/Lf3pz0UOgd6IehLg6KOPlvF/N0YLFy7UD37wg16N9+yzz2revHmSJMMwDvtUPFweffRRNTQ06LnnnpPUlox4/PHHD3psQkKC7r33Xl122WURiWX37t1atmyZli1bdthjMzMz9eCDD0YslnDrS4VcelNZuDc1BZhmCyBaeprs7I/bqAH9UX/6TNJfixwC4RCTih2WZQUTAeEaL9oSEhK0ZMkSfetb39Jdd92lTz/99IBjDMPQ6aefrnvuuUcnnHBCWM9/8cUXy+v16u9//7sqKioOu9XfqFGj9N3vflfXXHONsrL6RkazLxZy6Wll4Y7TbLNTur5/FtNsAUQT26gB/V9/+UzSH4scAuESkys6nAmAWCsuLlZxcbFWr16tiooK7dixQw6HQ7m5uSoqKlJeXl6Xx5o6dWqXExpjx47V3Xffrbvvvlv79u3T2rVrtXHjRlVXV2vfvn1KTExUamqq8vLydPzxx4dtGUI0dSzkcqhpp+2FXFwOm0rXVyvN7dCMcTlRjPRA3a0szDRbAH0F26gB/Vt/+UwS1iKHXc+FAH0Caa0wKSwsVGFhYUzOPWjQIE2ePFmTJ0+OyfkjoaeFXJr9plZU1ujEEZlx8SZ0uO0FO2KaLYC+ZCBvowb0d/3hM0l/K3IIhFOfTwJ0LLzncMT+pg/hMRALuTDNFkBf1J1kJ4C+oT98JulvRQ6BcOrzSYBdu77awzM5uXs3jIhPA7mQC9NsAQBAPOjrn0n6U5FDINz6fBLgrbfeCr7ui+vecSAKuTDNFgAAxIe+/JmkvxQ5BMKtzy5y2bFjh2666Sa98847MgxDhmHoa1/7WqzDQhiEtZBLH9c+zXbwIKeSExPi/s0WAAD0T33xM0l7kcP6Jp8amv2H76CvihxOK8iOyxkOQDiE/THpAw88oAceeKBLx9500036zW9+063xA4GAPB6PGhoagt9r33Lw7LPP7tZYiE8UcgEAAEA49Icih0C4hT0JUF9fry+++OKQx7Rvg1dXV6e6urpenc8wDFmWpaOOOkrf/va3ezUW4gOFXAAAABAO/aHIIRBuEVswbXQyldvq8HS3s2O6yrIsWZaloUOHaunSpXK5XL0aD/GBQi4AAAAIl75e5BAIt4glAawuTOXuyjGdcbvdmjBhgs477zzNnTtXgwcP7vFYiD8UcgEAAEA49eUih0A4hT0J8OMf/1hXXnnlQX9mWZby8/ODMwAWLFigyy67rFvjJyQkKCUlRampqb0NFXGsvZBLycdVcjlsSunCsoD2Qi6zjs8liwsAAICDai9yqK4/ZwL6lbAnAdLS0pSW1rWnsJmZmRo+fHi4Q0A/QSEXAAAAAAivmGyi3ptlABg4KOQCAOgvAqYlr69V/oAlh92Q25nA+xUAICaingTYvHlz8HVmZma0T48+hkIuAIC+zOP1a21V2/tXTUOLTNOSzWYoOyWx7f0rN01pbt6/AADRE/UkANP/0RMUcgEA9CUB01Jp5S6tqKzRHq+vbSZbkkN2w1DAsrTT06zFK7cow+3UtIJsZrIBAKImJssBgJ6ikAsAIN4FTEslq7ardH210pOcGjUk+YCaNqkuR7CmTcnHVfJ4/Zo1MY9EAAAg4kgCAAAAhFFp5S6Vrq9WTqrrkLvb2Iy2ZQEuh02l66uV5nZoxricKEYKABiIbNE+4datWzVy5Ejl5+crPz9f9913X4/H+t3vfhccZ/To0aqurg5jpAAAAN3j8fq1orJG6UnOLm1vK0kpLofSk5xaUVkjT5M/whECAAa6qCcBFi1apM2bN+uLL77Ql19+qUsuuaTHY1166aWqqqrSF198oU2bNumpp54KY6QAAADds7bKoz1enzKTnd3ql5ns1G6vT2u3eyIUGQAAbaKeBHjxxRel/8/encdHVZ3/A//cO/tk3wMJIJsEFFlcWIoKKFLBDa1axVZr3Wqt1vZn7aLd1Frrrq3WrVq/oigqdUFxS6RWAwoiixD2NZA9mUwyy70z9/z+GGfMZGP2zEw+79crL3KTuzyZHCb3PPec5wCQJAnz5s3DkCFDIj7XkCFDcMYZZwS2X3311WjDIyIiIoqIVxOo3t0Eq1HXowbAkciSBKtBh+rdTdA0LqVMRETxk9AkQFNTEzZt2gTpmz+M559/ftTnXLRoEQBACIH169ejtbU16nMSERERhcuheNBodyM7wiVrcywGNNndcKjeGEdGRET0rYQmATZu3AjA12EHgGnTpkV9zunTpwc+F0Jg06ZNUZ+TiIgSx6sJ2F0qWjoV2F0qvHwKSilK9QpomoAuzFEAfjpZglcTUDxajCMjIiL6VkJXB9i1a1fgc0mSUFFREfU5KyoqAiMLAGDnzp045ZRToj4vkZ9XE3AoHqheAYNOgtWo5xJORDFgc6jYVGtD9e4mNNrd0DQBWfZVS58xqhATy3KQY43siSrRQDDoJMiyBK+ILJHl1QR0sgSjPuGzNYmIaBBJaBKgra0t8HlWVhZkOfo/crIsIzs7G+3t7T2uQRQNdlCI4sOrCVTW1KOqphGtDgVWow7ZFgN0kq/zVGdzYcmafcizGjGnoghzK0qYeKOUYDXqUZRlQp3NhewQVwboyuZUMSTXDKtBF4foiIiIfBKaBNC0b4e3iQiz5L3pei632x2z89LgxA4KUfx4NYHlXx5E5bYG5FqMGFOc2aOAWrbZAE0INHcoWL6+FjaHikVTy/n/jJKeTpYwY1QhlqzZB02IsIoDakLAoXoxY1QhZLZ1IiKKo4QmAQoKCgKf2+12KIoCozG8JXS6UxQF7e3tgSkBubm5UZ2PBjd2UIjiq7KmHpXbGlCabe53DXVZ8o26MRtkVG5rQI7VgHkTShMYKVFkJpblIM9qRHOHgqIsU8jHNXcoyLcaMbE8J47RERERJbgwYGFhYdD22rVroz7nunXrAHw7GqCoqCjqc9Lg1bWDUpRl6vMpjr+DUpptRuW2BlTW1Cc4UqLUY3OoqKppRK7F2G8CoKssswG5FiOqahphc6pxjpAoejlWA+ZUFKHN6St0GQq7S0WbU8GciiLkRLiyABERUagSmgSYNGkSAASe2r/11ltRn/M///lP0Pb48eOjPicNTuygEMXXplobWh0KCjLDGwFWkGlEi0PBpoO2OEVGFFtzK0owd1wx6tpdvpoyfUyB1IRAo92NunYX5o4rxtyKkgRHSkREg1FCkwAjR47EUUcdBcD35P6xxx5Dc3NzxOdrbGzE448/HkgqDBkyBMccc0wsQqVBiB0UovjxagLVu5tgNerCmicN+EbeWA06VO9ugsblAykF6GQJi6aWY9GUMgDAzoYOHGx1oN2potPtQbtTxYEWB3Y2dAAAFk0p47QyIiJKmISvQXPeeedBCAFJktDR0YGLL74YHo8n7POoqoqLL74YHR0dgfOde+65cYiYBgN2UIjiy6F40Gh3IzvCoc45FgOa7G44VG+MIyOKD50sYd6EUtx6ZgUWTxuB0hwzHIoHbQ4FDsWDIblmLJ42AreeWYF5E0qZACAiooRJaGFAALjlllvw+OOPQ1EUCCFQVVWF+fPn44UXXsCQIUNCOsehQ4dw2WWX4eOPP4YkSRBCwGAw4NZbb41z9JSuYtlByTQl/L8VUdJTvQKaJqALM8nmp5MleDUBxaMBoddaIxpwORYDZo0txMzRBXCoXigeDUa9DKtBx1UAiIhoQCR8JMCQIUPwi1/8IvD0XgiBjz/+GBUVFbj55puxdu1aeL09n/R4vV588cUXuOmmmzB+/HisWrUKAALnuemmmzB8+PBE/ziUJmLaQSGiHgw6CbLsW2YzEl5NQCdLMOoT/meL0phXE7C7VLR0+or4eeM4mkuWJWSa9MjPMCLTpGcCgIiIBsyAPLK84447sHbtWnzwwQeBRIDdbscjjzyCRx55BGazGSNGjEBubi4kSUJrayv27dsHl8sF4NuVAPzHnn766bj77rsH4kehNMEOClF8WY16FGWZUGdzITvEwptd2ZwqhuSaYTXo4hAdDTY2h4pNtTZU727yFe7TBGTZt+rLjFGFmFiWgxwrq/QTEVF6GpAkgCzLeOWVV3DRRRcFEgHAt517p9OJmpqaHl/36/r1M844Ay+//DJkmZ0vihw7KETxpZMlzBhViCVr9kETIqzaG5oQcKhezBhVyKenFBWvJlBZU4+qmka0OhRYjTpkWwzQSb4kcJ3NhSVr9iHPasSciiLMrSjhXH0iIko7A9ZzzsnJwcqVK3HbbbfBZDIFhvV3/fDr/nUhBMxmM/74xz/i3XffRU5OzkD9GJQm/B0Uh+LtcymnvrCDQhSaiWU5yLMa0dyhhHVcc4eCfKsRE8v5Xk+R82oCy788iOXrawEAY4ozUZ5nRbbZgAyTHtlmA8rzrBhTnAkAWL6+Fsu/PBjXKQJEREQDYUAfn0uShD//+c/Yu3cvfvWrX2HUqFEQQvT7MXr0aPz2t7/F3r178fvf/z4oWUAUDXZQiOIrx2rAnIoitDl9869DYXepaHMqmFNRhJwIC3cmA68m4FA12FzeuM89p95V1tSjclsDSrPNKMoy9TkaRZZ80wJKs82o3NaAypr6BEdKREQUX0lRxry4uBh//etf8de//hW1tbVYt24dGhsb0dzcDAAoLCxEUVERTjjhhJBXECAKl7+Dsnx9LcwGGVkhTAvwd1AWTSlL6Q4KUaLMrSiBzaGiclsDXKqGgkxjr50xTQg0dyhocyqYO64YcytKBiDa6Pnnnr+5oQ1NnQok2YGCvVs49zzBbA4VVTWNyLUYQ3pvB4AsswEuVUNVTSNOGlnA93giIkobSZEE6KqsrAxlZWUDHQYNUoOtg0KUaDpZwqKp5cixGlBV04idDR2+edlmQ2CVDZtThVP1Is9qxKIpZSk5L7v73HO3wwuLXoJBLyPDpOfc8wTbVGtDq0MJDPUPVUGmETsaOrDpoA2zxhbGKToiIqLESrokANFAGiwdlIHk1QQcigeqV8Cgk2A16vn6DTI6WcK8CaU4aWQBNh30VWhvsrsDq2wMyTX7npKX56Tk01f/3PPKbQ3ItRgxpjgTTY1OeDwe6PUyss0GZJsNgWTi8vW1sDlULJpazv8LceDVBKp3N8Fq1IVVkBLwTQ2wGnSo3t2EmaMLWPeFiIjSApMARN2kewdloHBJLuoux2LArLGFmDm6AA7VC8WjwaiXYTXoUrqz1XXueX9Dz/1zz80GGZXbGpBjNWDehNIERhq9VEjqORQPGu1uZEf4fp1jMaDJ7oZD9SLTxNsmIiJKffxrRtSHdO2gJBqX5KIjkWXJ17kyDXQk0Rssc89TKamnegU0TUAXYSFh/ygwxaOlRRslIiJKqiTAhg0bUF1djcOHD6OlpQUOhwMA8MwzzwxwZDSYpVMHJdF6GxbdfTguh0VTOkn3ueepmNQz6CTIsi++SPhHgRn1A7qgEhERUcwMeBLg0KFDePjhh/H000+jra0t6HtCCEiS1GcS4PLLL0draysA4LjjjsOdd94Z73CJKAyDaVg0UbrPPU/VpJ7VqEdRlgl1NheyQxyd0ZXNqWJIrhlWgy4O0RERESXegKa1n376aRx99NG477770NraCiFE0MeRDBkyBG+//Tbefvtt3HvvvYElBYlo4EU6LDrXYkRVTSNsztDWkSdKFrGce56Muib1irJMfSY6/Em90mwzKrc1oLKmPsGRBtPJEmaMKoRD8UILczSAJgQcqhczRhUmZWKGiIgoEgOWBLjppptw7bXXwuFwBJ74d9V9uzc//elPA/t5PB4sW7YsLrESUfj8w6ILMo1hHVeQaUSLQ8Gmg7Y4RUYUHzGde55kUj2pN7EsB3lWI5o7lLCOa+5QkG81YmJ5TpwiIyIiSrwBSQLce++9ePTRR4M6/1lZWbjoootwzz33YPHixSGNBBg2bBhOOumkwPZ7770Xt5iJKHSxGhataZHN4SUaCOk89zzVk3o5VgPmVBShzanA7gotIWF3qWhzKphTUZQSxRqJiIhClfA7jT179uC2224LdP6FELj++uuxb98+LF26FLfccgtmzZoV8vnOOeecwHlWrVoVl5iJKDzpPiyaqDf+ueftET71tjlVFGaZkm7ueahJPSEEFI8XTtULxeOFECKpknpzK0owd1wx6tpdvhUN+kjWaEKg0e5GXbsLc8cVY25FSYIjJSIiiq+EFwb805/+BFX13SBJkoQ///nP+N3vfhfx+U444YTA5zabDXv27MHIkSOjjpOIIscluWgw8s89X7JmH7RvOsChSua550dK6rlVL+rtbhxsdaDT7YEQgCQBGSY9yvOssBrkQFIv0zRw9Yh1soRFU8uRYzWgqqYROxs6fKsbmA2B9xybU4VT9SLPasSiKWVJsboBERFRrCX0r7HH48Hy5csDowBmzZoVVQIA8K0KAHxbQ2Dr1q1MAhANsHQeFk3Un65zz4uyQs9gJfPc876SekII7GnqxJ6mTrhULww6GSaDDAkSBAQ6XB5sOtgGnSyhINMIpzKwSQDAlwiYN6EUJ40swKaDNlTvbkKT3R14zxmSa8aMUYWYWJ7DKQBERJS2EvrXePXq1bDb7QB8nfZf/vKXUZ+zpKQEsiwHagjU1tZGfU4iig6X5KLByj/3fPn6WpgNckhF9PxzzxdNKUvKjmdvST0hBLYebsee5k6Y9TrkZxh7FPQ16XUQQqDNoWJ/iwPvbT6MS6aNSIon6zkWA2aNLcTM0QVwqF4oHg1GvQyrQZd0IzGIiIhiLaFJgD179gRtz507NybnzcrKQnt7OwAE/k20jRs3YvPmzaitrYXJZEJZWRmmTZuG8vLyhFzf4XBg8+bN2Lp1KxobG6EoCnJzc1FeXo7p06ejuLg4IXEQAek7LJooFHMrSmBzqKjc1gCXqvVZTE8TAs0dCtqcSlLPPe8tqbenqRN7mjuRadLDpO87WSdJvgRCvtWET3c1oSTHjHkTShMV+hHJsuQbncBpR0RENIgkNAnQ0NAQ+DwrKwuZmZkxOa8sfztkWFHCW/4nWi+99BLuvPNObNmypcf3ZFnG7Nmzce+992Lq1Kkxv/aOHTuwbNkyrFy5EqtXrw7UWujNjBkzcPPNN+PCCy+MeRxEvUnHYdFEoeht7rm70wOzToNRaGh3qik197x7Uk/1aNjT5BsB0F8CAPCNGPB4BcYPyYTFoENVTSNOGlmQlCMeiLrzagIOxQPVK2DQSbAa9Un7/5SIKBwJTQKEsuxfJOe02b5deigvLy/m1+iNx+PBFVdcgSVLlvS5j6ZpqKysxPTp0/HAAw/ghhtuiNn1n376aVx99dUh719dXY3q6mqcddZZeOGFF5CTww4WxVc6DosmClX3uedvrt6Kpk4v3JoGk+JJubnnXZN6TtULl+pFfsaRlwt0KF6YDTJKskww6GXsaOjApoM2zBpbmICoiSJjc6jYVOurGdFod0PTBGRZQlGWyff/tiwHOdbk/39LRNSXhCYBioqKAp/b7XYoigKjMbw1h7vbsWMHNE0LzEUsKCiI6nyhuvHGG4MSAFarFYsXL8bkyZOhKArWrFmD1157DaqqQlVV3HjjjSgqKsLFF18ck+t3dHQEbZtMJpx00kmYOXMmhg4diszMTBw+fBiVlZWorKwM7Pf222/jzDPPxEcffQSLxRKTWIj60tuw6N6mBqTKsGhKH4l6wuefe57tyoWtwwnZYMKkicek3Nxzf1Lv9S9rcajNCYNO7lEDoDu3R4PL48X40myYvqnv4V8ucObogpT6+Wlw8GoClTX1qKppRKtD8a0eYTFAJ/lqYtTZXFiyZh/yrEbMqShK6hE8RET9SWgSoLQ0eB7g2rVrMXPmzKjOuWrVKgC+EQGSJOHoo4+O6nyhePPNN/H4448HtidMmICVK1di2LBhQftt2LABCxYswKFDhyCEwJVXXolTTz21x+sQjUmTJuHaa6/FpZde2uvT/d/97nf49NNPcfHFFweKJlZXV+Ouu+7CnXfeGbM4iHrDJbko2QzUEz5ZkmAxyDCbdQNeIT9ScytKUG9z4Z//3YUMoz7wd7c7IQQcihcujxcjCzJxVGFG4Hs5FkNSLBdI1J1XE1j+5UFUbmtArsWIMcWZPZLW2WZDIGm9fH0tbA4Vi6aW828WEaWchK6/NWPGDOh0usBNw7Jly6I+5xNPPBH4PC8vD5MmTYr6nP3RNC1oWUOr1Yq33nqrRwIA8HXQly1bFqhZ4HA4cMcdd8QkjlGjRuGVV17B+vXr8ZOf/KTf4f3f+c538N5778Fk+nZe9oMPPgin0xmTWGjw8WoCdpeKlk4FdpcKr9b3VB//sOhbz6zA4mkjUJpjhkPxoM2hwPHNsOjF00bg1jMrMG9CKW+mKC68msAHW+pwz8oaLFmzD3U2FzJMeuRajcgw6QNP+O5ZWYMPttT126YHK50sYf6xQzA8zwpJktDSqaLdqcL9TXV9t+qFzamipdNXn2Z8aTYqhmQFdaT8yT/Fow3Uj0HUq8qaelRua0BpthlFWaY+C9rKki9pWJptRuW2BlTW1Cc4UiKi6CU0DZ+dnY3p06fj008/BQD861//wi9+8YteO9CheP755/Hll18GkgqnnXZazGLtywcffIDNmzcHtm+88UaMGjWqz/1nzpyJCy+8EC+//DIA4JlnnsFf//pXZGVlRRXHOeecE9b+xxxzDK644opA0sThcKCqqgoLFiyIKg4aXKJ5isoluRKPRa18+IQvdswGGeX5VhxVJMGpaDjQ4oBT8UITGmTJV2l/WL4VJVmmwBSArryagE6WYNQn9BkEUb9sDhVVNY3ItRhDql8DAFlmA1yqxmKXRJSSEj4W77rrrsOnn34KSZJgt9tx8cUX47333gu7U/zf//4XP/3pTyFJUmBI4s033xynqL+1fPnyoO2rrrrqiMdcffXVgSSA2+3Gu+++i4suuigu8fXntNNOCxo5sWvXroTHQKkplvMkuSRX/LGoVbCuT/j6u8H3P+EzG2RUbmtAjtWQVMvZJYOuywUOz7diWJ4FqlcEOvcGndRvrQCbU8WQXDOsvSQIiAbKplobWh0KxhSHt2pVQaaRxS6JKCUlPBV/6aWX4phjjgHgWz94zZo1mDVrFtasWRPS8U6nE3fddRfmz5+Pzs7OQAJg7ty5mD59ejxDBwC88847gc9Hjx6N0aNHH/GYk08+GWazObC9YsWKuMR2JN2XZOzs7ByQOCi1+J+iLl/vqykxpjgT5XlWZJsNyDDpkW02oDzPGrh5Wr6+Fsu/PMjh1AOAQ957ivQJX67FiKqaRticfS+9Ohj5lwt0KF5o3/z9NeplWIw6GPX9FwvUhIBD9WLGqEKO/qGk4dUEqnc3wWrU9TkFoC+yJAWKXWqD4P2UiNJHwkcCSJKE559/HqeccgocDgcAYNOmTZg5cyZOOOEEfPe738X+/fuDjvnkk0+wY8cOrFq1Cm+//Tba2toCnX8hBAoKCvDss8/GPfa2tjYcOHAgsD1jxoyQjjMajTj++OMD0yA2btwYl/iOZM+ePUHbsSxQSOmLT1FTA4e8945P+GKv63KBRVmhD+lp7lCQbzViYjmXqKXk4VA8aLS7kR3hcH4WuySiVDQg71ZTpkzBSy+9hAsuuAAejyfQmf/iiy+wdu3aoH2FEJg9e3bQNoDAMRaLBS+//DLKy8vjHveWLVuCtkMZBdB1X38SYNu2bdA0LVAwMFFef/31oO1Qkxg0eHGeZOpgsqanWD3h43J2wfzLBS5fXwuzQQ7pvcHuUtHmVLBoShnfEyipqF4BTRPQhfke4RdU7JLT3IgoRQxYZZ6zzjoL//3vf1FeXh54qu/v2Hfd7vo1AEFfKysrwyeffII5c+YkJObuT9JHjBgR8rFd93U6nairq4tZXKFYt24dKisrA9vHHXccxo0bl9AYKPX4n6IWZBrDOq4g04gWh4JNB21xioy64pD33sXyCR8Fm1tRgrnjilHX7vLVnRC9D4XWhECj3Y26dhfmjivG3IqSBEdK1D+DToIs++rbRILFLokoFQ3oO9a0adOwceNG3H777cjLywt09LvrngywWq341a9+hQ0bNmDq1KkJi7e9vT1oOy8vL+Rjc3Nzg7btdnssQgqJoii46qqrgl7fP/zhDwm7PqUmzpNMHUzW9C6mT/goiE6WsGhqORZNKQMA7GzowMFWB9qdKjrdHrQ7VRxocWBnQwcAYNGUsrSfekKpyV/ssj3CZKjNqaIwy8Ril0SUUgZ88lJOTg7+9Kc/4dZbb8V7772HVatWYfXq1airq0NLSwsURUF+fj6KioowZcoUzJs3D2eeeSby8/MTHmtHR0fQdtdif0disVj6PVc83XTTTfjqq68C2+eccw7OP//8qM/rdruDlkuk9OJQNGzf3wKLXkaDGn579SgadrS3Ye0GBVZDYvKNbrc78O9gaZteTeDNDW1wO7xoanSGfbzS6cGbq7ci25UbdrIn2TkUDTZbG5ROGRnG/tugEAKqV0D5Jmll1ElQPAJur8DO7TVRt+F0bZtDAJxzlMDOZg0b6xyotXnhFYBOAnLNOnyn1IwxBQKZWhO2bmka6HCpF+naNsMxRHZifaMdesUe1vugJgTqbCqm5mdhy5av4xjh4MS2ScnK3zZT2YAnAfysVisWLVqERYsWDXQofXK5XEHbRmPoT91MpuCJYk5n+DfrkXj00Ufxz3/+M7A9bNgwPPPMMzE5txCix2tC6aPDrUH1eGGWNXg84XeAhKZB8Qh0OFyQTYkddDSY2qZD1dDUqcCil+DxeMI+3qzT0NTpha3DCUuCkjWJIoRAll6g2anCJPf+lE7xCjR2enCg3Yt2RYPnmySAXpJg1EsYlatHh8MJ2RSbp3zp2Db1ACryJByda4bbI6BqgEEGTHrJ16HSFKTZj5yW0rFthqo8QyBDD7R0Ksg1h/5/vc3lRYZewrCMwfvaJcJgbptE8ZI0SYBU0P3Jv6IoIR/bPWPUfWRAPCxduhQ///nPA9u5ubl46623UFgYm0rXkiT1SG5Q+tBkDQa9A5IsQx/BXEdJ02DUa8i0mmFO4EgAf02RwdI23fBCkh0w6CP7PRmFBremQTaYYA7j5jdVTC0H3tluh6wLntYihEBtu4odzQrsigYhAJ0MGGQZkACPV4PNJbCtxYO/r+3Ad8dmYlq5NeLh7IOlbVrD2NeriW+SBgIGWYJJL3G6wAAYLG2zP2YzMH04ULmnA1YhhzTyx6FqcHg1zB2ZiYLscFo+hYptk5IVRwIMMpmZwUtMhZOV7P7kv/u5Yu3tt9/GD3/4Q2iaFrjeO++8g0mTJsXsGiaTCccee2zMzkfJxasJrGrchjqbC8V54d/gHGhxYGyuGSdMGpewyuqbN2+Gy+UaVG3T7lJRsHcLMkx6ZIdYFLCrdqcKk+LBpInHpOXyVsNGqdhirwGAwHJ2QghsOdyOba0uuLwSrCYDDDoZXUcBq14NFgEUZBjR6PLg7d0qcotyccHxkc1rH4xtsy82h4pNtTZU727yFRXUBGQZKMoyYsaoQkwsy0GOlSsIJArbps/4CQI53yyzKlmMKMg09jo1wL/MqgoFi04qZq2LOGLbpGSVDtNTEn7H9/zzzwc+nzFjBsaOHRvV+Xbs2IHq6urA9g9/+MOoztef7OzsoO3W1taQj21rawvazsrKikVIvfrwww/xve99D6rqK3JjsVjw1ltvcUlACotOljBjVCGWrNkHTYiw50k6VC9mjCrk0mpx5i9qVWdzRZQEsDlVDMk1p21Rq96Ws9vT1Imva21wezRYjDrou7VRrybg8QoUZBqRYzXCbNShzaHg5bX7kZeRvksqxptXE6isqUdVTSNaHQqsRh2yLQboJF9l9jqbC0vW7EOe1Yg5FUWYW1HCzhUljL/YZY7VgKqaRuxs6PC1UbMhUCTU5lThVL3IsxqxaEoZ2ygRpayEJwGuuOIKSN90Jh5//PGokwCVlZW4/vrrA9vxTAKMHDkyaHv//v0hH7tv377A5xaLBaWl8bmJXLVqFc4999zAMBWTyYTly5dj9uzZcbneYOPVBByKB6pXwKCTYDXq0/oGYGJZDvKsRjR3KIGnqKFo7lCQbzViYnlOHKMjgMmaUMytKIHNoaJyWwPanSp21Nvh8mgw6uSgBIAQAp5vEgC5VgPyrL66Lya9DpkmA9ocKt77uh4njSzgWvdh8moCy795ypprMWJMcWaPtpptNgSesi5fXwubQ+VTVkoonSxh3oRSnDSyAJsO+karNNndgWUAh+SafaNVynP4HkBEKW1Axn765/fE8nwAYnrO3kyYMCFoe+fOnSEfu2vXrsDn48aNgyzHfo70Z599hrPOOgsOhwMAYDAYsGzZMsyfPz/m1xpseh++KqEoy5TWw1d7e4p6JHaXijangkVTyniTlCBM1vSv6xO+F9ccQL3dDdWrwaDTw6sJCABerwavAAw6GQWZvgRA178pVqMODsWDvc2d2HTQhlljY1NbZbCorKlH5bYGlGab+30fkSXf+6rZIKNyWwNyrBx5QYmXYzFg1thCzBxdAIfqheLRYNTLsBp0aZ0wJaLBY0BKQce7sx4vubm5GDZsWGC76zSE/iiKgnXr1gW2J06cGPPYvvjiC5x55pmBpQf1ej1eeuklnH322TG/1mDi1QQ+2FKHe1bWYMmafaizuZBh0iPXakSGSR8YvnrPyhp8sKUO3m8qi6eTuRUlmDuuGHXtLl8CRPT+M2pCoNHuRl27C3PHFWNuRUmCIx28/MmaNqcCuyu0ta79yZo5FUWDIlmjkyXMrSjByEILMow6mPSy78m/V0DTBAx6HUqyzRiWZ0F+hqnH3ylJkmDU62B3qvhsVyO0NPy/Hi82h4qqmkbkWowhJRIBIMtsQK7FiKqaRtgiXL+dKFqyLCHTpEd+hhGZJj0TAESUNtJrPagEWLBgQeDzXbt2Yffu3Uc85pNPPgkqIrhw4cKYxvTVV19h/vz5aG9vBwDIsoznn38eF1xwQUyvM9j4h68uX18LABhTnInyPCuyzYZAEbbyPCvGFPuKPC5fX4vlXx48YiLAqwnYXSpaOn0dtmRPHPifoi6aUgYA2NnQgYOtDrQ7VXS6PWh3qjjQ4sDOBl8CatGUMg7hHQBM1hyZQ/Gg1aHCYtShPM+CEQUZGF5gxYiCDAzLsyDHYoBe1/efRbNehqYJ1LW74VC9CYw8tW2qtaHVoaAgM/RldQGgINOIFoeCTQdtcYqMiIhocEr5UtBdO9fdl/CLh0WLFuGJJ54IbD/11FO4++67+z3mqaeeCnxuNBqDEgnR+vrrrzFv3rxAkUJJkvDss8/ikksuidk1BqtYD19N5SkFnCeZ/FjU6shUr4DH61sxRZZk6GQJOoT+8/tHB6geDYpHA7hi1RF5NYHq3U2wGnVh1asAfO+tVoMO1bubMHN0AZ/CEhERxUjKJwG6FtyLZ8V9v3nz5mHChAnYsmULAODRRx/FNddc06NooF91dTWWLVsW2L7yyiv7jPPjjz/GnDlzAtuXX345nnvuuT5j2bFjB04//XQ0NTUB8N2gPvnkk3EtjjhYRDp81aVqqKppDCoclk4VsTlPMrkxWdM/g04KPOn3VQIInW/qgOYbuSMhaf+PJhuH4kGj3Y3sCNtbjsWAJrtv5EU6LmFJREQ0EFL6L6rH48Hbb78deDpz1FFHxf2asizjrrvuwqJFiwAAnZ2dOPvss/Huu+8G1QsAgI0bN+LCCy+EpvmePFksFtx+++0xiWPv3r047bTTUFdXF/jaP/7xD1x11VUxOf9g5x++6h/qH6qCTCN2NHQECoela0Vs/zxJPglNTkzW9M5q1KM0x4wth9rhVjWY9EdeFtHj1dCpeGFzqnC4PRAAdtTb8cSqnZg5uiipR/AkA/Wbmgu6CGsB+UexcOQFERFR7MQ8CdDe3o62traQ9m1ubg5rmT0A8Hq9sNls2Lp1K5588slAhX5JkjB16tRww43Ieeedh6uvvjowzP/rr7/G+PHjsXjxYkyePBmqqmL16tV49dVXoarfFjR6+umnMXTo0JjEcMcdd+DAgQOBbYPBgPvvvx/3339/yOe44IILcM8998QknnQSy+GrrIhNA4nJmmA6WcJ3Rhdh7d5WtHQq/a5UI4RAq0OBzemB6tUgS76vmY16jCjIQH27O2VG8Awkg06CLPtGPUXCP4rFqGcJIyIioliJeRLgwQcfxJ///Od+9/Ev6Xfbbbfhtttui+p6kiQFzpfIQniPPfYY7HY7li5dCsA3IuDJJ5/sdV+9Xo/77rsPl156acyu7/UGF6VSVTVoGcJQ1NfXxyyedBKr4at1NlfMphTEk1cTcCgeqF4Bg06C1ahnZ4bS1sSyHIzIz0BrpwqH4kVGL0PMhRBo6nCjzaFCr5NgMchQvQI6nYyCTCNGFmbApNel3AiegWA16lGUZUKdzYXsEN8Hu7I5VQzJNcNqOPKoDSIiIgpNXKYDiBAz/qHu15euT3BOOeUUnHbaaVGdLxz+JfjOOuss3HXXXdi6dWuv8Z166qm49957ccIJJyQsNopOrIavbjjYFpMpBfGSyoUKiSKVYzVg/rEl2NPUgeZOBXqdDFO3p8ytDgVtDhVGva94oEcTULwarEYdxhRlBqYRcATPkelkCTNGFWLJmn3QhAhrdJUmBByqFzNGFQ7qaSxERESxFreaAP0NsTzSPqEQQgTOdfrpp2PJkiURnysaixcvxuLFi/HVV19h8+bNOHz4MAwGA8rKyjBjxgyUl5eHfK7Zs2eHnBh57rnn+i0aSJGLxfBVWZbw5f7WpKyInU6FCokiMbeiBK2dCl5YvQ/NHW7kWPSwGvWQJAkerwab0wO9ToIsSVA8GtweL8wGPY4ZmoORhRk9zjcQI3hSycSyHORZjWjuUFCUFfrclOYOBflWIyaW58QxOiIiosEn5kmA3NxcjBgxos/v79u3L9D5z8vLC7uiv16vR1ZWFkpLSzFlyhScc845mDZtWlQxx8LkyZMxefLkgQ6DYiAWw1fzM4xocyhJVxE7XQsVEoVDJ0u44PhhyLEYsGTNfuxp6kRLpwqLQQePJuBUPNDJEhyaF7IkIddqxHFluRhVlNFn8jpRI3hSUY7VgDkVRVi+vhZmgxzS9Ci7S0WbU8GiKWVMqhAREcVYzJMAN910E2666aY+vy/L3w67/Mtf/oJrrrkm1iEQRSUWw1fnjcjDR1vrk64iNgsVEvnoZAnzjx2C6aMLsXpXM1ZsOoTtde1o6lCgCQGTrENxthFHl2ShPM9yxJUEuKZ9/+ZWlMDmUFG5rQEuVUNBprHX91Z/ArLNqWDuuGLMrSgZgGiJiIjSW0ovEUgUL9EOXz2uPAdV2xqSqiK2zaGmRKFCokTKsRgw/9hSzJtQgrp2F+5asQVWox4FmUYYdXJY09a4pn3fdLKERVPLkWM1oKqmETsbOnxTkcyGQNLT5lThVL3IsxqxaEoZpyIRERHFScLvUoYPHx64qQp3KgBRokQ7fLU0x5J0FbE31dqSulAh0UCSZQlmgw4Wgw45FsMRn/z3hmva908nS5g3oRQnjSzApoO+oqRNdncg6Tkk1+wrSlqew4QjERFRHCU8CbB3795EX5IoItEMX022itheTaB6d1NSFiokShZc0z4xciwGzBpbiJmjC+BQvVA8Gox6GVaDju8vRERECcDxikR9iHb4ajJVxHYoHjTa3UlXqJAomXBN+8SSZcn3fsJRE0RERAnFu3mifkQzfDWZKmKrXgFNE0lXqJAomSTbCB4iIiKieEiqJEBbWxtWr16Nw4cPo6WlBQ6HA0II/P73vx/o0GiQi3T4arJUxOYwZ6LQJNMIHiIiIqJ4GPAkgMvlwrPPPosnnngCmzdvhuilk9JXEuA3v/kNOjs7AQAVFRW4/vrr4xorUbjDV5OlIjaHOROFJplG8BARERHFw4AmAT744ANcfvnlqK+v77XzD6Df5Zna29vxz3/+EwBgsVjwwx/+EJmZ4VU+J4q3ZKiIzWHOg4vi0dDc4avhYDXoUJBp4iiOMCTLCJ548WoCDsUD1Stg0EmwGvVciu8I+JoREVE6GbAkwP33349bb70VmqYB8HX2uyYCum/35sYbb8Tjjz8OAHA6nXj99dfxwx/+MH5BE0UhnhWxQ7lB5TDn9Heg2YEVmw7jgy11aOlUAgmf/Awj5k0oxcKJQzCswBrRuQdTJyhZRvDEms2hYlOtLxHZaHdD0wRkWUJRlsmXiCzLQY6VIxm64mtGRETpaECSAC+88AJuueUWAN929iVJwoknnojjjz8ee/bswcqVK494nnHjxuHYY4/F5s2bAQDvvvsukwCU9GJZETucG1QOc05fikfDwx9tx3ub62F3qzDpZGSa9ZAlCZoQaLS78exne/DquoOYf2wJbjrt6JBHBgzWTlAyjOCJFa8mUFlTj6qaRrQ6FF9Cw2KATvLVCamzubBkzT7kWY2YU1GUEgmNeONrRkRE6SzhSYCGhgb85Cc/CQzzF0LgrLPOwgMPPIAxY8YAAJ544omQkgAAcN555wVqCVRVVcUtbqJkEukNaroPcx6MFI+G2/+zCau2NyLDpMfwPAtkObiDn2U2QNM0tDhUvLbuIJrsbtxx3sR+EwHsBPmk+pr2Xk1g+ZcHUbmtAbkWI8YUZ/b4P59tNgT+zy9fXwubQ8WiqeVp+fsMBV8zIiJKdwlPAtx5553o7OwMJAGuu+46PPbYYxGfb9q0aYHPGxsbcfDgQZSXl0cdJ1GyivYGNR2HOQ9mD3+0Hau2NyI/w9jv6A5ZllGYaYJJL2PV9kY8/NF23DK/otd92QnqKVXXtK+sqUfltgaUZpv7bx+Sb3SH2SCjclsDcqwGzJtQmsBIkwdfMyIiSncJTQIIIbB06dLAFIDjjjsOf//736M653HHHRe0vXXrViYBKK1Fe4OaTsOcB7sDzQ68t7keGSZ9SNM7AN+oALdHw3ub6/H9k4ZjWF7PGgGp3gkaTPUL+mNzqKiqaUSupf8EUVdZZgNcqoaqmkacNLJg0L0H8DUjIqLBIKFJgHXr1qGpqQmSJEGSJNx66609hq2Gq7y8PGgFgf3790cbJlHSiuUNaqoPcyZgxabDsLtVDM+zhHVcvtWAfa1OrNhwGNfNHh30vVTuBA3W+gV92VRrQ6tDwZji8FbNKcg0YkdDBzYdtGHW2MI4RZec+JoREdFgkNA1o7Zt2wYAgar/8+fPj/qckiQFLQvY3t4e9TmJkpX/BrUg0xjWcQWZRrQ4FGw6aOvxPf8w5/wMIzJNeiYAUoTi0fDBljqYdHLYyVRZlmHSyfhgSx08Hi3oe/FoY/Hm1QQ+2FKHe1bWYMmafaizuZBh0iPXakSGSR+oX3DPyhp8sKUOXq3/lWfSgVcTqN7dBKtRF9aSoIBvhIfVoEP17iZog+C18uNrRkREg0VCkwCNjY2BzzMyMpCfnx+T8xoMhkBiweVyxeScRMmGN6jUVXOHGy2dCjLNkQ3oyjLp0dKpoNmhBL6Wim3MX79g+fpaAMCY4kyU51mRbTYgw6RHttmA8jxr4Mnu8vW1WP7lwbRPBDgUDxrtbmRHOCojx2JAk90Nh+qNcWTJi68ZERENFglNArjd7sDnBkPshmTabLbAlICcHK5lTumJN6jUlUP1QhMi7M66nyz7lg/scHu+PWcKtrGu9QuKskx9vh7++gWl2WZUbmtAZU19wmIcCKpXQNMEdBG2D3+hUKXbSJF0xteMiIgGi4QmAYqKigKf22w2eL3R3yju27cv6DwFBQVRn5MoGfEGlbqyGnxP6zUR2RNtTfMlEDJN344kSLU2Fmn9glyLEVU1jbA51ThHOHAMOgmy7FvOMRLeb+opOBUP9rc4sL+5E20OJa1HUMTiNdPJUr9LbxIRESWDhBYGLC4uDnwuhMBXX32F448/PqpzfvLJJ4HzSZKEkSNHRnU+omTFG1TqqiDThPwMIxrt7pA7wF3Z3R4UZ5lQYP127n+qtTEWceub1ahHUZYJdTYXssNsH27Vi62H29Hc6caP//0FXKovqWMx6DC2JBMLJw7F9FEFaVdkMZrXDABsThVDcs2wGnRxiI6IiCh2EtobmDZtWmBlAAB48803oz7nv/71r8DnGRkZUScViJKV/wa1PcKnlzanisIsE29Q04RRL2PehFK4vRo0Lbwn75qmwe3VMG9CKfRdOuyp1MZSsX5BIulkCTNGFcKheEMeLSKEwK4GO1ZsPIQNB9vQ0qlC9QpkGPXIMOmgejWs3duKO1dswc9e+hLvbU6vIouRvGZ+mhBwqF7MGFXI4qpERJT0Ej4dYMqUKQB8NxuPP/44WlpaIj7fypUr8fHHHwcSC6eeeip0OnZwKD3xBpW6WzhxCLJMBrQ4wuu0tzhUZJsMWDhpSNDXU6mNpWL9gkSbWJaDPKsRzR3KEfcVQmDLIRs+39uCFocKs17GiHwLCjNNyDTrkWkyoCDThPI8C7LNeuxp6sA/Pt6J19alV5HFcF6zrpo7FORbjZhYzrpERESU/BI+LviKK64IDN1vbm7GFVdcAY/Hc+QDu6mpqcHll18OSZICKwP89Kc/jXW4REmFN6jU1bACK+YfW4JOtwd2V2iJALtLRafbg/nHlmBYnrXH91OljaVa/YKBkGM1YE5FEdqcyhHbx56mTmw+1A6nokEvSyjKMsOg75lUlyQJmWZfQqDdqeDltfvTqshiOK+Zn92los2pYE5FEXIiTEoRERElUsKTANdeey1GjBgBwPfkYcWKFViwYAH27dsX8jmWLFmCmTNnBpYclCQJU6dOxXe/+924xEyULHiDSt3ddNrROPXoIrR0KmjqcPc5NUDTNDR9s6zgqUcX4abTju51v1RpY6lWv2CgzK0owdxxxahrd6HR7u51hIdb9WJHvR0OxQtIvnoTuUeY72/S65BpMqDNoeK9r+vTqshiKK8Z4Bv90mh3o67dhbnjijG3oiTBkRIREUUmoYUBAd/SgE899RQWLFgAr9cLIQQ++ugjjB8/Hueccw7mz5+P7du3Bx1z4MAB7NixA6tWrcKyZcuwbdu2wGgCIQQyMjLw3HPPJfpHIRoQcytKYHOoqNzWAJeqoSDT2OucaE0INHcoaHMqvEFNU15NwO3x4uZ545BtMaCypgH7W50w6WRkmvS+ZQA1AbvbA8WrIctkwAXHl+Om047ut/ObCm2MRdxCo5MlLJpajhyrAVU1jdjZ0AGrUYdssyEwGmJHQwfq7G4IAKVZJuRlGAO1e/pjNergUDzY29yZVkUWQ3nNbE4VTtWLPKsRi6aUYW5FCXScakVERCki4UkAADj99NPxj3/8A9dee23gRsPlcmHZsmVYtmxZ0L5CCBx11FFB2wACCQBZlvHUU0/hmGOOSVj8RAOJN6hkc6jYVGtD9e4m35PKb5Zzmzk6H6oH2FrXjnanCk34lgEszjJh3oRSLJw0pNcpAN2lQhvz1y9YsmZf4OcM1WCrkaGTJcybUIqTRhZg00Ffu2myuwPLADrcKjJNOlgNOuRlmEI+ryRJMOp1sDtVfLarETNHF6TN69nfa6aTJQzJNWPGqEJMLM/hCCsiIko5A5IEAICrr74aBQUF+PGPfwybzRZIBnTv5Hf9mv/r/q9lZWXhxRdfxMKFCxMcPdHA4g3q4OTVBCpr6lFV04hWh+LrmFsM0Em+YfHtThUOxYvxpVk4/qg8TB6Wh2yLAQVWY9AqAKFIhTbWtX5BUVbondfBWiMjx2LArLGFmDm6AA7VC8WjQfF48dd3t8Lu9sBqCv+WwKyX0en2oK7dV2QxM4JzJLPeXjOjXobVoEubhAcREQ0+A/rX+vzzz8fUqVPxhz/8AUuXLoWq+uYU+jv63YcjCiEC0wAuuugi3HnnnRgzZkzC4yZKFrxBHTy8msDyLw+iclsDci1GjCnO7PH0O9tsCAzRr9rWCAm+J/rRPKFP5jbmr1+wfH0tzAYZWSFMC/DXL1g0pWzQJshkWfJ11k1AS6cSqO4vIfzfp//vtOrRfEUWQ8/FpJSurxkREVGqG/CU/VFHHYV///vfuOuuu7Bs2TKsWrUKq1evRmNjY9AIgKysLEyZMgXz5s3D+eefj/Hjxw9g1ETJhTeo6a+yph6V2xpQmm3ut7MrSxKKskwwG2RUbmtAjtWAeRNKo75+sraxVKhfkMwMOgl6nW+UiED4RRb9f6cNejntiywSERGliwFPAviVl5fj5ptvxs033wzAd2PR2toKRVFQUFAAg2FwPrEhIrI5VFTVNCLXYgzpaTcAZJkNcKkaqmoacdLIgrR96p0K9QuSmdWoR2mOGVsOtcOtajD1sixgf1weDbIsoTTblPZFFomIiNJF0iQBupMkCfn5+QMdBhHRgNtUa0OrQ8GY4sywjivINGJHQ0daVW7vTSrUL0hWOlnCd0YXYe3eVrR0KoEpd6EQQkDxeJGfacLM0UUDPj2EiIiIQpO0SQAiIvLVAqje3QSrURdWBXzANzXAatChendTWlVu70sy1y9IZhPLcjAiPwOtnb7CkhkhFvdzKF5IkoSjCjIGXZFFIiKiVMYJfEREScyheNBodyM7wifYORYDmuy+yu2Dhb9+QX6GEZkmPRMAR5BjNWD+sSXIsejR4fbA7dGOeIzb40WHW0Wu1YD5x5RwhAUREVEKYRKAKEa8moDdpaKlU4HdpQYqbhNFQ/UKaJqALsxRAH7+efFKCB07GrzmVpTg4hOHIdusR3OHG51uNag4r58QAh0uFc0dbmRbjLj4hOEsskhERJRiBmQ6gM1mwxdffIENGzZg3759qKurQ2dnJxRFgclkQkZGBoYMGYIRI0Zg8uTJOPHEE5GZGd5cWKJEsTlUbKr1zUNuaHdD8XgBSUJRpgmnHF2ESeW5yLHyKRlFxqCTIMsSvL10yELhnxfPyu3UH50s4YLjhyHHYsCSNfuxp6kTLZ0qLAYdzAYdAAGXR4NT8UInSxhZmInF00bg9AksskhERJRqEpYEcLvdePHFF/Hvf/8bn332Gbze0IemGgwGzJo1Cz/60Y9w0UUXcaUASgpeTaCyph5VNY1osLvgUjW0u1S4FA80AaheDZU19RhRkInzJg/FWZOG8maZwmY16lGUZUKdzYXsEFcG6MrmVDEk18zK7XREOlnC/GOHYProQqze1YwVmw5hR70dnYoHAGAx6HDMUdlYeNxQTB+VvitOEBERpbuEJAH+/e9/47e//S3q6uoAoNchhv1RFAVVVVWoqqrCb3/7W9xzzz34/ve/H49QiULi1QSWf3kQH9U0oNPtQXOHG26PBoNOhtWkhwQJAgIuxYudDe247307vjrQit8smMAnshQWnSxhxqhCLFmzD5oQYRUH1ISAQ/VixqhCzounkOVYDJh/bCnmTShBh9sDm1MNfJ01FoiIiFJfXJMATqcTP/jBD7B8+fKgjn+oyw915T/+wIEDWLx4Md566y3861//gslkilm8RKGqrKnHRzUN6HCpONzuglmvQ36GsUfbNul1yLYYYHOqeHdzHQSA2886hiMCKCwTy3KQZzWiuUNBUVbo73nNHQryrUZWbqeIyLKEbIsh4qKURERElJzi9kjS6XTiu9/9biABIElS4EMIEfQhSRKys7MxdOhQZGVlAUCv+3Q9funSpVi4cCEURYnXj0DUK5tDRVVNIzrdHhxudyHTpEeGSd9nckuSJORajcixGPBRTQPe3lib4Igp1eVYDZhTUYQ2p6/oZCjsLhVtTgVzKoo4bJuIiIiIAuKWBLjqqqvwySefAPj2yb//af4ZZ5yBu+++G1VVVWhubobH40FraysOHDiAtrY2eDweNDU14aOPPsJf/vIXnH766UHH+xMBVVVV+MlPfhKvH4GoV5tqbWiwu9Dc4YZZr4NJH9pc6xyLAUIAb6w/HBheSxSquRUlmDuuGHXtLjTa3dD6mFalCYFGuxt17S7MHVfMyu1EREREFCQuSYDXX38dL730Uo8no1dddRW2bt2KlStX4tZbb8Wpp56KvLy8HsdLkoT8/HzMmTMHv/71r/H+++9jy5YtuPLKK3skAp577jmsWLEiHj8GUQ9eTaB6dxNcqga3R4PVGHqxNUmSkGnUYW9zJzYcaItfkJSWdLKERVPLsWhKGQBgZ0MHDrY60O5U0en2oN2p4kCLAzsbOgAAi6aUYdHUck49ISIiIqIgMU8CaJqGW265JbAthEBOTg7+85//4Mknn8TRRx8d0XnHjRuHp59+Gv/5z3+Qk+Ob3+pPBPy///f/YhI70ZE4FA8a2t1od6kw6OSw61uYDTp4NYFPdjRC0yJb8o0GL50sYd6EUtx6ZgUWTxuB0hwzHIoHbQ4FDsWDIblmLJ42AreeWYF5E0qZACAiIiKiHmJeGPC1117Dnj17Ah10k8mE9957DyeeeGJMzn/OOefg3XffxamnngpV9Q2p3r59O9544w2ce+65MbkGUV9Ur4Di8cKleGA1hf/fR5IkGHQSGttdcKheZEZwDqIciwGzxhZi5ugCOFQvFI8Go16G1aBj5XYiIiIi6lfMRwI8//zzABAo5nfvvffGLAHgN23aNNx3332BawDAs88+G9NrEPXGoJMASYImAAmRrXIhyxIEAMWjxT5AGlRkWUKmSY/8DCOXbiMiIiKikMQ0CdDZ2Yn3338/0DEfOXIkbrjhhlheIuCnP/0pRo0aBcDXsXrvvffgdDrjci0iP6tRj6JME1SvBoHwh/O7PNo3xQRlGPVxq8tJREnOqwnYXSpaOn0rPng5PYiIiIgSJKZjkaurq6GqamApv5/97GexPH0QSZJwww034Be/+AUAQFEUVFdXY+7cuXG7JpFOlnDK0UWorKmHS/GGvDIA4EtWebwChRl6FGWbYTWEfiwRpYcOtxf/29GE6t1NvlUeNN/ooKIsE2aMKsTEshzkWLmkIxEREcVPTB9Ffv755wC+Xcrv+9//fixP34P//P6RB2vWrInr9YgAYFJ5LkYUZKJT8QTaeigcihcmgwyTUYcZowo5dJtoEPFqAl8ccuG59W1YsmYf6mwuZJj0yLUakWHSo87mwpI1+3DPyhp8sKWOIwOIiIgobmKaBNi6dWvg82HDhqGkJL7rU5eWlmLEiBGBjtiWLVviej0iAMixGnDe5KEAJNicakjHuD0aXB4vCjKMKMkyY2J5TnyDJKKk4dUEqvZ04r/7XACAMcWZKM+zIttsQIZJj2yzAeV5VowpzgQALF9fi+VfHmQigIiIiOIiptMBdu/eDcD3ZH769OmxPHWfpk2bhn379gVdfyBs3LgRmzdvRm1tLUwmE8rKyjBt2jSUl5cPWEwUP2dNGoqvDrTi3c11AHzV2ntbLlAIAYfihcvjxZBsMzJMOsypKEKOhcN9iQaLypp6fFHrQL5FRrZFB7mPpUVlyTctwGyQUbmtATlWA+ZNKE1wtERERJTuYpoEqK+vD3xeVlYWy1P3yX8dIUTQ9RPlpZdewp133tnrKARZljF79mzce++9mDp1atxi6OjowJdffom1a9cGPnbu3BkYITFixAjs3bs3btcfjHSyhN8smAAB4KOaBjgULzKMOpgNusDymC6PBo9XwGSQMTTHggyTDqdVlGBuRXxHyBBR8rA5VFTVNCLLqIPVENqT/SyzAS5VQ1VNI04aWcCkIREREcVUTJMAzc3Ngaehubm5sTx1n7pep6WlJSHXBACPx4MrrrgCS5Ys6XMfTdNQWVmJ6dOn44EHHoj5SgmbNm3CxRdfjG3btkHTuNxcohn1Mm4/6xhMGZ6LN9Yfxt7mTrg8KvSyBFmWYNbrUJihh9moQ3GWGXMqijC3ogQ61gIgGjQ21drQ6lCQY5aheb0hH1eQacSOhg5sOmjDrLGFcYyQiIiIBpuYJgHcbnfg87y8vFieuk9dkwAulysh1wSAG2+8MSgBYLVasXjxYkyePBmKomDNmjV47bXXoKoqVFXFjTfeiKKiIlx88cUxi6G5uTmoDgMlnk6WcO7kcsweV4INB9rwyY5GNLa7IACY9DKKss2+it/lOXyaRzTIeDWB6t1NsBp1kFUJ4aRqZUmC1aBD9e4mzBxdwEKiRCnCqwk4FA9Ur4BBJ8Fq1DP5T0RJJ25JAKPRGMtT96nrdRRFScg133zzTTz++OOB7QkTJmDlypUYNmxY0H4bNmzAggULcOjQIQghcOWVV+LUU09FaWl85ngWFRXh+OOPxwknnIBly5Zh27ZtcbkO9ZRjMeCUo4swa0whHKoXikeDUS/DatDx5p1okHIoHjTa3ci2GOAKrYZokByLAU12NxyqF5mmmP65JqIYszlUbKq1cflPIkoJMb2rEEL0WhwtUcJZri1Smqbhd7/7XWDbarXirbfe6pEAAIBJkyZh2bJlOPnkk6FpGhwOB+644w784x//iEksJSUl+M1vfoMTTjgBJ5xwAoYPHx743ieffMIkwACQZcl3s24K/jqfDBANPqpXQNMEdBH+XdTJEryagOLRerynEFFy8GoClTX1qKppRKtDgdWoQ7bFAJ0kwStEYPnPPKuR0wKJKGnw0UKYPvjgA2zevDmwfeONN2LUqFF97j9z5kxceOGFePnllwEAzzzzDP76178iKysr6ljGjx+Pv/zlL1Gfh+In1Z8MMHlBFDmDzlcfxBthgtqrCehkCUZ9TFfzJaIY8WoCy788iMptDci1GDGmOLPH6h/ZZgM0IdDcoWD5+lrYHCoWTS3n31IiGlBMAoRp+fLlQdtXXXXVEY+5+uqrA0kAt9uNd999FxdddFFc4htskrWTmupPBlI9eUGUDKxGPYqyTKizuRDJBDmbU8WQXDOsBl3MYyOi6FXW1KNyWwNKs83IMvf9N5HLfxJRsmESIEzvvPNO4PPRo0dj9OjRRzzm5JNPhtlsDhQuXLFiBZMAUfJ3Uj/d1YhDrS50Kh4AwJAcM+ZWlGDq8LwB66Sm8pOBVE9eECUTnSxhxqhCLFmzD3qENxpAEwIO1YsZowpZV4QoCfmX/8y1GPtNAHTF5T+JKFnELQnwwAMPYOnSpfE6fcChQ4fifg2/trY2HDhwILA9Y8aMkI4zGo04/vjj8emnnwIANm7cGJf4BgN/J/W9zfXYXm/HoTYH7C4Vnm/KbksS8PqXBzGqMBOXThuOi04cnvBOaqo+GUjl5AVRsppYloM8qxEtLR3ICuN+v7lDQb7ViInlOfELjogi5l/+c0xxZljHcflPIkoGcUkCCCGwY8cO7NixIx6n70GSpIQUBdyyZUvQdiijALru608CbNu2DZqmQZY5zzMcXk3gtXUH8dLn+7GnqQN2lwdCAOjS/xQa0Klo2HyoHX98aws+2FKPfyw+HhZjYobTpvKTgVRNXhAlsxyrAXMqivDcx43QAcgO4a+u3aWizalg0ZQyPikkSkJBy3+GWfiTy38SUTKISy90IFcIiKc9e/YEbY8YMSLkY7vu63Q6UVdXF7O4BosPt9Tj/6r3Ynt9O9qdHgj4nvzLEqDzf8i+D0kC3B4NH29vxI//vcZXXTsB/E8GCjLDmwFckGlEi0PBpoO2OEXWv0iTF7kWI6pqGmFzRrD+GVGceTUBu0tFS6cCu0uFV4t/srg3cytKcGKZFS1ODa1OL7Q+ktaaEGi0u1HX7sLcccWYW1GS4EiJKBRdl/+MRNflP4mIBkLMRwIk4on8QGlvbw/azsvLC/nY3NzcoG273R6LkAYNm0PFkjX7sLe5E05VA77p/EvomXTSARAQkAB4BbBmTyv++u4W/P7sY+MaYyo/GUi2YY3JWvCRUkOyFbbUyRLmjMyASfJgQ4MXOxs6fPU2zIbAMoA2pwqn6kWe1YhFU8pYb4MoiXH5TyJKdTFNAlx++eWxPF3S6ejoCNo2m80hH2uxWPo9Vypyu91ByyXGU/X+Tnx9sAWdbg0CvgQABCDQd+JJgm+oi1cDXvl8P75T5EFJZvxqYToUDdv3t8Cil9Gghv/79SgadrS3Ye0GBVZD4qaKeDWBNze0we3woqnRGfbxSqcHb67eimxXbtjJj+463F7sbFHw1WEnmp1eeDRALwMFFh0mD7FgTL4Rmaa+p3a43e7Av4lqm5Q8vJrA2lonvqh1ot3thVkvI9MoQ5YATQBbmzWs33kI2SYdTiyz4IQyS8I62h5VwYlDzTimSGB/h4aNdQ7U2rzwCt8oplyzDt8pNWNMgUCm1oStW5oSEhfRkd43vZqA2yOgagIGWYJJLw36BJVD0WCztUHplJFhDP/vdaeiweXRsHN7TUL/3qca/k2nZOVvm6kspj2iZ599NpanSzr+6v5+RmPoQ75NpuBUr9MZfmcr2Qgherwm8eAVAqv22OFQvkkAIKgMQL/8N/+dqsDKmhZcfGx23OLscGtQPV6YZQ0eT/h/1IWmQfEIdDhckE2JuylwqBqaOhVY9BI8Hk/Yx5t1Gpo6vbB1OGGJ8GbGKwS+POzGmoNu1Hd60alo8E3g8BV92AXg63oXSjJ0mFZuwtQhpn6fwCSqbVLy8AqB/+5z4cvDbmQaJQzNkOFrIv6qoYDJDAghweb24MNd7WjpdOOUEeaIn+ZFwmqQUJEHHJ1r/qZjBRhkwKSXfEk0TQGbLg2E7u+bHYqG3a0qNjcoaHNr0ITvb2quScaxxUaMyjMgM4IOcDoQQiBLL9DsVGGSw685ZHN6UWCRAY8bLu/gTqiEgn/TiWKPSwSGofuTf0VRQj62e8ao+8iAVCRJUo/kRjzY3V4caPdC8fqvG97x3wwawGcH3Vg81Qh9nAoyarIGg94BSZah14d/DUnTYNRryLSaYU7gkwE3vJBkBwz6yOI2Cg1uTYNsMMFsDv9myKsJ/Hd3B97f6UCH4hvVodfJMOukwO9O8QrYVQF7mwd1Di+cmg6njcrs8TTK7XZDCJGwtknJY80BB75qUFGcZTzik7VCA2BVNXzVoCI/w4Rpw+L/ftxb27TG/apER9a9bfY6osZkCCTV2xQNH+51I/uwJ+EjapLJ1HLgne12yLrwpgBqQkAVGqaWZ8KaBveC8cS/6ZSsOBJgkMnMDJ4vHU5WsvuT/+7nSkUmkwnHHhvfefYAsL+5Ex6pCRo8vkKA4d5saAJeAdhUCSUjxmJITnz+6Ho1gVWN21Bnc6E4L/zb+wMtDozNNeOESeMSWhPA7lJRsHcLMkx6ZIdYFLCrdqcKk+LBpInHINMU/lvKe5sP4+MDbXAJA3Iz9bAadb0WFxVCwKF40eH24OMDHhwzphDzjx0StM/mzZvhcrkS1jYpOdgcKl7cXoMRpRYUZYV+o5hhd2OXE/je6HFxr8LPtknJqmvbHD/hGCz/8iDWtSjIz8/H2Exjrx1c/1Kx61oU5BTlDsqlYoeNUrHFXgMAYb3vNNrdOMoKnD2rgqt/HAHfNylZpcP0lME5jitC2dnBQ8lbW1tDPratrS1oOysrKxYhDQ6SBE0T6LYaYNi8Xg1NHfHL3OlkCTNGFcKh9F39uy+aEHCoXswYVZjwooBWox5FWSa0R1jh3+ZUUZhlgtUQwZBIh4ola/aj1aEi12pEhknf5+oikiQhw6RHrtWI1m+O46oEBKTuqhxEyabrUrFFWaY+n3D7l4otzTajclsDKmvqExzpwPMv/9nm9K0+Egr/8p9zKoqYACCiAcUkQBhGjhwZtL1///6Qj923b1/gc4vFgtJSrqseqmyzHuYIOph+/uSBJAFGXXhNPtwlxiaW5SDPakRzR+hTRQCguUNBvtWIieU5YR0XCwOZvFi9uxl7mjqRY9HDFOJUBJNeRo5Fj91NnVi9qznsa1J6idWqHNoALR9IlCw63F4uFRumuRUlmDuuGHXtLt9KJFz+k4hSBKcDhGHChAlB2zt37gz52F27dgU+HzduHOQ4zUtPR1lmA44uzcTeZgc04VsCMFRCfDOCQAIsRj1KskJb0SHSJcb8TwaWr6+F2SCHdCPlfzKwaErZgD0Z6Jq8CGdYYzTJC68msGLTIXg1AasxvLciq1GPlk4VKzYdwrwJJQkfPUGh8y/36FI1eLyar96DQY7Zso+xXK87kuksROliZ4uCVoecNEvFpgKdLGHR1HLkWA2oqmnk8p9ElDJ4xxOG3NxcDBs2DAcOHAAAVFdXh3ScoihYt25dYHvixIlxiS9d6WQJ500qR9W2JigeDUKEXhzQn5OXABxdknXEjoJXE6isqUdVTSNaHYrvj7nFAJ0kwSsE6mwuLFmzD3lWI+ZUFPX6x3xuRQlsDhWV2xrgUjUUHGFOZZtTGfAnA7FMXvg7fapXwKCT+uzs2V0qttfbYemjBkB/JEmCxaDDjno7OtyeiDuAFD/+RFrVtnrsbOhAnc0FxaPBZJBRkm3G2OIszB5X3GdCLVRcr5soel4hsLHOBaspK6oRNTNHFwy6pKxOljBvQilOGlmATQd9Dw+a7G54NQGdLGFIrtn38KA8h1MAiChpMAkQpgULFuCJJ54A4Hu6v3v3bowaNarfYz755JOgIoILFy6Ma4zpaOaYQozMt2J7Qwe8moBed+SbDCEEhAAgAKNRh4tOHNbvzYlXE1j+5UFUbmtArsWIMcWZPW6Gss2GQOd9+fpa2Bxqj4JIqfpkINrkRbijJ9pdvqfDGWGOAvAzG3ToVDywOVUmAZKIP5H20dYGbK+3o9WhQBOAQZZgMeqgejTsberEvmYHvtzfinElWZg7vjji/wMGnQRZ9iXpIo1XJ0swRrAyBlG6cHsEWl1elOdyRE2kciwGzBpbiJmjC+BQvVA8Gox6GVaDbtAlRogo+Q3Od+ooLFq0KJAEAICnnnoKd999d7/HPPXUU4HPjUYjFixYELf40lWO1YBrTx2F3y7fBJdHwKsJyBL6rCIvAPj7BLIMjCzMOOKT9q4Fkfp7Eu4viGQ2yKjc1oAcqwHzJgTXeEjFJwORJi8A4IMtdeGPnvD/gqRI52JzDney8SfSPqqpR0unCptTRYax54oP/pUebE4Fe5o68PqXaq8JtVD4C1vW2VwRrW5hc6oYkmuOqLAlUbrwaL7l/ziiJnqyLPkSIYP8dSCi5MYkQJjmzZuHCRMmYMuWLQCARx99FNdcc02PooF+1dXVWLZsWWD7yiuv7HNlgI8//hhz5swJbF9++eV47rnnYhd8ijt3Sjm+3N+KpV8cgFf7puCf8CUD/L558O/7XAA6CSjJMeOGOWP67WzbHGpEBZFcqoaqmkacNLKg1/On2pOBcJMX0YyeyLYYYDHo4FY1ZEZws+TyaLAYdEmTRKFvE2mqR0NzhxtZZkOvBR/9Kz3odRKaOhVkmgx9JtSOxF/YcsmafdCECHu97oFalYMomehlQJbAETVERIMEkwBhkmUZd911FxYtWgQA6OzsxNlnn413330Xw4YNC9p348aNuPDCC6FpGgDfqgC33357wmNOFzpZwu/PPhYyJLy+vhYOxQsvfE8vJMk37z9w+yIAo15GWa4ZV58yGmcc03/Hwr/EWLwKIqXak4FQkxfRjJ6YW1GCsSWZWLu3FflChFUXQAgBp+LFMUdl9zn0NNTaBBQb/kSa1aDH/mYHzAbdEVd8MOl18HgF6tpdqBiS1W9CrT8DUdiSKJ2Y9BLyzDq0O1WOqCEiGgSYBIjAeeedh6uvvjowzP/rr7/G+PHjsXjxYkyePBmqqmL16tV49dVXoarfLpnz9NNPY+jQoTGNZfHixVizZk2Pr9fW1gZ9PmbMmB77lJeX4+OPP45pPPFm1Mv4w7nH4viR+Vj6+X7UHG5Hh9uDb/Is0EmA2ahDSbYFE4Zm4+xJQ4441zhWS4zFqiBSMnVe+0texGL0xMKJQ7F+fxs63R5khnHj2en2QJYlLDxuaI/XvEPRUNPqxLu128Ja2YGi40+kGfUyXKqG/IzQXmOrUYfmTgUer0CHW4mowniqrspBlCx0koTjSs34tN7LETVERIMAkwAReuyxx2C327F06VIAvhEBTz75ZK/76vV63Hfffbj00ktjHkdtbW3Q8oO98Xg8ve7j8XhiHk8i6GQJ504uw+xxxdhwoA2rtjegttUJ1avBatSjLNeCWWOLQp5vnyxLjEW6LOFAicXoiemjCjCyMAN7mjpg0Msw6Y/8FMnt8aLdpWJUYSamjyoIfN2rCaw54MDq/R3o9ABDigxhr+xAkfEn0iwGGftbnDDopJBHdkiSBINORm2bE+V5logTaqm4KgdRMhmTb8QWu8wRNUREgwCTABHS6/V46aWXcNZZZ+Guu+7C1q1be+wjSRJOPfVU3HvvvTjhhBMGIMr0lmMx4JSjizBrTGFU8+0HeomxWCxLmGixHD2xeNoI/KNqJ9ocvrnh3YvI+fmLyXW4VeRlmLB42ohAkidQm2BPB6w6gWE5RpTmWYOOD2VlB4qMP5FmMerhUDwwGcKbF2zWy3C4Pcgw6SNOqKXqqhxEySLTpMOcikKOqCEiGgSYBIjS4sWLsXjxYnz11VfYvHkzDh8+DIPBgLKyMsyYMQPl5eUhn2v27NkQYRblSbXh/PEQ7Xz7gVxiLFbLEiZaLEdPnD6hBDanipfX7kebQ4VT8cCo980nlyQJQgi4PBpUjxeQJBRkmnDxCcNx+oRvn+D6axMUWvUwSlqfiYlQVnag8PkTaZLOV5BTQnhtU5IkaN/894smoZaKq3JQ/5JpetRgEKsRNfy9ERElNyYBYmTy5MmYPHnyQIdBERjIJcZiuSxhrIRy8xbL0ROZJj0uOL4ceRkGvPd1PfY1d6LdqaLT/e10FVmWkJ9pwoiCDMw/piToCW7X2gQCTng82hGvH8rKDhQ6fyJNwFekU4S5fKPosspHLCqMp9qqHNRTMk+PSucObrQjapL590ZERN9iEoAGvYFaYixeyxJGKpybt1iPnuj+BPezXY2oa3dD9Wgw6GWUZpswc3TvdR661iZocoYeQ6grO9CR+RNph9ucsBr16HR7Qqrv4OfyaMgy+44bmmuJWYXxVFuVg5J7etRg6eBGMqImmX9vRETUE5MARBiYJcbivSxhqCK5eYvX6Ilwn+Am28oOg1XXRFpZngVf17ZDhLjsoxACqldDWa4FTlVjhfFBLFmnRw3WDm6o78fJ+nsjIqK+RTfmkihN+JcYa3MqsLvUIx+AbwsizakoCvuJfKw6r5oW2ZP4rnEs//Iglq/3LSk5pjgT5XlWZJsNyDDpkW02oDzPGkhULF9fi+VfHgQAzBhVCIfiW04qHKGMnvA/wc3PMCLTpO9zv1jWJqDo+BNpBlmG2SDDoYT2mjoULywGHfQ6iRXGB7mu06OKskxHrO1Rmm1G5bYGVNbUxy2mSN8jvVG+NyeTI70fJ+PvjYiI+sckANE35laUYO64YtS1u3xDPfvo3GpCoNHuRl27K+IlxpKl8xrNzVvX0RPhiOVyUjFd2YGi4k+kOVQPSrNNcKleuI/wuro9Xrg8XpRmm+FQvBEl1Cg9RDo9KtdiRFVNI2zO0JK34WIHt3/J+nsjIqL+MQlA9A1/QaRFU8oAADsbOnCw1REoUtfuVHGgxYGdDR0AgEVTyiIezpgMnddob94gIaGjJ3ozkCs7UE/+RJpBL6Mg0wS7y/d/p/uqJ0IIdLo9sLtUFGYYYdDLESfUKD34p0cVZBrDOq4g04gWh4JNB20xj4kd3CNLxt8bEREdGWsCEHWRqCXGkqHzGouaBLFaTipSiVzZwasJ2F0q2p0qIEnINuuR9U3FbPLpWln8o60NUL0aWh0K7C4PDDoJRp0MxatB9WqQJAn5GUaMLMzE3PHFaTOPmsKXrLU9kqVuS7JK1t8bEREdGZMAlJYa2934ZHs9aurtyDTpcNLIQkwalgeLMbSq4/FeYmwglyUEYnvzFs1yUtHqvrJDOEJd2cHmULF6dzNWbDqEHfUdcH4zBcNskHF0SRYWThyK6aMK0qIqeCx0T6R9vK0eOxo6UGdzwal6YTLIKMvLxNjiTMweVxx1Qo1SXyynR2WaYnNbww7ukSXj742IiELDd11KK0vX7MO9729Dc2f3YZi7IAE4YXgO/nTuREwoC20+eryWGBuoZQn9Yn3zlojRE32JV20Crybw4ZZ6LFmzD3uaOuHVBKxGHTJMOkBIcHm8WLu3Fev3t2FkYQYWTxuO0yeU8mn2N7on0lyq19cmJAlmoy5mCTVKfTGdHhWj92p2cI8sGX9vREQUmvT8y0SDTmO7G6fdV4l2pe858gLAF/ttWPDo/zBnXD4eW3xSyCMDQuHVBNocChrsbqgeL/IzTSjOMvc5ZH8gliX0i8fNW7xHT/TFX5Bu+fpaGFQNxhAu5a9NsGhKWa+JCa8m8Nq6g3hh9T60OtyBSuBdl7zLhB5CCDgUD/Y0deIfVTthc6q44PhhTAR04U+kpWtHiKKXDNOjumMH98iS8fdGRESh4V0ZpbzGdjdm3v0h1DDuQ6q2teCSJz7BS9eeHHUiwOZQ8dHWeryydj+21dvh9ghACBh0MoqzTVg4cSgumFqOYQXWoOO6dl7NBjmkwlNH6ryGKp43b/EaPdEff22C5Z/vgFUnkJ/R++801NoElTX1eHntfrS7FBRkmmDS934+SZKQYTJAr9OhzaHg5S8OIC/DiHkTSmP2sxGlu4GeHtUbdnCPLBl/b0REFJr0/etEg8bp91eGlQDw+6q2E794ZX3E1/VqAu9uPISLnvgUv12+CV/sbYXd5YHH44VH0+BSPdjX7MA/V+3ChU9U42/v1vSo5p/IZQm78t+8tUdYvdrmVFGYZUqamzd/Qbq5IzMBSDhgUyNe2cHmUPHe5nq0OVRkmgx9JgC6MullZJr0sDk9eG9z/aCoCk4UK/7pUQ7FG7faHuFKt/fIeEjG3xsREYWGIwEopS1dsw82d+TL5H3wdT22HLZhwpDwhtZ7NYGXv9iH+9/bjjanCknyPTnSyd/m1TQhIIRvObRWhwsvrNmHpk437jxvYuDpUNdq6rEqrOfVfEPUVa+AQSfBatT32H+gaxLEg06WMG2YFWNygAOdEg5r5ohqE2yqtWFfSycgfDUAQmU16uBUvdjb0pn2VcGJYm0gp0f1Jh3fI+Mh2X5vREQUGiYBKKU9+OH2qI73CODp/+7BAxdPDuu4D7fU4cH3fQkAvU6CQSej+62eLEkQADQBeDVA8Xjx/td1KMoy4Zb5FYH9YrUsoc2hYlOt7/hGuxuaJiDLEoqyTL7jy3KCKtin681bhlHG5GwzLp0wLuzaBF5N4NNdjWh3qjDqdUE1AI5EknztoN2p4rNdjWldFZwo1gZyelRf0vU9MpaS8fdGRERHxiQApazGdjfq7eFVhO/Nh1sOQ1EmwhjiU1+bQ8Uzn+xGq9Pjm/Op63tWjQRAJ0mQZAmqV4NL1fDOpjp8/6ThGJbXrUZAhIX1vJpAZU09qmoa0epQfCMJLAboJN981jqbC0vW7EOe1Yg5FUWBkQTpfvN2pNoEvY2YcCge1Nlc0ISIqFaEWS+jU/GizuZK66rgRPHgr+1Rua0BLlVDQaax1yfwodb2iFa6v0fGSrL93oiI6Mh4h0op67OdjTE5T4dbw/42B8YUZ4W0/+rdzdhW3wEB3xSAUMgSoP8mEdDS6caKDYdx3ezRve8bRmE9ryaw/MuDqNzWgFyLEWOKM3vcfGWbDYGbr+Xra2FzqIH58IPx5q2/ERPHDs2BU/ECApB6jO04Mt/IAQHVq6V1VXCieIjH9KhoDcb3yHAl4++NiIj6xyQApayDbY6YnEcDUNfuCikJ4NUE3tpwEA7VCx0Q1jxRWZYATYLi0fD+ljpcNWsk9FFWjq6sqUfltgaUZpv7fUolS75Ortkgo3JbA3KsBsz7Zk37wXLzFsqIiW11duxs6IDb40VGBE/xhRAAfNMC0rkqOFG8xGp6VCzjGSzvkdFItt8bERH1j0kASlmFGbF7zJoR4tBvu0vF1roOCCGg72caQG/8UwM0TUNzhxvNDgUl2eYIovWxOVRU1TQi12IMaZgqAGSZDXCpGqpqGnHSyALkWAyD4uYt1BETpTkaatucaOxwA8KFYfnWsOoCuDwaJAkozeGyV0TRiHR6VDwMhvfIWEmm3xsREfWNSQBKWSeNjE31dYMMjMjPCGnfdpcHTsUT0VBxwDctQNUAj1egw+1BNANGN9Xa0OpQMKY4M6zjCjKN2NHQ0aOCfTrfvIU6YkIvy6gozUZLhwKbU0WmQ0F+iMkmIXzTAPIyjJg5uijlXzOiZBDO9Kh4S+f3yFhLpt8bERH1xPGqlLKGF1qRYYi+CY8pzkKu1RjazsI3fzzCHAD8KylLMqIqGufVBKp3N8Fq1IU1JQHwTQ2wGnSo3t0ETeu5trP/5i0/w4hMkz7lb27DHTFRnGVCfoYROp2Mpg4FHi20JSgdihcSJByVnzEoqoITDVbp9h5JRESDD5MAlLJ0soTvnzg86vP8YMaIkG/isi0GZBh1kCVfRzxcmvAlAgoyTCgINfHQC4fiQaPdjewIh57mWAxosrvhUL0Rx5Aq/CMmCjJDe73NBh3GFGciw6iDS/WizaEe8Ri3R0OH24Mcix7zjy0Z9EOCiYiIiCh5MQlAKe3G04+GPoqHMGW5Jiw8bmjI+2eZDRhXmg2jXoYQvorQoRIAvF4NOlnG/GNKoyoKqHoFNE1AF+YoAD9/QSvFE9pT7lQV6YiJowozcGxZDkx6HRrsbnS41G+K/gUTQqDTraK5w41ssx4XnzhsUFUFJyIiIqLUwyQApbQcqwH3nD8xomPNOuC3Z04I66mtTpawcOJQZBr1kMIcDeDVBASAPKsRZ08OPfHQG4NOgiz7qtpHwl/QKt0r2Ec6YkKWJIwfko2pw3ORYdShzaniYKsTzR2+hECHy4MmuxsHW52wOT0YWZiBn84ZgwuOHzboqoITERERUWphYUBKeecdPwytbhV3vl0T8jFWPfDbs47FdycOCft600cVYGxJFjr2t8CpCkiSgP4IHT9NAKpXg06WcNakUgzLs4Z93a6sRj2Kskyos7mQHeLKAF3ZnCqG5KZ/BftoRkzIkoRRRZnINOlx6rgirNreiB31HehUfFMoLAYZx5TlYeHEoZg+uoBTAIiIiIgoJTAJQClPJ0v40cxRGJZrxf3vb8P2hs4+99VLwHHlObj21DE4fUJkaznnWA1YPG0EWjrd2NPUCbdHQAjfk/XuQ879UwBUzbd+/IlH5eNX88eHfc3udLKEGaMKsWTNPmhChDXUXRMCDtWLGaMK076gVSxGTFiMOsw/dggWTSlHh9sDm9NXIyDHYmBRMCIiIiJKOUwCUFrQyRLmHzsE00cXYvWuZixftx8batvQoXggQ0KORY+JZfk4Z0oZpo+K/qnt6RNKYHOqeOnzfdjT1IlOtxeqpkGGBJ3sWzxAE4Dnm+kCBp2MmaML8I/Fx8dsCP7EshzkWY1o7lBQlBX6OkzNHQryrcZBUcE+liMmZFlCtsUQcTFGIiIiIqJkwCQApZUciwHzjy3FvAklcX1qq5MlXHB8OfIyDHjv63psr2vHIZsTHS5PoOMPSDAbdBhZlIHF04bjohOGx3S+eI7VgDkVRVi+vhZmgxzS8nd2l4o2p4JFU8oGxfB1jpggIiIiIgrGJAClpUQ8tdXJEuZNKMVJIwuw6aANn+1qxKE2JzrdvjnjQ3IsmDu+GFOG58Wtwz23ogQ2h4rKbQ1wqRoKMo29dnQ1IdDcoaDNqWDuuOJBVcGeIyaIiIiIiL7FJABRlHIsBswaW4iZowvgUL1QPBqMejkwhDyedLKERVPLkWM1oKqmETsbOmA16pBtNgSWAbQ5VThVL/KsRiyaUoa5FZHVQkhVHDFBRERERPQtJgGIYkSWJWSa9EDoD5tjovuIhOrdTWiyuwPLAA7JNWPGqEJMLM8ZtB1ajpggIiIiIvJhEoAoTQzkiIRkxxETREREREQ+TAIQpZmBGpGQ7DhigoiIiIiISQAiGmQ4YoKIiIiIBjMmAYhoUOKICSIiIiIajOSBDoCIiIiIiIiIEoNJACIiIiIiIqJBgkkAIiIiIiIiokGCSQAiIiIiIiKiQYJJACIiIiIiIqJBgkkAIiIiIiIiokGCSQAiIiIiIiKiQYJJACIiIiIiIqJBgkkAIiIiIiIiokGCSQAiIiIiIiKiQYJJACIiIiIiIqJBgkkAIiIiIiIiokGCSQAiIiIiIiKiQYJJACIiIiIiIqJBgkkAIiIiIiIiokFCP9ABpIuNGzdi8+bNqK2thclkQllZGaZNm4by8vKExuF2u/Hf//4X+/btQ2NjI4qKijBixAiccsopMJlMCY2FiIiIiIiIkguTAFF66aWXcOedd2LLli09vifLMmbPno17770XU6dOjWscdrsdv/vd7/D888/DZrP1+H5ubi5++MMf4q677kJmZmZcYyEiIiIiIqLkxOkAEfJ4PLjssstw6aWX9poAAABN01BZWYnp06fj73//e9xi2bJlCyZPnoxHH3201wQAALS1teGRRx7BpEmTsHXr1rjFQkRERERERMmLIwEidOONN2LJkiWBbavVisWLF2Py5MlQFAVr1qzBa6+9BlVVoaoqbrzxRhQVFeHiiy+OaRwNDQ1YuHAh9u7dG/ja2LFjcckll2DYsGGoq6vDa6+9hq+++goAsHv3bixYsABr1qxBcXFxTGMhIiIiIiKi5MYkQATefPNNPP7444HtCRMmYOXKlRg2bFjQfhs2bMCCBQtw6NAhCCFw5ZVX4tRTT0VpaWnMYrnuuuuCEgA33XQTHnjgAcjyt4M8brvtNtx777249dZbIYTA3r17cd111+H111+PWRxERERERESU/DgdIEyapuF3v/tdYNtqteKtt97qkQAAgEmTJmHZsmWBDrnD4cAdd9wRs1jWrFmD5cuXB7a/+93v4qGHHgpKAPjdcsstuOaaawLby5cvx+effx6zWIiIiIiIiCj5MQkQpg8++ACbN28ObN94440YNWpUn/vPnDkTF154YWD7mWeegd1uj0ksDz30UND2gw8+2O/+d999NywWS2D74YcfjkkcRERERERElBqYBAhT1yfvAHDVVVcd8Zirr7468Lnb7ca7774bdRyKouCdd94JbJ988smoqKjo95i8vDxccMEFge0VK1ZAVdWoYyEiIiIiIqLUwCRAmLp2vEePHo3Ro0cf8ZiTTz4ZZrM5sL1ixYqo4/jf//6H9vb2wPYZZ5wR0nHz5s0LfG6z2fC///0v6liIiIiIiIgoNTAJEIa2tjYcOHAgsD1jxoyQjjMajTj++OMD2xs3bow6lu7nCDWWmTNn9nseIiIiIiIiSl9MAoRhy5YtQduhjALobd9t27ZB07QBieWoo46CTqcLbG/dujWqOIiIiIiIiCh1MAkQhj179gRtjxgxIuRju+7rdDpRV1cXs1hkWUZ5eXlIx+n1egwdOjSwvXv37qjiICIiIiIiotTBJEAYus7BB3yF9kKVm5sbtB3tCgFdY8nKyoJer48ollitVEBERERERETJL/SeI6GjoyNou2uxvyPpujRfb+eKJpZw4ugeSzRxuN3uoOUSiQaa2+0O/Mu2ScmEbZOSFdsmJSu2TUpW/raZypgECIPL5QraNhqNIR9rMpmCtp1OZ8xiCSeO7rFEGscJJ5wQ0XFEREREREQ0cDgdIAzdn7grihLysd0zRt1HBkQTSzhxdI8l2jiIiIiIiIgodTAJEIbMzMyg7e4jA/rT/Yl793NFE0s4cXSPJdo4iIiIiIiIKHUwCRCG7OzsoO3W1taQj21rawvazsrKilksdrsdHo8noliijYOIiIiIiIhSB5MAYRg5cmTQ9v79+0M+dt++fYHPLRYLSktLYxaLpmmora0N6TiPx4NDhw4FtkeNGhVVHERERERERJQ6mAQIw4QJE4K2d+7cGfKxu3btCnw+btw4yHJ0L32ksezduxderzewPX78+KjiICIiIiIiotTBJEAYcnNzMWzYsMB2dXV1SMcpioJ169YFtidOnBh1LMcdd1zQdqixfPbZZ0HbsYiFiIiIiIiIUgOTAGFasGBB4PNdu3Zh9+7dRzzmk08+CSret3DhwqjjmDVrVlBdgPfffz+k4z744IPA59nZ2Zg1a1bUsRAREREREVFqYBIgTIsWLQrafuqpp454TNd9jEZjUCIhUt3P88knn6CmpqbfY1pbW/Haa68FthcuXAij0Rh1LERERERERJQaJCGEGOggUommaZg4cSK2bNkCAMjIyMCmTZt6FA30q66uxqxZs6BpGgDguuuuw+OPP97rvh9//DHmzJkT2L788svx3HPP9RnL6tWrMWPGjMD2mWeeiXfeeafHfhs3bsTmzZvxyCOPYM2aNUHHT5s2re8fNsbcbjf++9//Yt++fWhsbERRURFGjBiBU045BSaTKWFxUPLwt83a2lqYTCaUlZVh2rRpKC8vT8j1HQ4HNm/ejK1bt6KxsRGKoiA3Nxfl5eWYPn06iouLExIHJZ+BbptE/Um29nn48GF88cUXOHz4MFpaWpCfn4/i4mIcddRRmDhxIvR6/YDERYmXDG1T0zTU1NRg/fr1aGxsRGdnJzIzM1FSUoKpU6di7NixkCQpYfEQ+SVVX0hQ2JYvXy4ABD6OOeYYsX///h77bdiwQZSVlQX2s1gsora2ts/zVlVVBZ338ssvP2Is5557btAxP//5z4XX6xVCCPHiiy+KCRMmBH2/68fcuXPFunXrIn4dQtXe3i5+9rOfiZycnF7jyM3NFTfeeKOw2+1xj4WSQ39tU5bluLbN7du3i7vuukucfPLJwmAw9Pn/A4CYMWOGeOWVV+ISByWngWybofh//+//9Yjr2WefHbB4KLGSrX2+8sorYtasWUKW5T7fRzMyMsQ555zT7/0Ppb5kaJsOh0Pccccdory8vN+/7WPGjBEPPPCAUBQlrvHQwPF6vWLz5s3iueeeEzfccIOYPn26sFgsQe2gqqoqYfEkY1+ISYAIXX311T3+yF1zzTXiscceEw8//LC45JJLenQwlixZ0u85I0kCHD58WAwfPjzouKOPPlpMnDix3zdA/4fBYBCPPvpojF6Vnr7++msxatSokGIZNWqU2LJlS9xioYGnqqpYvHjxgLXNp556KqRrd/8466yzRFtbW0xjoeQy0G0zFOvWrRM6nY5JgEEo2drn4cOHxfz588N6H/3iiy/iGhMNjGRpm9u3bxdjxowJq01OmjRJHDp0KC7x0MA5//zzRUZGxhF//4lKAiRrX4jjsyL02GOPwW63Y+nSpQCAzs5OPPnkk73uq9frcd999+HSSy+NeRylpaVYsWIFzj77bOzduxcAsH379j73z8/Px7Rp0/Dhhx9CVVWoqoobb7wRRUVFuPjii2MaW0NDAxYuXBiICwDGjh2LSy65BMOGDUNdXR1ee+01fPXVVwCA3bt3Y8GCBVizZg2HYaepG2+8EUuWLAlsW61WLF68GJMnT4aiKFizZg1ee+21uLXNjo6OoG2TyYSTTjoJM2fOxNChQ5GZmYnDhw+jsrISlZWVgf3efvttnHnmmfjoo49gsVhiEgsll4Fum0fi8Xjw4x//OGiJVxo8kql91tXVYfbs2di2bVvga3l5eVi4cCEmTpyIoqIiOBwO7N27F59//jk+++wzeDyemMdBySEZ2mZzczPmzJmD2trawNeys7NxwQUXYMqUKcjKykJLSwvWrFmDN954A263GwCwYcMGnHbaafjyyy9hNptjFg8NrHXr1qGzs3OgwwCQ5H2hhKQa0tgLL7wgxo8f32s2R5IkMXv27JCz35GMBPCz2WzihhtuEFartddYcnJyxA033CDa29uFEEJ89dVXYujQoYHvW61Wcfjw4Uhegj4tWrQoKIabbropMFWhq7/97W9CkqTAfosWLYppHJQc3njjjaD2MGHChF6n0cSzbT744IOB7P9jjz3W79P9//3vf0HTeQCI3/3udzGJg5JLMrTNI7n77rsD1+3+N4cjAdJbMrVPl8sljj322MA1ZFkWv/vd74TD4ejzmNbWVvHII4+InTt3xjQWGnjJ0jZ/8pOfBMUxb9480dTU1Ou+u3fvFscdd1zQ/nfccUfMYqGBN2LEiMDv1mQyiRNPPFFcd9114rLLLkv4SIBk7gsxCRAj69evF//3f/8n/va3v4kHH3xQvPLKK+LAgQMJjcHr9QbNxzIYDOLOO+8UK1euFE6ns8f+n376adA8vuuvvz5msaxevTqo0X/3u9/td/9rr702aP81a9bELBYaeF6vN+jG0Wq1il27dvW5f7za5htvvCFeeeUVoWlaSPtv3rxZmEymoLj7u9ml1JMsbbM/27dvF2azWQAQRUVF4rXXXmMSYJBItvb5m9/8JuhBx7///e+Ynp9SR7K0TUVRRG5ubuC8Q4cOFR0dHf0es3///qD54UcffXRMYqHkcPvtt4snn3xSrFu3Lqjuw7PPPpvQJECy94WYBEgjK1euDGo8v/71r494zMUXXxyULfOPFIjW97///aBYtm7d2u/+LS0tQW/Il156aUzioOSQTG0zXN3flFesWDEgcVB8JHvb1DRNnHrqqYHrvfDCCz1GjTEJkL6SqX3u2LFD6PX6wLl//OMfx+S8lJqSpW1u3bo1KI5bbrklpOO+973vBR3HBH/6S3QSINn7QjIobSxfvjxo+6qrrjriMVdffXXgc7fbjXfffTfqOBRFCVqq8OSTT0ZFRUW/x+Tl5eGCCy4IbK9YsQKqqkYdCyWHZGmbkTjttNOCtnft2jUgcVB8JHvbfOqpp7Bq1SoAwOmnn47FixfH7VqUfJKpfT7xxBOBuf0GgwF/+ctfYnJeSk3J0jabm5uDtseMGRPScd33a21tjToWIr9U6AsxCZBGuja20aNHY/To0Uc85uSTTw4qhrJixYqo4/jf//6H9vb2wPYZZ5wR0nHz5s0LfG6z2fC///0v6lgoOSRL24xEZmZm0HayFJuh2Ejmtnno0CH86le/AgCYzWb885//jMt1KHklS/tUVRXPPfdcYPvss89mAd9BLlnaZn5+ftB2qH+ju+6n0+l6nIcoGqnQF2ISIE20tbXhwIEDge0ZM2aEdJzRaMTxxx8f2N64cWPUsXQ/R6ixzJw5s9/zUGpKprYZiT179gRtl5aWDkgcFHvJ3jZ/+tOfwmazAQBuv/32kG6yKX0kU/v86quv0NTUFNhesGBB1Oek1JVMbXPcuHFBHfiqqqqQjuu630knncTVASimUqEvxCRAmtiyZUvQdjg3i1333bZtGzRNG5BYjjrqKOh0usD21q1bo4qDkkMytc1IvP7660Hbob6RU/JL5rb56quv4j//+Q8A4JhjjsEtt9wS0/NT8kum9vn5558HbU+fPh0AsHfvXvz+97/H1KlTUVBQAIvFgmHDhuGMM87Afffdh5aWlqiuS8kpmdqmLMu47rrrAttvv/32EacZ/OMf/8DmzZsD23x/pVhLhb4QkwBpovvTyhEjRoR8bNd9nU4n6urqYhaLLMsoLy8P6Ti9Xo+hQ4cGtnfv3h1VHJQckqlthmvdunWorKwMbB933HEYN25cQmOg+EnWttnW1oaf/exnAABJkvDEE0/AYDDE7PyUGpKpffrXsAZ8bXLs2LF48MEHMX78eNxxxx1Yv349Wlpa4HK5cPDgQXzwwQe45ZZbMHLkSDz66KNRXZuSTzK1TQC47bbbAiMMhBA477zz8Ic//AEHDx4M2q+mpgbXX3994P0VAK6//nosWrQo6hiIukqFvhCTAGmi67wTwFdcIlS5ublB23a7PWaxZGVlQa/XRxRLtHFQckimthkORVFw1VVXQQgR+Nof/vCHhF2f4i9Z2+Yvf/nLwI3x1Vdfje985zsxOzeljmRqn42NjYHPCwsLcccdd+AXv/gFXC4XAN+c6qFDh6KwsDDouPb2dtx444248cYbo7o+JZdkapsAYLFY8OGHH+KSSy4B4Pv7/ec//xnDhg1DYWEhRo4cidzcXIwfPx6PP/44hBDIy8vDQw89hL///e9RX5+ou1ToCzEJkCY6OjqCtsOZ22SxWPo9VzSxhDvHqmss0cZBySGZ2mY4brrppqCnX+eccw7OP//8hF2f4i8Z22ZlZSX+9a9/AQBKSkpwzz33xOS8lHqSqX22tbUFfX7nnXcC8CUEnnjiCbS0tKC2thaNjY04cOAAfv3rXwfd9D766KOBdk2pL5napl9ubi5efPFFVFdXY+LEiYGvNzc3Y+/evYH6KoBv3vWnn36Km266CZIkxeT6RF2lQl+ISYA04c/G+xmNxpCPNZlMQdtOpzNmsYQTR/dYoo2DkkMytc1QPfroo0GV2IcNG4ZnnnkmIdemxEm2tul0OnHNNdcEth966KEeT81o8Eim9tn1RtS/ZFVhYSE+/fRTXHPNNcjOzg58v7y8HHfffTdefvnloA7WrbfeytVV0kQytU0/t9uN2267DWeccQY2bdrU776fffYZjjvuOFx33XV84ERxkQp9ISYB0kT3LJOiKCEf63a7g7a7Z2mjiSWcOLrHEm0clBySqW2GYunSpfj5z38e2M7NzcVbb73VY5grpb5ka5u///3vsWvXLgDAd7/7XXz/+9+P+pyUupKpffb2JOvBBx/E0Ucf3ecx559/Pq688srAdlNTE5YsWRJVHJQckqltAkBLSwu+853v4K677goMn77wwgvx3nvvobGxEYqioLGxEe+99x4uvPBCAIDH48ETTzyBWbNmobW1NeoYiLpKhb4QkwBpovta5t2ztP3pnmXqfq5oYgknju6xRBsHJYdkaptH8vbbb+OHP/xhoFpxZmYm3nnnHUyaNCmu16WBkUxtc926dXjwwQcBAFarFY899lhU56PUl0ztMysrK2i7uLg4pCTVzTffHLT94YcfRhUHJYdkapsAcOmll2LdunUAfIUrX3jhBbzyyis444wzUFhYCIPBgMLCQpxxxhl45ZVX8H//93+BUSobNmzAVVddFXUMRF2lQl+ISYA00XUoHoCwsppd5/oBPf/YRxOL3W6Hx+OJKJZo46DkkExtsz8ffvghvve97wWGulosFrz11ltcEjCNJUvb9Hg8uOqqq+D1egH4ClCOHDky4vNRekiW9tlbLN/5zndCKnR1zDHHBI2i+vLLL6OKg5JDMrXNlStX4r333gts/+xnP8PixYv7Peayyy4LWiHg9ddfx9q1a6OKg6irVOgLMQmQJrrfMO7fvz/kY/ft2xf43GKxoLS0NGaxaJqG2trakI7zeDw4dOhQYHvUqFFRxUHJIZnaZl9WrVqFc889NzAEy2QyYfny5Zg9e3ZcrkfJIVna5mOPPRYoQjlx4kT84he/iPhclD6SpX0CPf8eDx8+PORju+7bdZUBSl3J1DZfeumloO2unfv+3HDDDUHby5cvjyoOoq5SoS8U+noFlNQmTJgQtL1z586Qj/XPQQWAcePGQZajyw31Fksoa8ju3bs38CQMAMaPHx9VHJQckqlt9uazzz7DWWedBYfDAQAwGAxYtmwZ5s+fH/NrUXJJlrbZdR3g2tpaVFRU9Lt/9+G0t956a6BaOwD885//xOmnnx5xPJQckqV9Ar4n+l11L+7Wn65zY8MdFkvJKZna5saNGwOfZ2dnY8yYMSEdN3bsWGRnZweWcvv666+jioOoq1ToCzEJkCZyc3MxbNgwHDhwAABQXV0d0nGKogTmUQEIWlYlUscdd1zQdnV1NU477bQjHvfZZ58FbcciFhp4ydQ2u/viiy9w5plnBqoD6/V6vPTSSzj77LNjfi1KPsnYNltaWtDS0hLWMQ0NDWhoaAhss9p1ekim9jl58uSg7XCGfzc3Nwc+LygoiDoWGnjJ1Da7rjgR7vzpjIyMQBKAK1JRLKVCX4jTAdLIggULAp/v2rUr6OlSXz755JOgzPzChQujjmPWrFlBc2Hef//9kI774IMPAp9nZ2dj1qxZUcdCySFZ2mZXX331FebPnx+4AZBlGc8//zwuuOCCmF6Hklsytk0iv2Rpn8cee2zQ8Fb/9JUj6ezsDHpKzFoX6SNZ2mZeXl7g86ampkBdnyNRFIUJKoqbVOgLMQmQRhYtWhS0/dRTTx3xmK77GI3GoDf1SHU/zyeffIKampp+j2ltbcVrr70W2F64cGHY62pS8kqWtun39ddfY968eYGnWZIk4dlnn8Ull1wSs2tQakiGtvnQQw9BCBHyR1VVVdDxzz77bND3zzvvvKjioeSRDO3Tr2uCdN26dSF1+l599dWgoa1z586NSSw08JKlbXYd/q8oClatWhXScR9//HHQ0m39LXdJFK6U6AsJShter1dMmDBBABAAREZGhti9e3ef+3/2JhN++gAALtJJREFU2WdCluXA/tddd12f+1ZVVQX2AyAuv/zyfmOprq4O2v/MM8/sd/9rr702aP/Vq1f3uz+llmRqm9u3bxelpaWB/SVJEk899VSkPxqluGRqm6Hqft5nn302Juel5JNM7XPv3r3CZDIF9v/e977X7/52u10cddRRgf1lWRY1NTX9HkOpI1na5r///e+gfadPny4URek3drfbLU488cSg4z799NMj/syU2p599tmg33lVVVVYx6dbX4gjAdKILMu46667AtudnZ04++yzA3O2utq4cSMuvPDCwHroFosFt99+e8ximT59Os4999zA9rvvvoubb745cL2u7rvvPjz55JOB7XPPPRfTpk2LWSw08JKlbe7duxennXYa6urqAl/7xz/+wTWCB7FkaZtEvUmm9jlixIigyuuvvvoqfv7znwc9TfVrbGzEwoULsXfv3sDXfvCDH2DcuHExi4cGVrK0zYsuugjl5eWB7dWrV+N73/ten7VVmpubcf755+OLL74IfG3GjBmYOXNmTOIh8kv2vhALA6aZ8847D1dffXVgyNXXX3+N8ePHY/HixZg8eTJUVcXq1avx6quvBs2bevrppzF06NCYxvLPf/4T69evDywd89BDD+Gdd97BJZdcgvLyctTX1+O1117D+vXrA8cMHz4c//znP2MaByWHZGibd9xxR9ANisFgwP3334/7778/5HNccMEFuOeee2ISDyWHZGibRH1JpvZ5xx13oLq6Gp9++ikA4OGHH8Ybb7yBiy66CGPHjoWqqli/fj1eeeUV2Gy2wHHjx4/H3//+95jGQgMvGdqm2WzGP//5T5x77rmBqSdvvvkmRowYgUWLFuGEE04IrAKwdu1aLF++PKh4alZWFh5//PGYxELJ4fXXX8evfvWrHl+32+1B24sXL4bFYumx35IlS2LWAU/qvlBcxxnQgFBVVXz/+98PGlLS14derxcPPfTQEc8Z6bDWTZs2BQ0H7O/jqKOOEps3b47yp6dkNtBt8/LLLw/p2v19xGpINyWXgW6b4eB0gMEnmdpnc3OzmDVrVsjvmTNmzBCHDx+O8hWgZJUsbXPp0qUiKysrrL/nQ4YMEatWrYrBq0DJpPuw/3A/+pomkG59IU4HSEP+Zc5eeOGFPteXlCQJs2fPRnV1NW666aa4xXLsscdiw4YNuOGGG4KqZHaVk5ODG264ARs3buyxFjGll2Rqm0RdsW1SMkum9pmfn49Vq1bh4YcfxqhRo/rcb/jw4fj73/+Ojz/+GKWlpXGLhwZWsrTNiy++GJs2bcL111/f5/2mX3FxMX79619j8+bNOOWUU+ISD5FfsvaFJCGESMiVaMB89dVX2Lx5Mw4fPgyDwYCysjLMmDEjaA5VIrhcLqxatQr79u1Dc3MzCgoKMGLECJx66qkwm80JjYWSQ7K0TaLu2DYpmSVT+1y3bh22bt2Kw4cPQ5IkFBUV4fjjj8exxx6b8Fho4CVD2/R4PNi4cSM2bdqE5uZmOBwOZGZmorCwEFOmTMH48eMhy3wOSomXTH0hJgGIiIiIiIiIBgmmwYiIiIiIiIgGCSYBiIiIiIiIiAYJJgGIiIiIiIiIBgkmAYiIiIiIiIgGCSYBiIiIiIiIiAYJJgGIiIiIiIiIBgkmAYiIiIiIiIgGCSYBiIiIiIiIiAYJJgGIiIiIiIiIBgkmAYiIiIiIiIgGCSYBiIiIiIiIiAYJJgGIiIiIiIiIBgkmAYiIiIiIiIgGCSYBiIiIiIiIiAYJJgGIiIiIiIiIBgkmAYiIiIiIiIgGCSYBiIiIiIiIiAYJJgGIaFBzu91YvXo1XnjhBTzwwAO488478be//Q1PPfUUPvroI7S0tAx0iERECffHP/4RkiQFPv74xz8OdEgx9dxzzwX9fFdccUXcr3nFFVcEXfO5557rd/+9e/cG7X/UUUfF/BpENDjpBzoAIqJE83g8WLZsGZ5//nlUVVXB7Xb3ua8kSZg8eTIuueQSXHXVVcjLy0tgpEREREREscUkABENKm+++SZuvvlm7N69O6T9hRBYv3491q9fjzvvvBO/+c1v8P/+3/+DXs+3TyIiSm1tbW146KGHAtu5ubn4+c9/PmDxEFFi8C6WiAYFRVFwww034Kmnnup3v9zcXHR0dMDj8fT4Xnt7O37zm9/gP//5D15//XUMHTo0XuESERHFXVtbG/70pz8FtkeMGMEkANEgwJoARJT2XC4XzjnnnF4TADNnzsQjjzyCnTt3wu12o7W1FW63G3V1dXj11Vdx8cUXw2AwBB2zZs0azJw5E3v37k3QT0BEREREFBtMAhBRWhNC4Ac/+AHee++9oK+XlJRg6dKl+PTTT/Gzn/0Mo0ePhtFoBADIsoySkhJccMEFWLp0KdatW4eTTjop6Ph9+/Zh3rx5aGtrS9SPQkREKey5556DECLwEY9ihIm4BhGlPiYBiCitPfjgg3j11VeDvjZixAh8/vnnuPjii0M6x8SJE/G///0PCxcuDPr6zp07eYNFRERERCmFSQAiSlt79+7F7bffHvS1goICVFZWYvjw4WGdy2Aw4LXXXsOsWbOCvv7GG2/glVdeiTpWIiIiIqJEYBKAiNLWn/70JzgcjqCv3XvvvRg1alRE5zOZTHjmmWdgMpmCvn7bbbfB6/VGHCcRERERUaJwdQAiSkv19fV44YUXgr42Y8YM/OhHP4rqvEcffTR+8Ytf4O677w58bceOHXjzzTexaNGiiM7Z3NyMzz//HPX19WhqaoKqqsjKysKIESNwzDHHRJy06GrLli3YsmULmpqa0NLSAqPRiNzcXBx99NE47rjjkJubG/U1BoKiKKiursbWrVvR0tKCjIwMDB06FCeeeCKOOuqomFyjvr4eW7duxc6dO9HW1ga3243c3FwUFBRg4sSJmDBhAiRJism1erN582asW7cOdXV1kCQJRUVFOPbYY3H88cdDlmOXy7fb7Vi9ejUOHz6MpqYmuFwuZGVloaysDBMmTMC4cePi+nMmk87OTnz22WfYtm0bbDYbcnJyUFZWhpkzZ6KkpCQu12xoaMCaNWuwZ88e2O12GI1GTJgwocc0pN4cOHAAX3zxBRobG9HS0oKsrCwUFRVh/PjxOO644+ISL+AbbfX555/jwIEDUBQFJSUlGDlyJGbNmtWjoGokFEXB9u3bsXXrVtTV1QVel/z8fJSXl2PatGnIycmJwU/Su7q6OlRXV2PPnj1wOp0oKirC8OHDccopp8BqtcbtukREcSeIiNLQ/fffLwAEffzf//1fTM69b98+Icty0LnPOeecsM7hcDjEAw88ICZPniwkSeoRa9eP8vJycc0114g1a9aEdY3t27eLH//4x6K0tLTf88uyLE466SRxzz33iPr6+j7Pd+qppwYdV1VVFVY8VVVVQcefeuqpRzyme6x+LS0t4uc//7nIysrq8+c66aSTxNtvvx1WjEII4Xa7xdtvvy2uuuoqMXr06H5fOwAiPz9f3HDDDWLv3r1hX2vEiBFB59qzZ48QQghN08S//vUvcfTRR/d53aKiIvG3v/1NuFyusK/rp6qqeOaZZ8SMGTOEXq/v9+csKioSl112mfjwww+FpmlB5/nTn/4UtO93vvOdiGN68cUXg841ZMgQoapqxOfrbs+ePUHnHzFiROB7Bw4cED/60Y+EyWTq8//KnDlzRHV1dVjX/MMf/hB0nj/84Q+B761cuVKccsopvb4PTJo0qc9zulwu8cADD4gJEyb0+3sbOnSouPnmm0VDQ0PMYl6xYoU46aST+rxmXl6e+OlPfypaWlrCuqYQQuzevVvcc8894rTTThMWi+WI713Tpk0TS5cuFR6PJ6zrPPvss0HnuvzyywPfq66uFqeffnqf780ZGRnisssuEwcOHAjrmpdffnnQeZ599tl+9++vrUZzje7nDffD/z61atWqHq9LW1tbWK+J34EDB4ROpws63+bNmyM6FxEdGZMARJSWZs+eHXQzkZ2dLRwOR8zOP2/evKDzW63WkDtjL730kigpKYno5iuUjqbD4RBXXXVVjxuqUD5mz57d53mTJQmwfv16MXTo0JB/pksvvVS43e6Q44z0d2M0GsWTTz4Z1mvSWxKgpaVFnHHGGSFfd8aMGRF1tj788EMxcuTIiH7Wjz/+OOhcdXV1wmg0Bu2zcePGsGMSQoiTTz456Dy///3vIzpPX/rqWL3//vsiJycnpJ9flmXxy1/+skcypC+9dahVVRXXXnttv9fpKwnwv//9TwwfPjys31lWVpZ46qmnQn6deovZ6/WKG264IeRrlpSUiI8++ijkaz722GMRtUcAYubMmeLQoUMhX6uvJMDdd9/dI8nb32v64osvhnzNdEsCCCHEcccdF/S9Rx55JOTXo6vbb7896DynnHJKROchotCwJgARpR1VVVFdXR30tVmzZsFiscTsGvPmzQvadjgc+OKLL/o9RgiBW2+9FZdccgnq6+t73cdsNiM/Px86na7Pc/Tn4MGDmDVrFp5++uk+6xTk5OQgMzMzovMPtJ07d+L000/HoUOHgr6elZUFs9nc6zEvvvgizj//fCiKEtI1+lr2UafTIS8vDzk5Ob0Ow1cUBddccw3+9re/hXSd3tjtdpxxxhl4//33g75usVj6HPZcXV2NCy+8MKzf3SOPPILvfve72LNnT6/fNxqNKCgo6HNId/dr+ZfU7Orxxx8POR6/r7/+Gp988klgW6fT4eqrrw77POGqrq7GOeecA5vNFvT1nJycXl8DTdNw//3347rrrov4/8w111yDJ554IuhrsiwjLy+v32ke//nPf3D66adj//79Pb4nSRJyc3N7ff+w2+24+uqrexRLDccvfvEL/P3vfw/6mk6nQ25ubq9TRerr63HWWWfhww8/DOn83V//riwWCwoKCnrUZPH77LPPMH36dDQ1NYV0rd489NBD+M1vfgNN0wJf6+93Yrfbcdlll+H555+P+Jqp7qc//WnQdiT/7z0eD55++umgr/3kJz+JKi4i6h+TAESUdrZu3Qq32x30tRNOOCGm1zj++ON7fG39+vX9HnPnnXf26CDKsoxLLrkEb7zxBlpbW+F0OtHc3AyPx4M9e/bg1VdfxeWXXx7SnH2Hw4EFCxbgyy+/DPp6YWEh/vSnP2Ht2rVQFAVtbW2w2+1wu91Yu3YtHn30UcyePTum88vj5Qc/+AGam5sBAMcddxxefPFFtLW1ob29HU6nE/v378cDDzyAgoKCoONWrFiB3/72tyFfR5ZlzJw5E3fddRc+/PBD1NfXw+PxoKWlBW1tbXC5XFi/fj3+/Oc/95gj/tvf/haffvppRD/fddddh7Vr1wIApkyZgiVLlqChoQEOhyPwcy5duhRjx44NOu6jjz4KuSPywgsv4KabboLH4wn6+plnnomXX34ZDQ0NcLvdaGpqgqIoOHToEN566y1cf/31KC0t7fO8P/vZz3pcx263hxSTX/cOxDnnnIPy8vKwzhEup9OJxYsXw+VyAQBOOeUUvPHGG+js7AzUgNi+fTv++Mc/9pgH/uSTT+If//hH2Nd89dVX8eyzzwIAMjMzcfvtt2Pjxo1QVRUtLS1wu93YtGkTrrvuuqDjNm/ejEsuuSQQq98FF1yAjz76CC6XC62trVAUBRs3bsQvf/nLHkmMO++8M6JO68qVK/Hwww8DAPR6PW6++WZs2LABiqKgtbUVLpcLH3zwAc4555yg45xOJ773ve+htrY25GsVFxfjiiuuwJIlS7Bx40a43W44HI5ArYq6ujq8/vrrOOuss4KO279/P37wgx+E/bMBwKZNm/CrX/0KgC+Z8qMf/QjV1dVwu92B30l1dTWuuOKKoISHpmn48Y9/fMT3/2RSUFCAxx9/HI8//jjuvPPOoO/l5+cHvtfXR9f318suuwx5eXmB7a1bt2LVqlVhxfOf//wHhw8fDmwXFxfj/PPPj/CnI6KQDOQwBCKieHj99dd7DF987bXXYnqNpqamHte46aab+tz/gw8+6DHEtLy8XKxduzak63V2doqHH3643zn7P/jBD3rEdNFFF4n29vaQrrFt2zbx+OOP9/n9ZJgO4P+48sorhaIofR5XX18vJk2aFHSMLMshzeX+zW9+I/5/e3ceFsWR/w/8w3CfAQVWAUVFJeqiYpBojHhEI/GIPomr6wl4bFB2lY3rsx55Vr9R132yRl0kgtGABI0XXghGV2PURYF4IgaVSxSNwXAIisg19fvDB35Ud89M9zCAwvv1PDyPXVR11Yzdw9Sn68jNzZX9up48ecI++OADrq6RI0fKKiucDlD3s2LFCq1DzUtKSkSv76233tJZX3p6umietb29PTtx4oSs9lZVVbGdO3eyn3/+WfL3b731FnfurVu3yjovY4w9e/aM2dnZceX/+9//yi4vl7ah0P/4xz+0vu9ZWVmsU6dOXBlra2tueLQU4dD6uh9PT0927949We2uqalhXl5eXHljY2O2e/dureWuXr3KHB0duXI2NjY6pxZparODgwO7dOmS1rKRkZGi+fRjx47V+RqPHj3K9u/fr2gNiKNHj4qu6fPnz+ssJ5wOUPdjbm7OEhMTtZY9duyYaPpLv379dLb7VZkO0Ng6hD799FPR3x0lRo4cKfr8A4CmhSAAALQ64eHhoi92cr4UKqFWq0Wd+j/84Q8a83t7e3N5nZyc2P379w3WnuvXr4te8/Tp02XPWZbjVQkCjBo1itXW1uosW1BQIOr8jBs3TlGb5aqoqGA9evTg6srIyNBZTioI8Mknn8iq89KlS6KyOTk5WstMmjSJy29pacmuXbsmqz45oqKiuPN7eXnJLrtt2zaubI8ePQx6/dbRFAQICgqSVT4jI0O0cGBISIjWMlIdajs7O0WfAQcOHBCdIzw8XFbZ1NRU0RohixYtUtxmIyMj0XoQmgjneBORzuCBvr755hvFnVBNQYCYmBi96iQiduDAAa1lWmsQICcnh/t7aGpqyn799VdZZe/cucMFjFQqlV6LrAKAMq/+2E8AAIWkhiAbehspIyMjsrW15dKePXsmmffEiROioaLbt2+nTp06Gaw9DbcsJCLq1KkTRUZGtrot3YyNjemrr76SNXXB2dmZ/vnPf3Jp33//PeXl5Rm8XRYWFhQaGsqlnTlzRvF5HBwcaMOGDbLy+vj40IABA7i0uqkEUm7dukVHjx7l0tavX0/9+/dX3E5Npk2bxg0VTk9Plz01IjIykjsODg5utuvX3t5e9vveq1cvWrJkCZcWGxur8f7X5LPPPlP0GRAWFsYdDxw4kBYuXCirrK+vryhvdHS04ukaM2fOpGHDhsnKu3LlSuratSuXps98cTkCAwO5qSr63HtEREOHDqXZs2fLyjtnzhx65513uLSmen2vum7dupG/v3/9cXV1tWiOvyYRERHcuhrjxo0jd3d3g7cRAHgIAgBAqyO1AJy1tbXB6xEuridch6BOXFwcd+zl5UUTJ040WDuqq6vp2LFjXFpoaKgoSNEajB49mnr27Ck7/8yZM7kAkFqtpsTExKZoGg0aNIg7TklJUXyOWbNmaVy0UcqQIUO441u3bmnMe/DgQe7LtpOTE33yySeK26iNhYUFzZs3j0uT0zFKSUnhAmUWFhYUGBho0LZp88c//pHatWsnO/+CBQu4QFRZWZmiedCmpqYUFBQkO39ZWZkomPKXv/xFUZBk8eLFXP6nT59yizDKIVwEThtzc3PRtSD8nDIUlUpFAwcOrD8uLCyknJwcxedR8vqk8p89e5bKysoU19saCNcE+frrrzUuTlunoqKCYmJiuDQsCAjQPExaugEAAIZmZmYmSisvLzd4PcJzalq1+uzZs9zxzJkzDdqO1NRUev78OZc2Y8YMg9bxqpg0aZKi/JaWluTv70/79u2rT0tOTlb8Zb+4uJgyMjKosLCQnj59Ss+fPxetCl+3YGEdqdXbdRk+fLii/N26deOONe1sQCS+DidPnqxxR4XGWLBgAW3YsKG+AxAXF0ebNm0iJycnjWWEgYKpU6cq6pQ3ltLrys3NjQYOHEipqan1acnJyTRu3DhZ5b28vMjR0VF2fcnJyaIV65W22cPDg7y9vbmFQy9cuEBjx46VVb5jx4709ttvK6rzo48+opUrV9Yf//bbb5SdnU3du3eXfY7a2lrKzs6m3NxcKisro6dPn4oWtaw7d0P3798nDw8P2fUYGxvThAkTZOcnIpo4cSKpVKr6/xu1Wk0//fQTjRo1StF5WoMxY8ZQjx49KCsri4hevv+JiYmihSIb2rt3L5WUlNQfd+3alcaMGdPkbQUABAEAoBWSepKqbespfTDGRE98NNUrfCIlHELaWFeuXOGOPTw8RCvWtxZSuzLoMmDAAC4IkJaWJqtcWloa7dy5kw4fPkz37t1TXK+2DrkmXbp0UZRfONpD21NI4XVi6Ouwjru7O40fP75+6kFlZSVFRUXR3//+d8n8xcXFtH//fi5N7jB3QxFOq5BbpmEQQO51RfRyZwsl0tPTuWNPT0+9Rvr4+PhwQYAbN27ILqvPe9SzZ0+ytrbmAqZpaWk6gwAVFRX03Xff0d69eykpKUm0G4IcSu+/N998U7T7gy7W1tbk6enJjcBJS0trk0EAIyMjWrhwIf31r3+tT4uIiNAaBBAG/4KDg1+LXWoAWgPcaQDQ6ri4uIjSGrN3tJTi4mLuyZymeoVPp4hI0VMwOYR1GPr8rxJ95ooKO9bCJ/ZCZWVlNGfOHPL29qbNmzfrFQAgkl6bQhc5W0E2JNwPXtPw25qaGlGnqCmvE+HQ4G3btonulzrR0dFcJ2/AgAHk6+vbZG0TsrKy0jpKQROl11VDwi0sdRGeWzjXXi7hyJHi4mLZZfW591QqFXXu3JlL0/U+HT9+nHr16kXz5s2j06dP6xUAIFJ+/+k7D70x10FrExQUxE29O3nyJOXm5krmvXr1Kl26dKn+2NzcnObMmdPkbQSAlxAEAIBWR2oI6PXr1w1ah9RTP+EXbCLpL4RKO3q6COsw9PlfJXZ2dorLCBeFbDj8VKi0tJRGjx5N0dHRouH+Smnq9GrTVAvhNcd12NB7771HvXr1qj++e/cunTx5UpSPMUbbtm3j0pp7TrA+1xSRsutKSMm6D1LnNlSblQQBmuN92rVrF3344Yd6B94aUnr/tcR10Nq88cYbNGvWrPpjqfu7ztatW7njyZMnK5oiAwCNgyAAALQ6vXv3Fq0LoG3VdH0Ih1YTEXl7exu0Dn21th0BGktJZ37JkiX0008/cWmurq60ZMkSiouLo2vXrlFBQQE9e/aMampqiL3capcYY3T37l1DN71JNfV1Ilx3Qfiln4jo9OnT9XOIiV52IqZPn96k7RLS931obJCoMQz1f6fkPE39PuXk5ND8+fO50SwqlYrGjh1LmzdvpnPnzlFOTg6VlpbSixcvuHuPMUYBAQF6ta/O63gdvIr+/Oc/c8dRUVGiRXNLS0tpz549XFpzTwECaOsQBACAVsfU1FS0UntSUhJVVFQYrI5Tp05xx5aWltzq1HWknmzoM1dcG2Edr+qTKH2ejAvps/K2sIyDg4NkvpycHIqKiuLSQkNDKS8vjzZs2EAff/wx9e/fn5ydncna2lo0FF/pFnHNSWr4eVNfJwEBAdzT1ePHj4ue8ArnBAcEBCiel91Y+q4XIve6MgThufVts7CckjY39fv0+eefc0P/3dzc6PLly5SYmEiLFy8mPz8/6tatG9nZ2UkuwtrY++91uA5eB3369OEWOC0sLKQDBw5weWJiYrjFbPv27dtka5QAgDQEAQCgVRo/fjx3XFZWRgcPHjTIufPz8+mHH37g0kaNGiW50rrUXOPs7GyDtENTHYY+fx258881MUTwQ59hwnl5edyxpvnYR44c4Z7q+fn50caNG8nERN4auo8fP1bctuZiYmIi6pw01XVSx8bGhns6q1ar6euvv64/fvjwoWjLuODg4CZtk5Tnz5/rtWaI3OvKEITn1nfUiXB+tpIdGPS599RqNeXn53NpUu9TTU2N6FqIiYlRNLqqsfefvlMQmvM6eF0I1wQRBvsiIyO5Y2wLCND8EAQAgFZpxowZok6r1HBkfURERIieamva09zOzk60AJtwv+/GEq6Yn5OTQwUFBQatg0i8Er3SJ2/CL8v6kJqGoUvD1dCJiPr16yeZT7hS+syZMxUNEW64yNWrSHidGPo6lBISEsK9h9988w1VV1cTEdH27du5rd5GjBjBrSPQnJryujIELy8v7vjOnTt6PfkWTotS0mbh65UjMzNT1E6pOvPz87mRKa6urjRy5EjZ9dTW1tK1a9cUt6+h27dvi7Za1aW8vJzu3LnDpTXldfC6mDhxInXq1Kn++OLFi/Wfr2fPnuV2U7C1tTX4trkAoBuCAADQKrm4uNC0adO4tOTkZIqOjm7UeTMzM2njxo1cmoeHh9ZtkIR7v+/evbtRbRDy9fUVDaHetWuXQesgEi8kp2nVZ02E+9Tr48iRI4ryv3jxgk6cOMGlCaeK1BE+SVS6Wnh8fLyi/M1NeB3GxcXpvfK6XJ6entx2aQUFBXTo0CGqqamhHTt2cHlb8mmg0uvq4cOHoqCPpuvKEAYPHsxtnaZWqxW3OTc3V9RRVjIE+9GjR9yWiHIcPnyYO3Z0dJTclUJ47wl3FNDlzJkzjZ4OUFtbKxqNoEt8fDwXEFapVM26s4UhCEc6KR3hJcXY2Fg0qqduNIBwVMCsWbMUL5QJAI2HIAAAtFqrV68WzR1dunSp4s5rncrKSpo7d65okaN169ZpHTI+ZcoU7jg9Pb1+D3VDMDU1pUmTJnFp//nPf/Taok6bN998kztW8iT53r179P333ze6DadOneIWktMlNjaWm+urUqlo3LhxknlNTU25YyXTF5KSkujixYuy87eEyZMncx3JwsJCjSt3G5JwobCtW7dSfHw8PXz4sD6tQ4cOomu4Oe3du1fRSvlbt27lOn+2traiIIsh2dnZ0bvvvsulhYeHK1qULiwsjMtva2tLQ4cOVdQOJaOpKisrafv27VzahAkTJPM25t4jIvriiy8U5ddE6Wixr776ijseNmyY3rsMtBThCC9910YQmj9/Pvf3d9euXZSVlSUKDGEqAEDLQBAAAFotDw8PWr16NZdWVFREI0eOpPv37ys6V3V1NU2ePJmSkpK49PHjx9PUqVO1lh09erRoKPb8+fPpwYMHitqgzbJly7hh1/n5+RQcHGzQlauFT7gSExPp0aNHOssxxig4OJgb+q2v2tpaWrhwoaxFBh8/fkwrVqzg0vz9/TXuse7m5sYdJyQkyGpTWVkZBQUFycrbkjw9PUUd7eXLlxt8+0yh8ePHc+/5+fPnaeXKlVye+fPnizqCzenJkye0dOlSWXlv3bpFX375JZfWHE8zhfOsU1NTRXOrNbl8+TKFh4dzaUFBQaIOoC6xsbF07tw5WXnXrVsnWrtAU4dPeO/dvn1b9poVERERdPr0aVl5dTl//jzFxsbKyhsVFSUKhL6OHVo7OztuJNnTp0+5AJ2+nJycuL+Nz549ow8//LB+OhAR0dChQ+n3v/99o+sCAD0wAIBWTK1WswkTJjAi4n46dOjA9u/fL+sc6enp7O233xado1u3bqyoqEjWOc6cOcNUKhVX3s3NjV25ckVW+fLychYWFsYKCgo05gkMDBS1cerUqaysrExWHZmZmSwiIkLj76uqqtjvfvc77vz+/v6ssrJSY5nKykoWEBAgahcRsWHDhulsk1Q5ImJz585l1dXVGss9fvyY9e/fnyujUqnYhQsXNJbZv3+/KH9CQoLW9j169Ij5+PhIttHd3V3n63N3d+fK3L17V2eZhqKjo7nyAQEBWvNnZGQwKysrroy9vT07efKkrPqqqqpYTEwM+/nnnxW184svvtD4f2lsbMzu37+v6HyNcffuXY1tWbVqFVOr1RrLZmdns86dO3NlrKysWE5OjtY6V61aJapHqZqaGubl5cWdx8TEhO3bt09ruevXrzMnJyeunI2NDcvLy1PU5rofBwcHdvnyZa1lt23bxoyMjESfFdr07t1b9PlQUVGhtUxkZCQzNjaWbGd0dLTWssJ7p+7H3NycHT9+XGvZhIQEZmZmxpXz8vLS+pnEGBN9Fupqo/BalfOZorQOxhgbPHgwV2bZsmU6y8hx6dIljfcaEbHvvvvOIPUAgHIIAgBAq1deXs5GjBgh+SXknXfeYeHh4Sw3N5dVVVUxxl4GDgoKCtjBgwfZ1KlTmampqaicm5ubzi/+QmvWrBGdR6VSsenTp7Njx46xJ0+ecPnz8vJYXFwcCwwMZPb29jo7ieXl5aJOAhExR0dH9vnnn7OrV69yX1IrKyvZlStX2JYtW9iIESOYSqXS2TGX6hj4+vqy48ePsxcvXtTny8/PZ9u2bWPdu3fn3uvGBgEGDRpU/+++ffuyPXv2sNLSUq7ejRs3MkdHR1HZ0NBQrXVVVFQwV1dXUQd18eLFLD09vb5zWFtby27evMlWrVrF7OzsuNfzqgcBGGMsNjZW8l4YO3Ys279/P/vtt9+4/L/88gtLSEhgISEhrEOHDoyI2I8//qionUVFRczS0lKy3okTJyo6V2MJO1bOzs6sS5cu9cd+fn4sPj6ePX/+nDH28vMgKyuLrV69mllbW4vav3nzZp11GiIIwBhjN2/eZBYWFqI2TJkyhf3444/1n2G1tbUsPT2dLV26VNRZJSIWExOjuM0NA6Gmpqbs008/ZTdu3GC1tbWMsZcBoh9++IFNnDhRVJ+dnZ3OQE9YWJioXJ8+fdi+ffu4z8bS0lJ26NAhNnz48Pp8FhYWokCt0iDAgAED6j/rjYyMWFBQEEtJSWE1NTWMsZdBmJSUFBYUFCQKcJiYmOgMjDD26gYB1q9fL3rvhwwZwlauXMnCwsJYREQE9yM3sMwYY76+vpL3vbOzs9YAMgA0LQQBAKBNqKio0PhEuu7HyMiIOTg4MBMTE635fHx8WH5+vuI2qNVq9re//U3ruS0tLVm7du00tkFXJzE/P1/0BFz4Gu3t7Zmtra3k73V1zF+8eMF69eolWValUrF27doxc3Nz0e/8/f3ZqVOnFNXFmDgIkJWVxdq3by/ZyZDqHDWsv2GQQpODBw+KvuDX/Zibm7P27dtLPnns168fS0tLU/yFvSWCAIwxtnnzZo1PUImImZmZsfbt20sGwIiUBwEYY2zu3LmS55I7CsFQpDpWFy9elLx+7O3tJTvRdT9z5szROnKgjqGCAIwxdvjwYY3XupzPsM8++0xWPVJtXrx4seh8JiYmzMHBQeN9Y2FhwU6cOKGzvsrKSo2jauo+t2xsbCR/v3PnTsWdX6l7Z9OmTZKfaw4ODqKRXA1/HxUVJes9fVWDAIWFhaJRXtp+lHxOaQo6Ll++XPY5AMDwsCYAALQJFhYWtHPnToqLi9O46jtjjEpKSjTOXbexsaG1a9fSxYsXRXNY5TAyMqJ///vf9O2332rcS7qiooKKi4s1tqHhwm5S3NzcKCkpiWbPni2ZlzFGT5480bhooK7zm5ub04kTJ8jT01P0O7VaTcXFxaKFE6dMmUKHDh3SuniiXN27d6fTp0+Ti4sLl15WVqZxpfupU6fSkSNHRItESvnoo49oy5Ytkm2trKykoqIi0erZ7777Lp06deq1WhBs8eLFlJiYyG3j1VBVVRUVFRVx83cb0nWdSBEuEEj0ct2O0aNHKz6XoQ0ePJji4+PpjTfe4NKfPHlCVVVVovxGRkYUGhpKO3bsULSNpCFMmjSJTp8+LbmCvrbPMFtbW9q+fTutWbNG77o3btwo+n+sqamhkpISyfVHnJycKD4+nsaMGaPz3GZmZnTs2DHy9vYW/a7uc0u4A4C5uTlFR0dTQECAwlciLTQ0lNavXy/aiaGkpERyHRIbGxuKiYl5LdYE0aZ9+/YUHx+veFcGOaZMmULOzs5cmkqloj/96U8GrwsA5EMQAADalI8//piysrIoNjaW3n//fTIzM9Oa38jIiPr160f/+te/6N69e7Ry5cpGL2A2a9Ysunv3Lq1du1bWvuhdu3alRYsW0Y0bN2R9SbO2tqaYmBhKS0ujGTNmULt27bTmNzExoSFDhlBYWBgdOnRI5/k7d+5MqamptHz5cq0d3z59+tDevXtp3759ZGlpqfO8cvXv359u3rxJoaGhWhc28/Hxofj4eNq7d6+sAECdkJAQSkpKovfff19rvp49e1JERASdO3eOnJycZJ//VTFmzBjKzs6mLVu2kLe3t87ObMeOHWnu3Ll04cIF8vPzU1xf//79qWPHjlxacHBws3eiNRk9ejTdvHmTAgMDNV4vKpWKhg8fTv/73/9o06ZNLdb2IUOGUGZmJn355Zc6P0M6duxIoaGhlJOTQ/PmzWtUvSqVirZs2UKJiYlat8Kzt7enhQsX0u3btxUFeTp06EDJycm0Zs0arfeUubk5TZ8+ndLT0ykwMFDJS9Bp2bJllJSURO+9957G/18rKyuaMWMGZWRktJo97n19fenWrVv07bff0rRp06hPnz7k4ODQ6L93ZmZmNHLkSC7tgw8+oC5dujTqvADQOEZMKnQLANBGvHjxgq5du0bZ2dlUUFBAFRUVZGZmRg4ODtS1a1fy9vYmR0fHJm3DgwcP6PLly/T48WMqKioilUpFdnZ25O7uTn369FG8X72QWq2mq1evUlZWFhUWFlJpaSlZWlpS+/btqUePHtS3b1/Fq4TXqa6upuTkZLpz5w4VFRUREZGrqyv5+PjICnDoIvwSLvyTVVlZSSkpKZSRkUElJSVkaWlJLi4u5Ovrq3EXACUKCgooKSmJHjx4QE+fPiVLS0tyc3Mjb29v6tmzZ6PP/yopLCyklJQUKigooMLCQlKr1WRra0udOnWi3r17U48ePRp1/qSkJG5LOgsLC3rw4IHGUTFNJS8vj7s23N3dKS8vj8tTXl5OFy5coMzMTCotLSU7OztycXGhIUOGUIcOHZq1vXLcv3+//jOkuLiYbGxsyNnZmXr37k19+/Ztsnrz8vIoNTWV8vPzqaqqipydnalr1640dOhQnQFWXWpqaujq1auUlpZGRUVFpFarycHBgTw9PWnQoEHcivZN5ddff6WLFy9SXl4eVVRUkKOjI3Xu3Jn8/PzI2tq6yetvDZ4/f04uLi7c1oOJiYk0duzYFmwVACAIAAAAryxdQQB4fcycOZN2795dfzx79myKiYlp9nbICQIAgGHs2LGD5s+fX3/cpUsXysnJ0WtKEQAYDu5AAAAAaFKPHj2iAwcOcGkhISEt1BoAaA6MMQoLC+PSFi5ciAAAwCsAdyEAAAA0qbVr13IL7A0ePFjrnHIAeP3FxcVRenp6/bGVlVWj16UAAMNAEAAAAACaTEJCAkVGRnJpK1asaKHWAEBzyM3NpUWLFnFpCxYsIAcHhxZqEQA01Pj9mgAAAACI6PLly3T58mUi+v8LDSYmJnJ5hg4dSuPHj2+J5gFAE/jll18oPj6eiIiePXtGGRkZtGfPHm7bVnt7e1q+fHlLNREABBAEAAAAAINISEig//u//9P4eysrK9qxY0cztggAmlpmZiYtWLBAa57w8PBm3wkEADTDdAAAAABocnZ2dnTkyJFWt7UiAGimUqlo3bp1NGPGjJZuCgA0gJEAAAAA0CSsra3Jw8OD/P39adGiReTq6trSTQKAJmZubk6urq7k5+dHISEh5OPj09JNAgABI4ZNlwEAAAAAAADaBEwHAAAAAAAAAGgjEAQAAAAAAAAAaCMQBAAAAAAAAABoIxAEAAAAAAAAAGgjEAQAAAAAAAAAaCMQBAAAAAAAAABoIxAEAAAAAAAAAGgjEAQAAAAAAAAAaCMQBAAAAAAAAABoIxAEAAAAAAAAAGgjEAQAAAAAAAAAaCMQBAAAAAAAAABoIxAEAAAAAAAAAGgjEAQAAAAAAAAAaCMQBAAAAAAAAABoIxAEAAAAAAAAAGgjEAQAAAAAAAAAaCMQBAAAAAAAAABoI/4fD0YqlFbryJoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 386, + "width": 512 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "#| fig-cap: Species-level probabilities of detection and occupancy.\n", + "#| label: fig-probs\n", + "samps = az.extract(known_idata, var_names='ab')\n", + "ab_mean = samps.mean(axis=2)\n", + "\n", + "fig, ax = plt.subplots(figsize=(5,4))\n", + "ax.scatter(invlogit(ab_mean[:, 1]), invlogit(ab_mean[:, 0]), alpha=0.5)\n", + "ax.set_xlim((0, 1))\n", + "ax.set_xlabel('Occupancy probability')\n", + "ax.set_ylim((0, 0.8))\n", + "ax.set_ylabel('Detection probability')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "fig-unknown", + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "clusterprocess (2)\n", + "\n", + "process (2)\n", + "\n", + "\n", + "cluster3\n", + "\n", + "3\n", + "\n", + "\n", + "cluster2 x 2\n", + "\n", + "2 x 2\n", + "\n", + "\n", + "cluster2\n", + "\n", + "2\n", + "\n", + "\n", + "clusterprocess (2) x process_bis (2)\n", + "\n", + "process (2) x process_bis (2)\n", + "\n", + "\n", + "clusterspecies_aug (250) x process (2)\n", + "\n", + "species_aug (250) x process (2)\n", + "\n", + "\n", + "cluster250\n", + "\n", + "250\n", + "\n", + "\n", + "cluster250 x 50\n", + "\n", + "250 x 50\n", + "\n", + "\n", + "\n", + "omega\n", + "\n", + "omega\n", + "~\n", + "Beta\n", + "\n", + "\n", + "\n", + "Y\n", + "\n", + "Y\n", + "~\n", + "CustomDist_Y\n", + "\n", + "\n", + "\n", + "omega->Y\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "mu\n", + "\n", + "mu\n", + "~\n", + "Normal\n", + "\n", + "\n", + "\n", + "ab\n", + "\n", + "ab\n", + "~\n", + "MvNormal\n", + "\n", + "\n", + "\n", + "mu->ab\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "chol\n", + "\n", + "chol\n", + "~\n", + "_LKJCholeskyCov\n", + "\n", + "\n", + "\n", + "chol_corr\n", + "\n", + "chol_corr\n", + "~\n", + "Deterministic\n", + "\n", + "\n", + "\n", + "chol->chol_corr\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "chol_stds\n", + "\n", + "chol_stds\n", + "~\n", + "Deterministic\n", + "\n", + "\n", + "\n", + "chol->chol_stds\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "cov\n", + "\n", + "cov\n", + "~\n", + "Deterministic\n", + "\n", + "\n", + "\n", + "chol->cov\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "chol->ab\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "psi\n", + "\n", + "psi\n", + "~\n", + "Deterministic\n", + "\n", + "\n", + "\n", + "ab->psi\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "p\n", + "\n", + "p\n", + "~\n", + "Deterministic\n", + "\n", + "\n", + "\n", + "ab->p\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "psi->Y\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "p->Y\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#| fig-cap: Visual representation of the unknown $N$ version of the BBS model.\n", + "#| label: fig-unknown\n", + "M = 250\n", + "all_zero_history = np.zeros((M - n, J))\n", + "Y_augmented = np.row_stack((Y, all_zero_history))\n", + "\n", + "aug_names = [f'aug{i}' for i in np.arange(M - n)]\n", + "spp_aug = np.concatenate((lookup, aug_names))\n", + "\n", + "coords = {'process': ['detection', 'occurrence'], \n", + " 'process_bis': ['detection', 'occurrence'],\n", + " 'species_aug': spp_aug}\n", + "\n", + "def logp(x, psi, n, p, omega):\n", + "\n", + " rv = pm.ZeroInflatedBinomial.dist(psi=psi, n=n, p=p)\n", + " lp = pm.logp(rv, x)\n", + " lp_sum = lp.sum(axis=1)\n", + " lp_exp = pm.math.exp(lp_sum)\n", + " \n", + " res = pm.math.switch(\n", + " x.sum(axis=1) > 0,\n", + " lp_exp * omega,\n", + " lp_exp * omega + (1 - omega)\n", + " )\n", + " \n", + " return pm.math.log(res)\n", + "\n", + "with pm.Model(coords=coords) as unknown:\n", + "\n", + " # priors for inclusion\n", + " omega = pm.Beta('omega', 0.001, 1)\n", + " \n", + " # priors for community-level means for detection and occurrence\n", + " mu = pm.Normal('mu', 0, 2, dims='process')\n", + "\n", + " # prior for covariance matrix for occurrence and detection\n", + " chol, corr, stds = pm.LKJCholeskyCov(\n", + " \"chol\", n=2, eta=2.0, sd_dist=pm.Exponential.dist(1.0, shape=2)\n", + " )\n", + " cov = pm.Deterministic(\"cov\", chol.dot(chol.T), dims=(\"process\", \"process_bis\"))\n", + "\n", + " # species-level occurrence and detection probabilities on logit-scale \n", + " ab = pm.MvNormal(\"ab\", mu, chol=chol, dims=(\"species_aug\", \"process\"))\n", + "\n", + " # probability of detection\n", + " alpha = ab[:, 0]\n", + " p = pm.Deterministic(\"p\", pm.math.invlogit(alpha))\n", + "\n", + " # probability of occurrence\n", + " beta = ab[:, 1]\n", + " psi = pm.Deterministic(\"psi\", pm.math.invlogit(beta))\n", + "\n", + " # likelihood\n", + " pm.CustomDist(\n", + " 'Y',\n", + " psi[:, np.newaxis],\n", + " K,\n", + " p[:, np.newaxis],\n", + " omega,\n", + " logp=logp,\n", + " observed=Y_augmented\n", + " )\n", + " \n", + "pm.model_to_graphviz(unknown)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "4fa63d40", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Initializing NUTS using jitter+adapt_diag...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Multiprocess sampling (4 chains in 4 jobs)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "NUTS: [omega, mu, chol, ab]\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fd2f818e66f34cc4bd88b0aa8e582719", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/compile/function/types.py:959: RuntimeWarning: invalid value encountered in accumulate\n", + " self.vm()\n" + ] + }, + { + "data": { + "text/html": [ + "
\n"
+      ],
+      "text/plain": []
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "
\n",
+       "
\n" + ], + "text/plain": [ + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 176 seconds.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "The rhat statistic is larger than 1.01 for some parameters. This indicates problems during sampling. See https://arxiv.org/abs/1903.08008 for details\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "The effective sample size per chain is smaller than 100 for some parameters. A higher number is needed for reliable rhat and ess computation. See https://arxiv.org/abs/1903.08008 for details\n" + ] + } + ], + "source": [ + "with unknown:\n", + " unknown_idata = pm.sample()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "36aae1a6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
omega0.5260.0690.4100.6550.0040.003400.0563.01.01
cov[detection, detection]1.2600.3350.7341.9050.0160.011458.0706.01.01
cov[detection, occurrence]1.3720.4850.5312.2980.0240.017408.0660.01.00
cov[occurrence, detection]1.3720.4850.5312.2980.0240.017408.0660.01.00
cov[occurrence, occurrence]5.0571.3632.8077.6880.0720.051361.0598.01.01
mu[detection]-2.0020.203-2.378-1.6230.0100.007438.0603.01.01
mu[occurrence]-2.0390.458-2.847-1.1790.0250.018349.0505.01.01
\n", + "
" + ], + "text/plain": [ + " mean sd hdi_3% hdi_97% mcse_mean \\\n", + "omega 0.526 0.069 0.410 0.655 0.004 \n", + "cov[detection, detection] 1.260 0.335 0.734 1.905 0.016 \n", + "cov[detection, occurrence] 1.372 0.485 0.531 2.298 0.024 \n", + "cov[occurrence, detection] 1.372 0.485 0.531 2.298 0.024 \n", + "cov[occurrence, occurrence] 5.057 1.363 2.807 7.688 0.072 \n", + "mu[detection] -2.002 0.203 -2.378 -1.623 0.010 \n", + "mu[occurrence] -2.039 0.458 -2.847 -1.179 0.025 \n", + "\n", + " mcse_sd ess_bulk ess_tail r_hat \n", + "omega 0.003 400.0 563.0 1.01 \n", + "cov[detection, detection] 0.011 458.0 706.0 1.01 \n", + "cov[detection, occurrence] 0.017 408.0 660.0 1.00 \n", + "cov[occurrence, detection] 0.017 408.0 660.0 1.00 \n", + "cov[occurrence, occurrence] 0.051 361.0 598.0 1.01 \n", + "mu[detection] 0.007 438.0 603.0 1.01 \n", + "mu[occurrence] 0.018 349.0 505.0 1.01 " + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "az.summary(unknown_idata, var_names=['omega', 'cov', 'mu'])" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "fig-trace_unknown", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABV4AAAGnCAYAAABPb0xJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB2HAAAdhwGP5fFlAAEAAElEQVR4nOzdd5wkZZ0/8E91npx2ZzZHNsAmwi4LAhIkg6CACIoYMJx6ip5ZTzEeeL/TU0ynCAoiiAEQkZzBBTaxOU/OqadzrKrn90dP93ZPd4Xu6cmf9+s4Z6eernq6qrqm61vf5/tIQggBIiIiIiIiIiIiIioay0R3gIiIiIiIiIiIiGi6YeCViIiIiIiIiIiIqMgYeCUiIiIiIiIiIiIqMgZeiYiIiIiIiIiIiIqMgVciIiIiIiIiIiKiImPglYiIiIiIiIiIiKjIGHglIiIiIiIiIiIiKjIGXomIiIiIiIiIiIiKjIFXIiIiIiIiIiIioiJj4JWIiIiIiIiIiIioyBh4JSIiIiIiIiIiIioyBl6JiIiIiIiIiIiIioyBVyIiIiIiIiIiIqIiY+CViIiIiIiIiIiIqMgYeCUiIiIiIiIiIiIqMgZeiYiIiIiIiIiIiIqMgVciIiIiIiIiIiKiImPglYiIiIiIiIiIiKjIGHglIiIiIiIiIiIiKjIGXomIiIiIiIiIiIiKjIFXIiIiIiIiIiIioiJj4JWIiIiIiIiIiIioyBh4JSIiIiIiIiIiIioyBl6JiIiIiIiIiIiIioyBVyIqmqNHj+I//uM/sGHDBtTU1MDlcmHBggW46qqrcN9990FRFM3XnnfeeZAkCZIkAQCEELjvvvvwjne8A3PmzEFpaSlOOukkfP3rX8fg4GDGa30+H3784x9j06ZNqKurQ1lZGU455RT86Ec/QjweN9V3IQT+8pe/4IYbbsCyZctQVlaG8vJyrFixArfccgu2bt1qej1/+MMfcOGFF2L27NkoKSnBsmXL8KEPfQjbt28HAPz+979Pvdff//73OdcjyzKeffZZfPnLX8a5556LuXPnwuFwoKysDEuWLMF73vMe/PWvf4Wqqqb6RURERERTE79j8zs2EU1hgoioCL73ve8Jm80mAGj+t27dOtHU1JTz9eeee26qnd/vFxdffLHmepYvXy7a29uFEEIcPnxYrFixQrPtO97xDhGJRHT7fvToUXHyySfr9h2A+OQnPyni8bjmevx+v3jHO96h+Xqr1Sp+8pOfiN/97nep3/3ud7/Lua7zzz/fsD8AxNve9jbR09Nj7iARERER0ZTC79j8jk1EU5vNXHiWiEjbN7/5TXz/+98HAEiShGuvvRYXX3wxKioqcPjwYfzud79Da2sr9u7di7POOgs7d+7EnDlzNNf3kY98BM888wzOPPNMXH/99Zg3bx66urrwm9/8BgcPHkRjYyNuvvlmPPLII7jooovQ3t6O6667DhdffDGqqqqwf/9+/OxnP8PQ0BCef/553HHHHbjttttybuvw4cM466yzUk/4N23ahKuvvhrLli0DAOzduxe///3v0d3djV/96leIRqO4++67s9YjhMA111yD559/HgBQXl6OD3/4w9i0aRMAYNu2bbjnnnvw+c9/Htddd53hPg2FQigtLcV5552HjRs3YunSpSgvL0d/fz8aGxtx//33o7e3F1u2bMG73/1uvPLKK7DZeEknIiIimi74HZvfsYloGpjoyC8RTW1vvPGGsFgsAoBwuVziySefzGoTCATEpZdemnqCfOWVV2a1SX8aD0B873vfy7metWvXptqcfvrpwuVyiaeffjqr7YEDB4TL5RIARG1trYhGo1lt4vG4WLdunQAgbDabuPvuu3O+R5/Pl/GU/amnnspqc88996SWL1y4UDQ2Nma1OXbsmFi4cGHG+9R6Gv/ss8+KYDCYc5kQQkQiEfHpT386tZ4//OEPmm2JiIiIaGrhd+wEfscmoqmOgVciGpVrrrkm9cXkv//7vzXbeTweMWfOnFTb3bt3ZyxP/1J4ySWXaK7n/vvvz/hSdfvtt2u2veWWW1LtXn311azl9913X2r5D37wA933OTg4KCorKwUAcdFFF2UtX79+fWpdzz77rOZ6nnvuOVNfCs2QZVksXbpUABAXXnhhweshIiIiosmF37ET+B2biKY6Tq5FRAWLxWL45z//CSAx7OdTn/qUZtuqqqqM5Q8//LBm23//93/XXHb22WenfrZarfjkJz+p2facc85J/bx///6s5ffeey8AwOVy4TOf+YzmegCgtrYWV1xxBQDglVdeQTQaTS1ramrCnj17AABr1qzBhRdeqLmed7zjHVi3bp3utsyyWq3YvHkzAGDr1q0QQhRlvUREREQ0cfgdO4HfsYloOmCxEiIq2K5du1Jfjs466yyUlZXptr/kkkvwrW99CwDwxhtvaLZLftHJJb1u1apVq1BVVWWq7dDQUMYyWZaxZcsWAEB9fX2qbpSe5HuNRqNobm7G6tWrASRqSyWdd955hus577zzsHfvXsN2oVAIDz30EP7xj39g79696O3tRSAQyPnlz+fzwefz6e4PIiIiIpr8+B2b37GJaPpg4JWICtbd3Z36eeXKlYbt09t0dXVptqurq9Nc5nQ6TbUb2TYSiWQs6+3tRTgcBgC0tbXh3e9+t+66RkpOFABk7ofkhAF6li9fbthmy5YtuOGGG9De3m66T/xSSERERDT18Tt2Ar9jE9F0wMArERXM7/enfjZ6Eg8khkrleu1IFou5Kihm2+Xi8XgKfi0AxOPx1M+BQCD1s5n9YNSmpaUFl1xySWq9J5xwAi699FKsXLkSs2bNgsvlgiRJAIA777wTL774IgBAUZS83wcRERERTS78jp3A79hENB0w8EpEBauoqEj9HAwGDdunt0l/7URI/4J64YUX4tlnny14Xelf8kKhkGF7ozY/+MEPUl8Iv/KVr+D2229PfQkc6Y9//GMePSUiIiKiyY7fsRP4HZuIpgNOrkVEBZs7d27q56NHjxq2P3LkSOrnefPmjUmfzGpoaIDNlnj2lGtSgHyk74empibD9o2NjbrLn3nmGQCJulg/+MEPNL8QAkBzc7PJXhIRERHRVMDv2An8jk1E0wEDr0RUsA0bNqRqPL322muGT5mffvrp1M96xf3Hg8vlSvWhu7sbr7/+esHr2rRpU+rn5JAkPUZtenp6AABLly6F1WrVbNfd3Y3du3eb7CURERERTQX8jp3A79hENB0w8EpEBXM6nbjiiisAJGow/fKXv9Rs6/P5MpZfc801Y94/IzfffHPq56985SuQZbmg9Sxfvhzr1q0DkHiyrzd76/PPP28422pyWFVjY2PO2VWTvvvd7xbcZyIiIiKanPgdO4HfsYloOmDglYhG5Utf+lKqAP83v/nNjCfuSaFQCO973/tSM5Nefvnl2LBhw7j2M5cPf/jDOPHEEwEAr776Km688Ub4fD7N9vF4HH/729/wi1/8ImvZ5z//+Yz15hoO1djYiA9/+MOG/Uo+3R8YGMCPf/zjnG1+9KMf4f/+7/8M10VEREREUw+/YyfwOzYRTXWcXIuIRuWMM85IFaePRCK47LLLcN111+Hiiy9GRUUFjhw5gnvuuQctLS0AEnWf7rrrront9DC73Y7HHnsMZ511Fvr6+vDXv/4Vzz77LK6//nps2rQJNTU1CIfD6OzsxFtvvYVnnnkGHo8Ht9xyS9a6PvShD+HBBx/Es88+i/b2dmzYsAEf+chHUl/wtm7dinvuuQehUAjXXXcd/vrXvwLIPWvs5z73uVQNqi9+8Yt44YUXcOmll6KhoQFtbW3485//jG3btmHu3LlYt25dqi0RERERTQ/8jp3A79hENOUJIqIiuO2224TVahUANP9bs2aNOHbsWM7Xn3vuual2RpLtzj33XN12L774Yqrtbbfdptmura1NvP3tb9fte/I/SZLEt771rZzr8fv94oILLtB8rdVqFf/7v/8r7rrrrtTvHn744Zzr+va3v63bj0WLFolt27aJD37wg6nfNTc3G+47IiIiIpo6+B2b37GJaGpjqQEiKopvf/vb2L9/Pz73uc9h7dq1qKqqgsPhwLx583DFFVfgd7/7HXbt2oXly5dPdFezLFy4EC+//DJeeOEFfOITn8DatWtRU1MDq9WKiooKrFq1Ctdccw1+8pOfoLGxEd/5zndyrqe8vBzPPfcc7r33XlxwwQWoq6uD0+nEkiVLcPPNN+ONN97A5z73OQwODqZeU1tbm3Ndt912G1544QW8613vQkNDA+x2O2bPno3NmzfjjjvuwO7du7Fx48Yx2R9ERERENDnwOza/YxPR1CYJoVNVmoiIiu7aa6/Fww8/DABwu92oqamZ4B4REREREU1t/I5NRJMRM16JiMZRS0sLHn/8cQDAySefzC+ERERERESjxO/YRDRZMfBKRFQkBw4cQH9/v+byjo4OvPvd70YsFgMAfPKTnxyvrhERERERTUn8jk1EU5ltojtARDRdPPHEE/jGN76BCy64AGeddRaWLl0Kp9OJgYEBvPHGG/jLX/6CUCgEADjrrLNyztxKRERERETH8Ts2EU1lDLwSERVRLBbDU089haeeekqzzYUXXoi//OUvsFqt49gzIiIiIqKpid+xiWiq4uRaRERFMjg4iMcffxzPPvss9uzZg/7+frjdbjidTjQ0NOCMM87A+973Plx22WUT3VUiIiIioimB37GJaCpj4JWIiIiIiIiIiIioyDi5FhEREREREREREVGRMfBKREREREREREREVGQMvBIREREREREREREVGQOvREREREREREREREXGwCsRERERERERERFRkTHwSkRERERERERERFRkDLwSERERERERERERFRkDr0RERERERERERERFZpvoDkwHfX19iMfjsNvtqK+vn+juzGg8FpMHj8XkwWMxOfA4TB48FjTVdHZ28nyd5nhdmv54jGcGHueZgceZ8sHAaxH09fUhEonA5XLxQzfBeCwmDx6LyYPHYnLgcZg8eCxoqunu7ub5Os3xujT98RjPDDzOMwOPM+WDpQaIiIiIiIiIiIiIioyBVyIiIiIiIiIiIqIiY+CViIiIiIiIiIiIqMgYeCUiIiIiIiIiIiIqMgZeiYiIiIiIiIiIiIqMgVciIiIiIiIiIiKiImPglYiIiIiIiIiIiKjIGHglIiIiIiIiIiIiKjIGXomIiIiIiIiIKKe4osIfiSMSVya6K0RTjm2iO0BERERERERERJPPoR4fGvuCkFUVADCvugTrF1TBabNOcM+IpgZmvBIRERERERERUYajvX4c7vGngq4A0OUJY0fLEIQQE9gzoqmDgVciIiIiIiIiIkoRQqCxP5BzWX8gCm84Ps49IpqaGHglIiIiIiIiIqIUX1hGVFY1l7cMhsaxN0RTF2u8Ek0iDz74YMa/b7zxxgnqCREREREREc1UwZisu7zHG8ZQbSl8kTisFglzq0pgtUjj1DuiqYOBVyIiIiIiIiIiSpEMYqhRWcUrR/tT/3bavDh9aR1qyxxj3DOiqYWlBoiIiIiIiIiIKMViFHkdISqr2No8iJhOeQKimYiBVyIiIiIiIiIiSskz7gogEXzt80eK3xmiKYyBVyIiIiIiIiIiSpFQWL3WA12+IveEaGpj4JWIiIiIiIiIiFIKnScrHFeK2xGiKY6BVyIiIiIiIiIiSpEKqTVARFkYeCUiIiIiIiIiohQhxER3gWhaYOCViIiIiIiIiIhSGHYlKg4GXomIiIiIiIiIiIiKjIFXmvJUdXTP4mRFLVJPiIiIiIiIiKY+VhogKg4GXmnKCscU/OCfB3DT3W8WXH/m77s6cfUv/oXG/kCRe0dEREREREQ0NQkWGyAqCgZeaUo61OPDVT9/DXe92owtjYN4Ym9P3utod4fwn4/sw/4uH6762Wt49Wj/GPSUiIiIiIiIaIoZRdx1tKNSiaYTBl5pynlmfw/e9Yt/4Wjf8SzV2588iEhcMb0OWVFx65/egj8qAwCCMQW3/H47ntmffwCXiIiIiIiIiBLiKsv5ESUx8EpTyh/eaMUn7t+BSDzzQt4xFMY9/2o2vZ6fPn8UO9s8Gb+LKSo+/cBObGkcKEZXiYiIiIiIiKak0eSsygozXomSGHilKeMv29vxzUf3aRb5/sULxzAUNs56faNpED9/8VjOZXFF4JP370TzQHA0XSUiIiIiIiKaskYzuRbDrkTHMfBKU8ILh3rx1Yf36rYJxhT8YbdHt40nFMPnH9ql+0fEG47jo/duQzhmvnQBERERERER0XQxmsm1Cp38mmg6YuCVJr232obwqT/uhGKiQPfOrjDCsnY9GQkS1i+oMlxPbZkD/kg8r34SERERERERzXQMuxIdx8ArTWpDwRg+9cedWTVdc7n65Hn4xZXzUGLTPq2rSu34v5tOw6fOW55zucNqwdcvX40/ffxM1Fe6Cu43ERERERER0VQ1qlIDjLwSpdgmugNEWoQQ+MJfdqPbGzFs+43LT8RHz1mK/fv3I2LQXJIkfPnS1VAF8H8vN6Z+v2ZeJX58/clYNaditF0nIiIiIiIimrJGFTtl4JUohYFXmrTue70VLxzqM2x3xzXrcMPpi/Je/5cvWYXWwSCeOdCLT523HJ+5YAUcOtmyRERERERERKRvNPVhiaYbBl5pUmp3h/DDpw4ZtvvSJasKCroCgMUi4b+vW49/6w9iw8LqgtZBRERERERENN2MZoIsE9OzEM0YTO+jSUcIga89vBehmKLb7qYzFmnWajWrwmVn0JWIiIiIiIgozehqvDLySpTEwCtNOo/t7sJrxwZ026xfUIVvXbkGkiSNU6+IiIiIiIiIyAjDrkTHMfBKk0ooJuP2J/RLDJQ5rPj5jaeyHisRERERERHRGBhdxmvx+kE01TFyRZPKL19sRI8votvmq5efiEV1pePUIyIiIiIiIiIyi5NrER3HwCtNGr2+CO56tUm3zealtXh/gZNpEREREREREZGxUQVPGXclSmHglSaNn79wDFFZ1Vxus0j4wbvXwmIxV9dV5VSKRERERERERHkbVamB4nWDaMqzTXQHiACg3R3Cn7a16ba5+cwlOKG+QreNKgS2dkbwaocPx/7eg1e/fD4AYFuLG0d7A/CE44grKhoqnFheX47TFteg1GH+Y+ANxeEOxbB0Vpnp1xARERERERHNFKzxSnQcA680KfzixWOIK9pX55pSO269cIXmciEEntrXg9sf70abN576/af/uBNvNA0iGFNyvq7EbsV1py3ALWcvxRKdYOqRXj9+v6UFj+zsxCmLqvHAx84w8a6IiIiIiIiIpp7RxE5Z45XoOAZeacL1eCP4284O3TafOu8EVJXYcy7r90fxn4/uxdP7e7OWPX+oT3e94biCP7zRige3tuFT5y3Hpy84AU6bFQCgqALPH+zF77e0YEvjYOo1WxoH0ToYxOI6Zr0SERERERHR9CNGkbbKjFei4xh4pQl3z7+adbNdGyqd+MCZi3Mu29XuwUfv3Y6BQHRUfZBVgTtfOIZnDvTiZzeeguaBIL77+AF0DIVztv/bjg78x8WrRrVNIiIiIiIioskopmjPv2KEcVei4zi5Fk0obziOB97Ur+367+efAJfdmvX7cEzBR+/dNuqga7pDPX686xf/QvNAUDPoCgB/29nJybuIiIiIiIhoWjrc4y/4taPJliWabhh4pQl1/xutCERlzeWzyp14z8aFOZeVOKz4f9dtgEUqbp+CMQU/euYw6socmm06PWG83jSouZyIiIiIiIhoKvJH4saNdDDuSnQcA680YSJxBb/7V7Num4+cvSRntmvS+avrceWGecXuGmKKgGKQ0frXHfp1aYmIiIiIiIimmna39uhPIsoPA680Yf65pxsDgZjm8nKnDe/fnLu2a9KftrbhsV1dxe4arBYJP7p+g26bJ/d1wzfKJ4FEREREREREk8lgcHTl/JjxSnQcJ9eiCXPf6y26y9+/eRGqSuyay1883IevP7LX1LbmV5fg429fhnNXzoYkAS8e6sPPXzymGfhVVIHnDvbi9KW12NrsztkmElfxxJ5u3HD6IlN9ICIiIiIiIprsJIyunp/g9FpEKcx4pQmxu92D3R1ezeV2q4SPnL1Uc/nRXj8++8BbMDO/1Q2bFuKZz78dH3zbEiyZVYbFdWX40FlL8eznz8Xl6+Zovu7Bre04cW6F7rr/ubfbuANEREREREREU4Q0ynlUmPFKdBwDrzQh7nu9VXf5FevmoqHSlXOZOxjDLfduh19nUi4g8cfie1evwR3XrkeZMzu5u6bMgV+871S8c/1czXU8vrsbJTo1Zrc0DmIoqF0ugYiIiIiIiGgmYdyV6DgGXmnc+SJx/HOvfl3Wm9+2JOfvVVXg1j+9hTZ3yHA7P7x2PT5wZu71JO1oHcLT+3s0lw8GY5hTlTsADCRKEjx7sNewL0RERERERERTwSgTXiGY8kqUwsArjbt/7O5CJK5qLl87vxKnLKzOuew3rzbh1aMDhtv49821uH7jQsN2J86txLzqEt02zQNB3eVPstwAERERERERTRejLTVQnF4QTQsMvNK4+/P2Dt3lHzhjMSSNojKbltRgvkGg9IY1Zbh0hX5t1qQypw3/+96TYbXo/2Wx6hS5ee3YALzhuKntEREREREREU1mo55ci5FXohQGXmlcHe7xY3e7R3N5mcOKK9fPgxAC7hy1U09bXIsnbj0HV6zLXZf13CWluHZ1WV59OmVRDT7x9mU5lzlsFnzi7ctw0UkNmq+PKwLPHWC5ASIiIiIiIiLmvBIdx8Arjas/b2/XXX7l+nkoc9rwyFuduOBHL+GpfdnD+KtK7Pj5+07BHdesg8t+/BTesLAanz2jTjNbVs9nLliRkUkrScB1py3Ai188D1+7/ERcffI83dc/maOfRERERERERFNNAbfUGZjxSnQcA680bmKyikfe6tRtc/2mhXAHY/je4wfgCcXxb/fvxFf+ugfBqJzRTpIk3HD6Ijz+mbOxek4FKl02/OJ9p8BpK+yULnFY8Z2r1gAAzl81G0/eeg7+5z0bUsHY81bVo8Ru1Xz9K0cGEBjRRyIiIiKiqajTE8YbTYN49kAvtre4MRiITnSXiGgcjXpyraL0gmh6sE10B2jmeOFQX87yAUnLZ5fh1EXV+OJf9mAodLxm6kPb27G1xY2fvPdkbBgx6dYJ9RV49NNn4WhvAAtqSuHRj+vquvCkBjz+mbOxdn5V1rIShxUXrK7HPzUm0oopKl472o9L1+YugUBERERENBUc6wtgf5c39e9QTEa3N4JNS2oxp8o1gT0jovFSyCjSdMx4JTqOGa80bh7bbZDtunEhXm8cxN92Zk++1TwQxLW/2oJfvHgMipp5FXfZrVi3IDtYWohcQdekS9fO0X3tswf6itIHIiIiIqKJEJNVHOz2Zf1eFSLn74mIchHMeSVKYeCVxoU/EsfzB7UDk1aLhMvXzcU3Ht2n2UZWBX763FG0uUNj0UVD5U7tUgMA8OLhvqygMBERERHRVNEfiELVSFXzReLwR+I5lxHR9MIar0TFw8ArjYtnD/QiKquay9++Yhb+vL0dzQNB3fV8+vwTsHRWWbG7p0tWVPz42SO45d7tuu3cwRjeahsap14RERERERVX66D+d/FeH2u9Es0Eo67xysArUQoDrzQuHtvdpbv8ivVz8eyBXt02y2eX4d/OW1bMbpn22tF+mElmffag/nsgIiIiIpqsFtWW6i4XjKYQzQijzXjVypwnmokYeKUx5w7G8NrRAc3lTpsFl66di3985mzc9s6TUFWSe863269ZD6dNf7j/WLBZLfjpDaegwmU8F92jb41idi8iIiIioglUWWLXXc5QChERUX4YeKUx98Tebsg66aIXntiAcqcNdqsFwaiMBTWleM9pC2C3Hn/MdsOmhTh9ae14dDenhbWluP2adYbten1RvNk0OA49IiIiIiIqLqdN//YwGtcuHUZE08noUl6Z8Ep0HAOvNOaMygy8c8M8AMCOVjf+97mj2N/lwxN7u/HlS1bj0jVzMKvcga9etno8uqrryvXz8N6NCw3bfemvuznJFhERERFNOQ6rBRadMcYRWRnH3hDRRBn15FrMjydKYeCVxlS3N4xtLW7N5RVOG85bNRu+SByffXBXKmAZjCn4wRMHUeq04tFPnYXqUsd4dVnXbVedhHlVLt02be4wfvNK0zj1iIiIiMx6+umncfXVV2PevHlwuVxYtGgR3v/+9+PNN98syvofe+wxXHvttVi0aBFcLhdKSkqwdOlS3HDDDXj66aeLsg06TggBVRVQhv+LKyriioqYrCIqK6xHWgBJkrKyXp02CypL7Jhd4USVQSkCIpoeOLkWUfEYF60kGoUXD/XrXnQvWTsHLrsV33hkHzo94azlD+/sxFttHtx5wylYt6BqDHtqjtNmxQffthi3P3lYt93/PH0IZ58wa1L0mYiIiIBbb70Vd955Z8bv2tvb8cADD+Chhx7CHXfcgS9+8YsFrTsajeKGG27Ao48+mrWspaUFLS0teOihh3DjjTfi3nvvhd3O4FUxHOkN4FCPT3P5hSc2oMzJ2518nbq4BjaLBJfdmsiAtYw2BEM0PmRFRfNAEP2BKCRImF9dggU1JTyHCyCNMuWVcVei45jxSmPqxtMX4vHPnI2Pv30Z5ubIFL1qwzw8ta8bf9vZobmO5oEgbrl3GyLxiRva5A3HcdcrTTj3/71oGHQFAEUAt/7pLYRi8jj0joiIiPT8+Mc/TgVdr7jiCmzduhX9/f146aWXcMYZZ0BRFHzpS1/Cww8/XND6v/SlL6WCrueccw6efvppdHR0oLm5GX/729+wdu1aAMCDDz6I73znO0V5TzT6obCUW1WJHW3uEA73+LG7w4OdbUPY0TqE7S1ubGtxo90dmuguEmWRFRWvHh3AgW4f+v1R9PkjeKt9CDvbhpj9PgG4z4mO4yNgGlOSJGHt/CqsnV+Fr166Gtta3Hhsdxee2NsNq0XCCQ1luOKnrxmu5/vvWguX3ToOPc52rC+Aq37+GkKx/AK/TQNBfO/xg6Ym5SIiIqKxMTAwgG9/+9sAgPPPPx+PPfYYLJZE7sG5556LF154AaeccgoOHz6ML3zhC7jyyivhcJgvcRQIBHDXXXcBAE455RQ899xzGa9fsmQJzjvvPKxfvx6dnZ341a9+he9+97upPlDhjOKuvO3PTySuoKk/iDZ3EFFZexKtUsfEfCcn0nO41w9fJJ71+05PGHOqXFhQUzoBvZq6Rl1qoCi9IJoe+I2Pxo3FImHzsjr84N3rsPUbF+LBj52Bbzy8D0Oh7D+Q6T5wxmJcvGbOOPUy27JZZZhjUNdVy4Nb2/D0/p4i94iIiIjMuu++++D3+wEAP/zhD7MCniUlJfjud78LIFEW4Iknnshr/YcOHUIkEgEAvOc978kZtK2trcXll18OAHC73ejv78/7fVA2oxt7ZlyZF1dUvN40iKN9ft2gK8DajTQ5DQRimst6fdFx7Mn0MOrJtXidIEph4JUmhN1qwdYWN148rH/jsWx2Gb5++Ynj1KvcLBYJH37bkoJf/9W/7UGvL1K8DhEREZFpjz32GABg6dKl2LRpU842V199NVyuxEPWv//973mt3+l0pn62WrUzAZPLbDYbamtr89oG5XawW7u+K4DUpK1krLE/AF9YPxkiiQEVmow8Ie3Aa8cQy2OMv/wvFO5gDB1DIfT7GSin6YWBV5oQrYNBfP/xg7ptbBYJP3nvySiZBMOZrjl1ASpchVXmGArF8YU/74bKL/9ERETjbufOnQCAM888U7ON0+nEKaecAgDYsWNHXutfuXIlKioqAACPPPIIFCW7NJHf78dTTz0FALjwwgs5uRZNOn15ZAQKDiImmvakURYbyOcBTVxRseXYAF492o8drUPY0jiAFw/3IZxnqT+iyYqBVxpXkbiCcEzGV/+2F2GDybI++44VWL+genw6ZqDMacMNmxYW/PrXjg3gj1vbitgjIiIiMtLZ2ZkqM7Bs2TLdtsnlR44cyWuIutPpxNe+9jUAwBtvvIGrrroKr7/+Onw+H9xuN5577jlcdNFFaGlpwdy5c/HTn/60wHdDNHY8JrNdAWa8EpGxfC4Tu9o96A9kPvzxheN4s3mQJWNoWuDkWjSuHtzahh89cwSBqKzb7uSF1fjUecvHqVfm3HzmEtz9WjOSiauSBJQ7bfBH9N9L0h1PHMR5K2djYS0LuxMREY2HgYGB1M8NDQ26bevr6wEA0WgUgUAglcVqxte+9jXE43H813/9F5544omsOrFVVVX49Kc/ja9//euYN29eHu/guGg0in379hX02umqoz2ou/yAMoBK58SPnDIjGo2m/ncijnN7m/6+TCd7bLB6ncYNKcNEH+Ppzuh6sM82NC79mC7HuXEwik6fufvcXMJuK0oCXYbtZFVga2vuUhAdAFzBHpQ7Jl++4HQ5zqRv7dq1RVkPA680bmRFxa9fbjIMupbYrfjf954Mm3VyXWAX1pbiwhMb8OrRAZw0txJWq4Q9HR7Trw/GFHz14T24/5bNkEZbrZyIiIgMBYPHb8STNVy1lJSUpH7ON/AKJIKv8+fPx2c/+1mEQpk3kcFgEJ2dneju7i448CqESE3iRQnxuHZNRwCIRiRExOT6Pmlkoo6z0b4EAIskARIQj6mIRJiFVih+lseG0TkcDlvG9R5sqh/nSDSOeLzwwGssaoWZt98bkBGPa2fctwyoOKF28pbnmerHeboKyyo6fArcYQU2i4QqpwVLq22wWiYmDsPAK42bx/d0ocfEJFPfuOJELJ1VNg49Ms8biuOBrW043OtHOK5gR1thT0z/dWwQD25tx/s2LypyD4mIiGik9CGKY3nD3dzcjKuuugr79u3DlVdeiS984QtYu3YtFEXB9u3b8YMf/ACPPvoonn76afzpT3/CVVddlfc2JEnKmMiLALtdv2yV0+WEawplvAohJuw4n3eCE4cGohgMZu9Tu1XC2xZxxNZoTfQxnu6Mrgc2hwt269gHXabLcXY4JNjthT+4sjushg88AQCRGOx27eMiSxZz6xln0+U4T0dRWcWR/ggisgWwWCADGIwCkSHglLnOCQm+MvBK40IIgf955ohhuzOX1eH9kygoORCI4tcvN+KBN9sQLFJx7x88cQDnrpqN+dUlxo2JiIioYOXl5amfw+Gwbtv05emvM+L1enHuueeivb0dH/jAB3DfffdlLL/iiitw8cUX48ILL8Qrr7yCm266CY2NjZg9e7bpbQCJWrLFGvI2XTTKnbrLV6+Yjdoyxzj1ZnT27duHSCQyocd5jaJid7sHnZ7jn4XqUgc2L62Fyz41AtiT2WQ4xtOZ0fVg5eoGlDnHPvwxXY6z0u6BddB8CZKR6itcWLu8zrCdo9cPudunubyuzIm1K2YV3I+xMl2O83S0r9OLWQjkXFYzvwaL6sb/QeLUGntDU9bzB/vQMaR/w+O0WXD7NesmxTD8uKLinteacf7/vIS7Xm0uWtAVAIJRBV/88+6irY+IiIhymzXr+M1ab2+vbtu+vj4AiQBnPoHX3/72t2hvbwcAfP/738/Zxm6347vf/S4AwO/346GHHjK9fircvk4vXjs6gC2NA+jyhDlJiwG71YKNS2px/up6bF5ah/NW1uPclbMZdKVpQVb4+c/HaPeWGPUairsemjkGRkzUlq5xIHdAdqwx45WK6lCPD6GYgpMXVMOSlsL9nX/sN3ztFy9ehSWToMTAG02D+Nbf9+FI79h9KF9vGsTtTx7E1y47ccy2QURENNPNnz8fFRUV8Pv9aGpq0m3b3NwMAFi5cmVeD4FfffVVAInJuRYt0h61s2nTptTPBw4cML1+KtxQ6HjNx35/FMtnl2Pt/KoJ7NHUUOmyo9I1eWsqEhUipqgT3YWZxWS8dOJTrmi68Ya1awb7dJaNJQZeqah+/XITHnmrEw2VTlyyZg4uXTsHoaiCdoNs1xPqy/Hhs5aMTyc1RGUFP37mCH7zahPGIyHi1y83oabEjn8774Sx3xgREdEMdeqpp+Lll1/GG2+8odkmGo1i586dAIDTTjstr/UnSxQYZVOOV71Z0tbYH8CCmhJUl06N8gNEVDyyysBrPkY7QoB5qjRZKaoY9zqvLDVARRNXVDx/MDGMr9cXxX2vt+J9d72JT/5xh+7rJAA/u/EU2KwTdzoe6/Pj3b/Ygl+/Mj5B16Q7njqM/3u5cfw2SERENMMkJ7JqamrC9u3bc7Z57LHHUrMSX3311Xmtf968eQCA/v5+tLa2arbbtm1b6ufFixfntQ0qnn6/9hBEIpqazAQJe31ReEMTk+02FY32llg1eVNt9BySFWIoXyvqK3SXB6LyOPXkOAZeqWi2twzBF8k+ieMG9XQuWdOAE+dWjlW3dAkh8IfXW3DFna/hgE5Rby1zq1y4Yv1cnDOKgt93PHkId7/WXPDriYiISNvNN9+MiorEl/CvfvWrUEdkPUUiEdx2220AgCVLluDyyy/Pa/0XXXRR6uf//M//zNkmHo/jW9/6Vurfl156aV7boOIp5PseEU1uZoJzrYNBvHSkDy8f6YcvwgDsWDMbMLVa9ENS4zEhGk0v5QbnTCjGwCtNYS8c0p+0IheHzYIfXrt+DHpjLBJX8IW/7MY3/74fUdn80JMKpw23nL0UT3z2HGz56gX4xftOxf+8Z8Oo+vL9fx7Aswfy339ERESkb9asWfj2t78NAHj++edx9dVXY/v27RgYGMArr7yCCy64AAcPHgQA/OhHP4LDkTkMvaWlBZIkQZIkfOhDH8pa//XXX481a9YAAO6//35cddVVeOmllzA4OIi+vj488cQTOPfcc1O1YK+//nqsXz8x331mGkUVGPBH0eONJDLdmDlFNC3l89H2hGLY2uRGLI/7v5lotJmmZjNeSwwm75tb5RpdR2jGcTn0w5yKOv5fBvj4gIrm+YN9eb/mB+9ai6oJqLPV54vg43/YgV3tHtOvKXVY8anzluPmty3JmnCgodKFdfOrsLfTW1B/hAA+++Bb+PCcEBbWlha0DiIiIsrtP/7jP9DS0oKf/exnePzxx/H4449nLLdYLPjhD3+Ia665Ju9122w2/POf/8SVV16Jffv24R//+Af+8Y9/5Gx7ySWX4O677y7oPVB+AhEZTf0BxNNusEodVqw0GIJIRFNPvvVIgzEZvb4I77t0jU+NV2HQkiXRKV9OmxVzq0oAJM4fCcnzKHEylTrGPwzKwCsVRVN/AE0Dwbxes2FhNa49dcEY9Ujb7nYPPv6H7ej1ma/xdfXJ8/C1y07EHJ0nbu84sV438CpB/w9QOK7gt6824yuXrZqQiwEREdF0duedd+KKK67AL3/5S2zduhVutxv19fU455xzcOutt2Lz5s0Fr3vx4sXYvn077r//fvztb3/Drl27MDg4CEmS0NDQgE2bNuGmm27C1VdfzYm1xoGiCjQNBDOCrgAQiilodYcmqFdENFYKCREe7fMz8DqGRjs5V5IE/s2k/FSV2HH60tqJ7kYGRneoKF49OpD3a755xYmwjPNscn/f1Ykv/3WP6dICDZVO/Og9J+NsEzVc375iNn7y3FHN5ctml6FlMKSb2j4UiuGhre340FlLeGNGRERUZJdccgkuueSSvF6zZMkSUzeQTqcTt9xyC2655ZZCu0dFEozKiCu5v+t5QjHEFRX2CZzUlYiKq5AYnz/H3CR03GjjpmZfz8mzaCbgNw4qipvPXIzHP3M2PnfhCqydZzxR1gWr67Fxyfg9hRBC4KfPHcWtf9plOuh66Zo5eOrWtxsGXfv9Ufz4mcP42H25Z0pOah4I4gfvXms4XOKtdg9ebxw01UciIiKimUrrIfWQzszlAonvbkQ0fRgNV6fxV6wymsxFoumAGa9UFJIkYe38KqydX4Wbz1yCL/1lN54/pF3z9QsXrxy3vqmqwPf+eQC/+1eLqfYldiu+c9UavGfjAlNZp72+CO584ZhuG6fNgrNPmIXNS+vwtctW47+eOKTb/uGdnVjZwBpkRERERPkymrE4GGWmWzpFFejyhBO18CQJFgno8UZSkw+VOmwocVghRCK85bRZsLiubGI7TZSGWZPFN9pdanZyLaNWjLvSdMDAKxVdbZkDd39oExr7A/jVS414ZGcHlLQr6hXr52LNvKpx6YusqPjqw3vx1x0dptovqCnBbz+4EavnGGftJq2dX4XTFtdgR+uQZpuPnrMUX7pkNQDgY+csQ2NfEA9tb9dsH1NUPLC1FZ/+qBj3cgxEREREU5nN4LuT2dFPM0VcUbGzTft77EiVJXYGXommufErNcCoOU1/DLzSmFk+uxz/854N+NyFK/CbV5rwp23tkBUVn79wfLJdo7KCzz74Fp7e32uq/ealtfjVTaehtsyR97ZuPnOxbuD1L9s78LkLV8JutUCSJHzn6jXY3eHBoR6/5muO9QXxx61t+MAZi/PuDxEREdFMZTOo3xqVlXHqydRgNjMthXESIjJQtIAqc5BmlBcO9Q6PtpBSZSYkJEZjzCp34JRFNRPZvYKxxiuNuQU1pfju1Wvx2lfOx/++92ScUF8+5tsMx1V89N7tpoOuN52xCPd/dHNBQVcAuGztXMwqd2ou7/NH8fT+ntS/XXYrfnbjKXDZ9T+Ctz9xED3eSEF9IiIiIpqJjCbOisaZ8Zou/7grI680uTBpsvhGGzg1+2qjzUiMvM4oMVlFVFYRlRVE4on/wnEFoZicKn8zFTHwSkXli8QxEMg9YUF9hQtXnzx/zPsQjqu47YU+vHp0wLCtzSLhe+9ai++/a92oZrd12Cx43+kLcy5bPacCt1+zDhesrs/4/YqGCvznFSfprjcUU3DHkwcL7hcRERHRdKV1O27VqdFvs0qIKlP35m0s5JvxqnL30SSTd9Y2jTkeEyqE3mljZv4dIRI1y7u9YfR4I+j1RdDni6DPH0G/P4rABNV4Z6kBKqqHtrbjh08dwoUnNuD6TQvw9hWzDYd7FVNEVvFf//Lg4ID2bLZJLrsFv7rpNJy/qt6wrRnv27wYv3ipEYoqYLNIuHTtHHzwbUuwcXGN5kXi/ZsX4Z97uvB6k1tzvY/u6sIHzlyM0xbXFqWfRERERNOZXkZmqd06pbNmxkK+4RGGU4imv9FPrlWUbsBErI2mkdGeNooqsK1FO7aybFY51i0Yn/mG0jHwSkUjhMCft7dDVgWe2t+Dp/b3oKHSiWtPXYD3bFyIpbPGtgh/OKbguy/2mQq6VjhtuPtDm3D60uIFM+dUufD+zYtQW+bA+05fhPpKl277qKzgn3u64Q4a9/c7/ziARz91FifaIiIiIhoFAQ5LHinvUgPcgTTJ8IwsvtFPrmVuBUbNOBnizKKf8Wri9QbLJyqQz8ArFc1b7R4c7Qtk/K7XF8UvX2rEL19qxCVrGvDrD2wck21H4go+/oft2NObu8xButoyB+77yOlYO7/4Tzq+e/VaU+2EEHj3L7bgQLfPVPs9HV78dUcHrt+Uu5wBERER0UxTU+rAYND4u186IRg4HCnf/VGsTDaiYuFnenISQhgODzcqSXC4x4f51SXF7BZNYnojVszETCfrpYCBVyqav2xv110+b4wumDFZxSfv32GqpuvcKhf+cMvmcZngS48kSbjopAbTgVcA+O+nD+GydXNQ4bKPYc+IiIhounn2QC9CMe26Zu9cP29KjqqxaFSzMrrxmqT3ZROmzGnD25bPgoAYDkwn5m1IlmSoKXOgwmVLzSw9BU8Vmub4mS4+vQCYy27Fmcvr8NLhft2gtyoAq8H1Ym61C7s7tJeXO3nvO5OMPuNV/2rgj8iIxBW47NY8ezY6DLxSUYRiMv6xu1u3zXtOK362pqoKfOVve/Di4X7DtkvqSnH/RzdjQU1p0ftRiPefsQi/fOkY4oq5rwoDgRjueqUJ/3HxqjHuGREREU0nekFXAFCEgGUazRyt981KCMFJX0awWy2YXeHM+N2cKv2SWUSTCT/SY0AvAAag0mXH0royNA0ENNupQsBq8LfFadMPgFn5pGdGaah0QRUi9ZkWEBj+P1NBeKNrQZ8/gjZ3CCsbKkbf2Tww8EoF8YbjeKttCGcsq4PLbsXT+3t0Z4hbN78KJ82rLHo/bn/yIB55q9Ow3aLaUjz48TMwt2ryDFOor3Dhnevn4WET/U/67WvN+MCZS7K+HBMRERHNOAUEWwQ4VJ5o2uFnekIYZSCaDYhLkqSTOcuDO5MUcw4eLRPxoIaBVyrIi4f68LmHdsFlt+CMZXXo8UZ0249FbdK7XmnCXa82G7abX12CBz62eVIFXYFExsWHz1qaV+A1FFPwixeP4dtXrRnDnhEREdFMMlWzxU5eVA1ZFXj5cL9uFuu8ahckSJCkRHYn60ESTS9Gw4spf3p7NFm31SjwanZ0gWSwPSKzzJxyE3G90KiMRKTvuYO9AIBIXMVLh/txqMcPAChzZA8VcNosuGrDvKJu/5G3OvCDJw4atptb5cKDHztj0pQXUFWBHa1ufPux/Tj7hy9iYW0JTl5Yndc6/vhmK9rdobHpIBEREc04UzVoUeqwodJlR7lLO5ek1GHF3KoSzKlyoaHShdoyxzj2kIjGA5+ljK9kvNVSpCni9VbDY0v5mKzfZ5jxSnmLKypePpK7pmowpsBmkfDp85fj+UN92Nfpw4UnNqCqpHhFsV8+0o8v/WWPYbv6Cice/NgZWFQ3sUFXIQT2dnrxj91d+OeebnSlZQc/vb8HN2xaiF3tHtPriysC//vcEfz4+pOL31kiIiKacab8je2I/mu9H1lRoagCNitzT4imk6l+CZuMzPxdKF7Gq3bOK48t5cNUxitLDdBUsK3ZDX9Eu56rrArc+3orvnf1WqyZVwmliIW0drd78Mn7d0A2WGeZXcJ9t5yOJbPKirbtQhzp9eOj925Hm0aG6uN7uvGrm07Ddx8/gFBMMb3eR97qxCfevhyr5oxvUWgiIiKiyWbkzX16xoskSVBUgXZ3CO5gDAKJyVpOmleJVQ0VqSGzRDR1sXzI+EpeNo0yXs3XeB39Omh6aHeHEI4rECLxt1wIpH522iw4oV4//mHmdGHglaaE5w72GbbxhOJYUFOCZbPLi7bdloEgPvL7bYYBSrsF+OZ59Vg9p/iTeeVrYU0pBgNRzeWvHRtAJK7gnevn4aHt7abXKwTw0+eP4JfvP60Y3SQiIqIZbKrf2Or1XwLQPBCENxxP/U5RBQ51+yFB4kPsEVRVwMJZxGmKmeKXsElJb8h2MlBqdKXIp8arZj9MriPZLvkwLRCV0dgXQDAqw2a1YOmsMk5QPQW0DAbhDsZyLit32owDrybOl4koR8DAK+VFCIHnD/UatjtxbmXetUv1eENxfOT32zCo8SFMskjA5zZXYW2Dq2jbHo0ShxUXntSAv+/qyrlcCOCJPd147+kL8wq8AsATe3twqMc3KQLMRERENHmtmlOBw8P1+HOZrDXRzFJG3mil/TMQzT1KSxUCjf0BrGwoZ9YrgD5/BEd6AnCHYnBYLZhX7cKaeVWwMghLNCOZKzVgkPFqclt6qzEaPNs8EMSRXj8icQVOmwVLZ5WjodKJ144NZIy87faGsX5BNZZO8IhY0ifphOG1zsmhYAyN/QFEZRVxRTXcxkQ8bGaBI8pLY38QrYPGEzvdsGlh0b7ExhUVn/zjDjQNBA3bfnJTLTbPnxxB16R3rtefWOy+11txysJqrGzIPzv4zuePFtotIiIimiH0bmSAqZ/xGolnjoYyN9RQIK6ohg/1Z4I+fwRvNrkxGIxCCIGorKB5IIg3mgYnumtEpkz1a9hkpLdLk39TjJ7LCOMYWGqN2v3Q7smxvgD2dHhSfwOisopDPT68fKQ/Z7nDvZ3erL8XNLnolp3I8buOoRAe3dWJ1xsH8VabB93e8Jj1bTQYeKW8PH/QONvVYbPgXSfPL8r2hBD45qP7sKXR+Ivfre9YgctWTr7hYg6bRfcCcqw/gNbBIK7fuDDvdSezXomIiIi0GD0Ln4kxi+R71pu3YKY41hvIOSR4IBBFv1+7ZNZMpqoCiiqgFnEuCyrcVM/an6qMM15NlhrQrTWQ+9eqKvK+DxZC8GHbJJdP2YmYrOJP29rRPBBEfyCKPn8EB7v96PZENNaQXE8ROponlhqgvDx/yLi+62Vr56Cq1F6U7f321Wb8aZvxEPwbT1+Ez124Avv37y/Kdotpfk2J4Ye7zR3GVRvm4etS/heCnz53FL+6ibVeiYiIKDejMUhTdWKaSFzB/q5cN94marxNzbdcdIoq0K8zH0GXJzyj6yIOBqLY2uyGKhLlKQQyPy+nLqrBwtrSiesgJfDzXHS6fxdSk2vpr8Psc4kC4q5wh2IFTeJ9oMuH+dUleb+OxkkeGa/bWtzwpdVvT+ryhlHhsqHcNXnCncx4JdM8oRh2tA4ZtntvAZmbuTx3oBf/9eRBw3YXntiA779r7aStz7V8djlOW1St2+aefzWjvtKFlQbFonN5cl8PDnYz65WIiIhym64Zr7Iq0DGUXQLLzPtJZnhOzm+P46dlUL+UV8tgEP3+ROZrnz+CPl8EPd7IjMn0FABiigpZVROB1xHBKAbwJwceholhVMbGzORavb4IwjrD/6Ny7mWDAWauTkf51Hht6g9otvVFsgOyqfVMwBWDgVcy7aXDuWulpFtUW4ozltWNeltHev249U9vGX6ZWTu/EnfeePKkL/z/1ctP1F3+0uF+HOz24bQlNQWtn7VeiYiISNv0rPGq9a7MvJ+p+p6LyR2MYV+n17DdlsYBbGkcwOuNg3i9aRBvNg8iZmICk+nAUqSh1DS2+HkuPv0ar8P/a/RQz8Rx8ebIWEwXk3OvZJLf/tOYyDwX9GJT3V7tcgOcXIsmNTNlBq7fuACWUV4FPaEYPnbfdgRj+oWvGyqd+O3Nm1DqmDwp5Fo2LanFJp2g6sqGcvjCcWxYUAWbNf/9x6xXIiIi0jJJBwWN2mjeVzJgNl33jRnNJiau1TJTAl3FGkpNY4sB8DGgV2lg+MJpHHgdu7Ivo4050OQTk1WE4zLKHDZUuGyodNlRVWJHTakDtWUOrGzIHB1c6DkwEVcLBl7JlLii4iWDwKsE4LrTRldmQFZUfObBt9A6mD1sLF2J3Yq7P7gJc6pco9reePq3c5dn/e70pbW450Mb8dStb8fmZXUocdiwbl5VQetn1isRERHlYnhrMkVjFge7/QW/dqYEDvXkKtNg1kwJdBkNpZ6q9ZGnGx6GiWGUET6WDyaMtk1TjyoE/BEZwZgMf0SGLxKHNxzHUCgGdzCGqJw50qLQM2AirtuTP1WQJoXtLUPwR/VnfT1v1exRB0LvePIQXj06oNtGkoCf3HAy1s4vLEA5Uc5fVY8V9eU41h/AJSfNwcfPXYZTF2VnwZ62pAZvtXvyXn8y6/XEuZVF6C0RERFNF8WaeXqy6fdrDCU08XaSAQEGbAozUzI9JYM0pZmyHyY7Hobi0/u7YLrUgJmJDg3b5F5uZeB12sn377HeKWCfZBnRDLySKc8f7DVss3pOBeKKCru1sETqv+3owG9fazZs9+VLVuOSNXMK2sZEslgk3H7NOtSWObBsdrlmu5PmVqLEYUXYoNRCLnc+fxS/uum00XSTiIiIphmj24/pFnw083aSGS/KBLx5IQS6vRG0DAahqAJVJXbE5KlVM3WmZHp2uMO6y2fKfpjseBzGVzLgVYyM18JLDRT2uskVjqN8jDzdls4qhzsYh4TEA+bkcgmAy27VXM9EXC0YeCVTntrfY9jmVy834U/b2vHkrW/PO/N1V7sHX3tkr2G7q0+eh387d1le655MNi6pNWxjs1pwysJqbGkczHv9zHolIiKikYyzkmae5M2+OgEpiwe7/Tjad7xMgjsYQ3dnGGtqJbimSBWtmXDOhGJyxnHKZeTQV6LpwkxAtBg1XgvFUgPTj1H288jSL2vnVWEgEM1/O5xciyajpv4AOob0n/Ym1ZQ60FDpzGv9Pd4IPn7fdsMn/WvnV+KH1643HC43HWxcrD0RlxHWeiUiIqJ0RrFFrZtjVRVod4ewo3UIO9uG0KMzS/BkYuaeSh1uNd5xV284njOYp6hA45B+Wa9iK3XYYLVIsFokWCQpr+/Y0z3BsN8fxbMHjEf8+SL6M7LT+Jju5+NkkwyAGddANl6XURut5Tzk04/RuTDyT5RRKRidLRX6woIx45UMPWeizEDSlRvm5fWlLRJX8Ik/bEefX/9JxaxyB37zgY26KePTybLZ5agqsaGQr99P7uvBgS4fTprHrFciIqKZLhJXsKfDo9sm1y2Iqgq80TSI/rRsknZ3CAtrS3PWqJ9U8phJWx3niI1mXVoA3qg6rv256KQG7b6EEhOaSFIiuCJJGP4vEWopmcbfyQcCUbzeZHLkGaM/kwIDr8Wnt09TQ7oNM16L15/sdfOgTzf5HtFCs54n4tRh4JUMPb6723TbqzbMNd1WCIGv/G0Pdnd4ddvZrRL+76bTMK+6xPS6pzqLRcKGhTXYUeDr73z+KP7vA6z1SkRERMZy3YQ09gcygq5J7e4QGipdmD8pvpcVPgoq+Z6VcU553d/l01wmhEA4PjmCCVWldlSV2ie6GxOieSBoOqgzOY5WccUVFd5wom5ibZljRow2nCriSmKEqEWSYJH0J06MxBPzhRSauGTm3DasH16EybVyLVVUgeaBoOG6aeoIxWS81Tak22ZkoLXQ+bNY45UmHW8ojr2d+oHRpBPnVuKE+grT6/7Vy434+64uw3bfvXqtqdqo04GqCuzp8OClw/04f3U9drgLW89T+5n1SkREROYyOnPd+Pb6tEcj9foikyTwmpupybWGWy2uKx3bzuSJIa6J1+UxV2JtOmrqD+BQjz8V4Ctz2HDyomrMKs+vlNx4MxPgmw5eOtyPUCz3mEiX3YqLT2rAYDCGfZ1eeMOJMhi1ZQ6snVeFmjJHXtvSe/iQvE4ZZRwWo9RAdnuB7S1uuIOx/F44jM8RJqdoXNU9prPLnTihPnOC8qlU55c1XknXS4f7TP8Ze2ce2a7PHejF/3v6sGG7m89cjBtPX2R6vVNVVFbw0LY2/NcTB3HPv1rQNBBEy0AQsyuyv+SsX1CFL1+6Cotr9W8UWOuViIiITCV05mgzGNQOvLa7Q4V3aByYupEXwOwKJypcMzOrk3KLykpe7afTaOdubxh7O72poCsABGMytjW7NYN9k8VUOA7BqIxDPT7s6/SiyxMuaKi83nGIxBUMBmJ4s8mdCroCicn73mweHJNjaBT3KkbplPTzEQA6PWH0+KZGvXEyz+hcyTUCp9C4K0sN0KTzlx3tusvtVglxJXHmvnP9PFPrPNLrx61/esvwhD9zWR2+eeVJptY5VQWiMh58sw2/fa0Jvb4ogmm1bv/VOID33ViPh7a34+SF1bh83RxctnYuFg4HXBfUlOKzD76luW5mvRIREZGZm/spELPIk7n3bJ2M2TKTsEszSSSuP9nvSNMp07JlIPuBSkxWIYRA51AYKxoyRzYGozKCMRlOq3XCy1JM9qPQOhjE7g5v6nrc2J/IRH3b8lmwFjpeOofGgQBkNfscjsoqWgdDOHGu+ftC3X2arPFqNLmW6a3pGwxEUTecdT0QKCzTlaafUDS/B2VJE1EfmIFX0hSJK3izWX+s+0fPXooPnbUUbzQNpgKCegYCUdxy7zYEY/ofksV1pfjl+0+F3Tp9k7KFELj656+hsT93fZpIXEW/P4I/f+IMnL60Lmv5Fevm4s7nj+JYX0BzG6z1SkRENLOZyXidCtli6TyhGBr7A3lnJyatmVeJDQuqsWx2uXFjmlGSdTHNmmqfHT19aRO/DQai6PZGEJVVWCQJre4w/n12OawWCaoq8Fb7EDqGjpdkqCtzYuOSmjGZCNkXieNglw+9wwkq86pcWD23EuXO46GMyTzRkj8Sx560oGuSOxjDwW4f1s6vKtq2WgaCmsfgSK8/r8CrGUazyher1MCudg/ecWJiMsDWQdZ2nana3SHMry6BZfhhRa/OZJV6JuJqMX2jWjRq/zo2kMpm1fLuUxegodKFq0+eb7i+cEzBR+/djna3ft2kcqcNd928Me86NFONJEm45tQFum1eONyPu15tzrnMapHw2Xes0H19MuuViIiIZigzN74jGqnjPOFUvsJxJSPoky8JgN1mgcM2+W6Fxjvh9XCPHzta3djZNoS32oawq92DPR0e7O3w4kivH0AiqBWMynkHJaeisEFyyEiT+5NSmMFAFC2DIUTlROakKgQGA1G80TQIANjX5c36/A0Go9jW4i56ADQcU7Dl2CB6fBEIIRLZt54w3mgczHjwMpmPQ68vqjmMOp96wj1e4yBTMXe/3rqSma7G16vidCgQlfP+bNLUYuZM2dk2hBcO9aU++0YZ15rbmoALxuT7tkGTxgNvtukub6h0YmWDucm0FFXgcw+9hV3tHt12kgT89IaTTa93qrvpjMUZT2tzefZAL/ZpTHB2xbq5WUWmR2KtVyIiopnL1KzSI5rEcwxVnUxGO7xVYHplKo5Gvz+KjqEw2t0htLlDaB0MonkgiKaBANrdIXR6wnjuYB+eO9iLp/f3YMuxAfgjceMVT1GRvGu8Tr8TSWtivYFAFIOBKFoHc9d4dgdj8IWLV0c0EJXxzIGenJntwZicURphMh+Gg93aSTDhuJJVw1RL04D2KMekYtRUNSNZpUUyKNdiasSFyeBsL+u6TmtmT91gTMbu9kRspNBSLxNRIoaBV8pJUQX+1Tig2+bdpxhnuSbd/sRBPL2/17Ddly9ZnRpGMBNUldhx85mLDdvd9ti+nL9n1isRERHpKSR5dZLHXWFUEtHc8NZJHKkZR3qBGl84jh2tQxmT8vQHonizyY2YPMlPkgLF5Zl9XsiKirBOZvOeDq/uOdNSpGHgg4EoXjjUp9smc1uT97gZBUMVkxfpfr/2hIfHt2VqVSZpr0wa8b+aayhiqZvJWJKbJkafPwJZURGIJEZiRGUVUVlFTFYRl1XEFVX/c8WMV5ostjW7DYvLX79xoal13bulBb99Lfdw+XTvPmU+/u3cZabWOZ184tzlKHXo10Pa0erBv47251xmJuv1p88fKbh/RERENHWZyYAa2SLX5CyTyihvwFUxeadEGu9+6W2v2xvJGaAOxuS8hkhPJflmDE7W8yhfyePc6s6dzZrkM8h2dodGP/GREALbW4cMH46kl76Yys9RzAZezSjmlc3MPrUYREOL2Z9Ch5VnrYcB3ElpdoXT9Pw+iirQ7Y1ga7Mb+7t82Nfpxb5OL/Z2erGn04s9Hd5JlyHNwCvl9OS+bt3lDZVOUxMSPHegF9/5x37DdqctrsHt16wzHK4wHVWV2HGrQdYqAHztkb05a65ZLZLh65/e34v9XbnLFRAREdH0VUj2ZzEDAWNhtDfgQkztQE0x6QW3YooKp80Cu9WSFWDpDxhn301FeZ8W0+Q8EgKIKyo8oYkrI9HtDWNn2xCePdCb/yRnY9Sn8SAX6Xq7bn4VXLbiT26WS/Ke3ejW3dTfH9PbNNlwDETiCvZ2ePHUvm48ubcb21vcCMUm+QPKKejsFbMwp9Jlqq1RjfZunZrInFyLJgUhBJ43GNrxLhOTaW1rceMzD75lOORhSV0p7rp545jMgjlVfOisJag1mEyszR3GH99szbns8nVzsYK1XomIiGiEQmq8mgkETGRw1ijrzuhmX2BiaryZMo7dOtYXgDesvS9jw8M344qalQlqVO5hqso/43WSnkd5UoWAdwKDrgDgDcfR7g7pljpIN7vcmfp5Kj9IMXMtNVMaZdnscsNglNl6skBxLkXFrDk7UYFXRRV4o2kQTQOBxHB2RUWnJ4xdPRFEZ3hpkmKrdNlRWWI31VaIUdR4ZakBmgwOdPt0Z4qtK3fgpjP065Lu6fDgI7/bZviHs6bUjt99+HTDoON057RZ8Z9XnGjYbkvjYM7fm6n1yqxXIiKimaeQGwwzgYCJDLwa1To0nFxLiEkbqBmvbqmqMPW9UBWJtooiICuJIGxcUSErk3QHjlK+58VkPY/ypQrAHy3exFiFyDdbcyJHSkbiCjyhGNzBGAYCUfT5I+jzRdDtDaM/KEPJ48QwW9plQU0JGipdmFtVgnnVJZhfXYIFNaVYVFuK9QuqTa2jWPN+HJ9cS79dMettWyfoaU/rYDDnA6q4ItDmM/+ZicQV9Puj6PSE0TwQxKEeH/Z0eLC9xY0txwYQmODP31QjIDAr7eFLvq8db/rTqdOMZDQJ1s1nLMHC2lLN5Yd7/Lj5nq2Gf7wdNgvuunkjls4qK6if0827Tp6P2ypd6NGpR/Lkvh48vqcLV66fl7Xs8nVzcefzR3G0T3vGy58+dxS/uXljUfpLREREk5+pGq8FZLyO1+zZY4GlBswdv1BMwVttQzmXlYzTkObxlu+ka9PlPBIQRckoHM0q8h39mN7f8Q6kNA8EcaTXn3NZR18UJ9ebz28z8xBDkiSctrjW9Dq19JmYoCtJ79xO7nqjGq+mtmOync0yMTmDnTr1rHsDMtaZXE+PN4LdHR7N5a2DQcyucEKCBElK7FsJQGWJfcKCzhPB7CmlivyvGROJGa+U5Zn9PbrLL1nboLmseSCI9//2TVP1gX58/QZsXDL6PyDThcUi4ea3LTFs9/WH92ZNaOANx/HS4T7DrNdnDvRie4t7NN0kIiKiKcRcjb0RNV5NBAImdx1Y/b51eyNoHUwETpr6tR9YT4Tx2qtmtqN3A6xOkyH2I+X7rqbLXhCieJMXFcppMEx+pPTejvf1yCjgmM+DqfHseyhmPqvSTDDb6Iwp5MHfaPpjRr7nuTs4+gnjAMBp1z+/j/UF8HrjILY0DuBfxwbw6tF+vHK0H8E8jtlUF4jKGArGUeYwzg/N9yFZuon4+sKMV8rQNhjCoZ7cT+8AYHFdKVY1VORc1jEUwvvvegMDJortf/Wy1TmzNme6BTUlOGNpLd5o1g6O+iIyPv3ATvzmA6fh1aMD+OeebrxytB9xReC1r5yPFfXlulmv3//nQTzyqbfNyInMiIiIZppCbnybB4OGr8lnKO14M+pZICqjaSCImKKixG41NWFsMUymYPVoD98kPvyjkmsiWz2jufmPygp8YRkVLtuEZ24JMfF1e/PdB5a0DpscrV80hvsqj9PCaIRBcoi6xSLBIgFWSYIkJX62SBJKnVY4TWag55Ohqpvxmio1oL++ol4nRCJWMVU5rIXlPM6kO/ZQVEafX3v0LwDYC9yPE42BV8rwtEG26wmzyxGOKygd8RSizxfB+3/7Jrp0Zo9L+tDbluATb182qn5OZ9duXICmwSD6fNoB7LfaPNj8X89nPa15en8vPvuOFfjMg29pvnZXuweP7+nGOzcw8E1ERDTd5TurtDcUhydknOGTb4BqshrPd9FqIqA9XhHN0WaPTY+jny3f07qQ/aAKgd3tHrSknQ/1FS5sXFIzYUEFVRSp1MAoVpLvS9Obm62TWixG7zO9N5Ik6QboFYO++yMydmqU/ACAUxfVpMoAOm1WRGXtOVaKnXdjFIA29/kw36rDM/6B17lVJej25i43YMvjaYXexGeyoqLPH0UwKkOSJMwqd6CqxD4cYJ9JoVd9G5fUYn51CQDonudGRvPArFBTM1xMY+afe7t1lz9/qA8bv/8c7t3SkvrdYCCK9//2TbSaeAJ1/cYF+NaVJzHbUofTZsXNZywx/EOW64vhP/d04Yp1c7F6Tu6s5KQfPnUIEZMzhhIREdHUle/kJl0aN5gjTabszSym3nPm/46HXp2H6lPNVK7xq2c8aoUeG4xlBF0BoM8fwbYJLAcmUJx6naOR7/bTm4/3+ZjPpFJG93RGGa9GQaJ8dlteGa/6Wx3etlHGa/GOixDGEyuOBb23mM+708pKjisqDnb70e2NwBeR4Q3H0dgfTE12PpPCJkb7M31XOG1WrJ5TiaWzylDmsKHcaUOFy4bK1H92zRVOxF8vZrxSSqcnjF3tHsN2oZiCecNPGjyhGD5w91bdoe1JV66fi9uvWZ8xLIRyW1RXiivWz8MLxqVyM+xs86DbF8E3rjgRH7h7q2a7jqEw7t3Sgk+cu3yUPSUiIqLJzEwgKb2F1oQxI03uUgNm3rNI/TRejIZQAuNY49XEhk6ce/xBfnpdREkCVs+pNHx9ny+C/kA0NZmZgIAqEsEYVQDrF1RNumGj+Z7W+baPqwK9QQXzqrOX9Q9nvJU5x/8WPd+MV1UA/f4IBgJRqCpQ7rJhTqULpy0ufNLk/ANMx19gZoKqYjIKYKafF1ZJgqLzyTbqu9Ezrsy+mAmXFpdeRq+Z53PjXeM1X3r7LJ/Pv90q5dxXHUNhxJTsrOc+fxQ1pY4JfyAynoz258hdsWpOBWrK7Hi9cTDPDeXXvBgYeKWUJw2yXZMqXDa8feUs+CJxfPCerTjQ7TN8zYUn1uN/33vyjJqRb7Tesboe4WAdXm/K70Ly5N5ufPScZTh35Wy8fKRfs93PXziGd586H/UVrtF2lYiIiCapYt74Zqx3nGsq5sXM+5mAjFczJkt39IbXAokggpHBYAzHdJIz1syrxGSblDrf8+HM5XV5tR8IKVBV7X3nDsYmJPCa7+RaLQNBDKWVJHEHY/CG49i4pKbgPuQbYEq/rRzvB0GGIxPTfs4VVEtnNHrAKJs3n/2Wz6hTvWzV9NVI0Ltu5ffgT78/JhsW2fyakuFh/wAgQZIS79kV6kM8Zr5TkiTBYbVkDZH3RbQzrfSWTUeFBNfrK1xYNacCh3XmKQKGH/4JAYskTUgQn4FXSnl8j7nA66Vr5kBWBD78u23Y3eE1bH/2CbPw8/edOumeaE92FouEn7/vFFz9i3+lhhqY8fieROD165efiFeP9mvecPmjMn7wz4P46Q2nFKnHRERENNnkvHkWgDcSRzSuwmaRIAooGzCZM17NGP98V3PGa7c6bRa848SG4W0mbkPFiJ3itFmGgwxSKtBikRI/V5c6DLeRz3DsySLfIeuljvwix96ICkD7Nb2+SKpe53gSQhgH0wUACfCF4xlB1yRFFTjaG8AJ9folz7Ts7TS+r0yXHkQc79Inxhmvif50eozv4YxKDRgGXtNusfPNGCxU+mokncirmY9TfYUTXSb2U9HkuQ/mVpUAVdm/D/XaEYnkV7rv7StnJR5ySMkHHQLNA0G4g7nrqnd7IxNSakAIgW5vBC2DQSiqQKXLjhPqy8f8oZDh+atx8FbPqcS86hJ0eyI41JOZFKiqAl3eCPr9EagiUWv3hHGaUDMdA68EwHyZAQC4ZM0c3HLvNuxo1S7ynbRxcQ1+c/NpEz5T51RVV+7Ebz+4Edf+cguCMXMX9l3tHrS7Q1g1pwLv3bQQD25t12z7911deO/GhXjbCbOK1WUiIiKaREbe0yuKwJE+P0Lp3yskoKHalaiJZna9k7jGaz4TukzXWqVGJElCucFN9IbSaqiqgDpcGkAVAkIkgu6qEIjJqu6EMUbBqcm47/PtUb4xkYisv4WRExiPF1Uk7jtadObsUJGYIMYfkTXbJEpLiILm8/CG88vuS9/CeAdeDR8qDP9vt4mAolEdVKOPSV4ZrybbGdeVPb4mi04pBTNHZXFdGVQB7Onw6PfJxLomu1yf71nlDs3Aa22ZA+3uUMEPMwp1qMefUXbIHYyh0xPGOStmoSKP7wn58IbiaOzXL1+pd6pXuuyonGOHrKoZIy1aB0Nwpz0oiskqDnT7sL3FjVMW1YzbiGwGXgkA8IfXW0y1qy1z4PdbmvFGk3Hx93Xzq3DPhzdN2BeI6WL1nEr85IZT8PE/bDedGfDE3m584tzl+PxFK/H3XV2ZN1cj/Off9+HJW8/RLPhNREREU1nml4eWwWDW94KorGBrkxsXrK43vdbJGDRLyqPSwKTMuhxrqipwqMcPAZFRfzXxv0BdmQOzK5zo9UXwRlrJq/TbU4fNglMW1WBxnXZNT6Pb2UJ3vT8Sx2AghlKnFTWljqKOqsv3vM43wBiRBSSdr9wu+8SMEDQzCZIYTtXr8WnXKpaQyOA0U4pitFoGg9iwsBrA+F+PjB8qJP7XTMarUc+N3tu/jg2grsyJlXPKDddlNkhrnHmY++eRzD6gs5ro10TMRK9FVQWU4YdSo1WiEysRQhhmRBebNxzPWes9rqh44VAfnDYr5leXYEVDeVGT6waDUc0AdFI4pqBjKASrRUpkIueQfkjCMSUj6JruyX09iCkqNi+tG5fgKyNiBCCR+ajHZpEgqwLlThteO2Zcc3T1nArc95HT88qcIG0XndSA779rLb7xyD5T7ZMTZ9VXuPDZd6zAHU8e0mzb1B/EXa804d8vWFGs7hIREdEkkX7PpqhCM6ssGJPhySPjbBInvJqK6CVvzibz2xgrAsDRPu16eBYpkeG0v8uLQxp1805ZWG14DhgFJdsGQ1hcV2p6+KoQAjtahzKCWU6bFWcuq0NVaZHuOcb4hEgEJcd2G4UwVwt6uNaAHilxnSnkPY4msDbek2tFZYMi13l0xyg42VDpwoKaEnR5IpqBvsFgFK83RiErAjadoLfZ5wRG3c+o8aqzTrO7wUy/JkPcVQiBY30BNPYH0NgaglDiWFJnxZoCs7wB/aCzEONfT30wENVdHpUVNA0EMBiM4pwVs8d1Dp/dw1nRTptFM/CazhPS/k4TV1S0DYZQVWLHmnk5akkUGYtuEjo9YXR79WdZ/du/nYmzTqhDm1t7+EnS8tlluP+jm1FTZlz7icx7/+bF+Nplq0217fJG8I1H9kIIgVvOXoqVDfp1TH72wjG0mzi2RERENLWk36x6w/GcN8LJNkbD/NJN5ozXuVUunLa4xlStzMmURQWMTyDYMBN1uBN6I6YgGZ8DRnGIo31+NPYHEIppD11Pd6Dbl5VBGJUVvHSkD4GouXUYyTvjtShbPW6izkYzk82Y6ZuE8R/2D4z/9WifQT3afGJlehnEAOCyW9ExFDb1HlfNqUCNTv1l04HXvPanfuDQDMsUmYD7cK8fB7p9qcC7rAq0euLY36U/2XhMVtEyEETrYBBtgyG0uxP/dQyFdEtsCIz/uW221rI3HEfLYLBo2y3kytsxFMKBLh8OdvtwqMeHwz3+jO8x/QZB5HBcQa/B569YmPFKeOCNVt3lpQ4rtjQN4l8mMl2X1JXigY+dgVnlzmJ1j9J84tzlGArF8H8vNxm2/eObbYjJKm6/Zh2+/651uP7Xr2u2jcoqvvX3fbjnQ5sKflpHREREk0/6TZtRVlg+wavJFrBMd7yMgE4f0xYVWpNyqjJ6q+rwzM9GN6SGdSBN9KV5IAi71YIT51YattWbbPb5g724bO1c3ZqzZpy2uAY724Z065imK/ZpM1EfK1PbNdm3QifeG81bH+/h2HoTSgH5H8ehYKxoSUt6mzZ7nTPMeE37dOtmvJrcEamsT5Gawy3rAjLRf3JkRcWR3twPJxv7A1jZUKF5/YnISipbc6RWt3bwUgzX1Z6sOobCWF6kiaryeZ/J06XbG0lNzBaJK+j0RIb3WeJRUqcnjLiiQgigutSeXddc6NesLiZmvBIeeatTd/kJ9WX44VOHDdezoKYED3zsDDRUuorVNRphR6sbj+zUP17p/rKjAx//ww6sm1+F605boNv2xcP9eDiPdRMREdHkZ+ZmJtkknxjSZC41kOybybjruNzYmg1AjEdfDEsAuEPo9kYMh1MbnQOL68pMDeE0k9EViSuIxPUnmu0YGv3orepSx4QmkEzUA43kMWio1H7v6WdDYlb27GuGBGlcJ95LBlnGfXItHA8U+iJxeEKxjM9LvsexmJmDHo2algDgC8cRlY0nbDas8Zp24PXqxprdCxYJ6PdHsbfTi51tQ9jd4UG3JzIm18NCn5X0+aO6x7VHZwSx3vuwSBIkKfG/VosEm0WC3SrBYbPAZrVM6tEleudavvL5zFikxHWmK20EhCoEPKEYvOE4fBEZ/oiMaFxBTFYRV9Sc1yU1OcnmOFw/mPE6wzUPBNFlUGbggEHqPJAY0vXgx87AvGrjWhtUuHnVJfDnOZTqhUN9+MDdb+JH12/Aswd6dYczfPux/ThjeR3m8zgSERFNC6Zu2gqodzqZbwaPvx/tPgqNn8fK0T7zZRzGg0WSdI/hkV797/8S9M8BRRXwR+II65UrGGbmVDKT0TgQiGHZbON1GTE7AdGpi2qKnik9YaUGhjdcXepAry/38NxkYGTZrLKs7Mxkhllycq3COlHAS8TE7DNJAkIxGU39wVTAVQJQV+6EBSKvUgNA4mHHKYtqTLVVFIFwXIEkAWUOW0Yk0Uyt26isFnVSZb1PgKk/P0LgX40DGSUNZVWgyxuGrAosrE3cl5oph2FGIWvp8UawrUV/cvE+fwSL6nKXtzmmc/1fN1//4dSk/ls7UYTIOh5SjjMx/fKccy+OY613ZrzOcA9tazNsY1Q7vLrUjvs/utlUHS0anblVJfjchflPgrW9dQi3/mkXPmswgZY/KuNLf9k9rk+qiYiIaGIVckM73hN+5CP5fnTvV9MWjseNbZeJ2c3Hi6yoRXnPeudAICrj5SP9aBowDjib6YqZ/nZ7J88+LtRExViS+7fcaUN1Se6JyvQmpJMkaThzTxrX7FMBQB6Hi1E4pqDbG8bOtiHs6/SiyxPG0d5AZpYrgIFAFAMhZcyOY58vir1dXhzu9eNQjx/7urwIpiXlmPq8mdhdRn8TzE+uZbwj9nZ6sac9d13RPn8EcSXR4Yn6bOzp8ODNZuOSi3UamfLd3rCpbPxypw2VLjuqSuyoKXWgrsyJ2eVOVLhmRq5kPoe31R1C64j5aXKdh+kPxnKdP8lL1Xh8B5gZR5E0zR7lUBqX3YK7P7ipaLU9yNiHz1qKv+7o0Kwxo2VXuweyqmLdgkrs7dDOYtjSOIh7X2/Bh89aOtquEhER0QQzuqFYPrsMrgKmID/a58dJ84zrck6EXl8kaxKmkVQh4I/IEBCIySrs1rHNR9EbcZRuPIaau4Mx9Poi8EdkSABqyhyoKbVn3qQarEOSJNTrDEvP530kz9FwTEG/P5FtWV/pzDgvzQSLisVsxutYHKpiZfXlvd20zc6udMKT43xN9s1o7xQaeE1/70OhWKL2okj8Pr18iACwfFZZaoK3sYy7qqrAnk4vWkeUAjjS60efP4p5VS7YRlw7vBEFAsXLKE0aCsXQPiKAF5VVHOsL4KR5lbBbLaaG0ZuaSM2o1EDalvQ+L0angj8Sx54Or25dYE8ojtkVTlQWKwCZ5+k5YDBBU5JVYz+0DhoHXdcvqMbSWWWay1VVQFYFbBZpzCciWz673PREm8XMnF5cV4q2wRCCJiZb9IUToykGAtHhsieSYW1pvb9JDLzSmHv6QG/Br7VIwM9uPBWnLTY3LIKKw261GE6WpWVfpw/r5lfBbpUQ1xmKcseTh3Dm8jqsnjM5b6iIiIjIHKP7icoSu+lA00hHe/1Y0VBR0GvHkplbKF9Ehi/iB5CYmOnkhTWaw0THixACgZiKfn8UNaX2rIBOMciKitebBjMmqvKE4/CVObBE58Z/JH9E1q2Fmk/sTQA41ufHwW5/6gbYIklYM68Sy4aTO8xM2GQtQkBCCIEen7nM2bEIkk6GybW09mKyTas7hMFgLO33x19cVWIvSsarPyzrzkiuogyW4T4VOpmXGfu7fFlBVyARDFRUgX5/FHNHlGiLK0BELn6fkg8lRpJVgaFgHCcvqoYnGEPIoBZyMXZXxp+MUUyuNRCIZWTs5uKPyJhd4RzV5GOqEHAHYugPROG0WVBZYsMJ9RWo0sjuTmd2f2ldD4wmKQT0PnMCh3r8aB4IIq6ocFgtWDa7HCsbysdsQsiykRNQ6aguNd5/ZjltVpy8qBpN/UHD0QuecByzyh0QSB6f3Ps+fQ+lt1BUFf6IAgtCiCkqglG5qEHkXBh4ncH6/VHDWiV6vnPVGlx0UkMRe0Rmnb60FteeugB/29mR92v3dnqxek4FDvX4NdtEZRWf/uNO/OMzZ6PUwcsEERHRVGWUyTGaW7fG/gBOqB+7G8BcFFWYupHNR0xR8Vb7EOw2CXOrJqbOfTiuosUjI6SGES8fgCRJ2LCgCovrzAdDzTjc6885i/NgMIbqUjuqS4eDGwbBBqNgST4ZrwOBKFoHM9enCoG9nV5UuOyYXeE0FczLmrG6ADtah0zPcr2r3YOBQBSnLKwpWhbahAVe0w641uc5eQgskDQzuJ12a8E1XjOCvwbXFCEEIEnD2bCZ2wvF5IxjeLxEQmKG+PoKp6mHGooqNCe9ctotCMcVRGQViqrCarFkvTZfLx/pxxnLanMGgFbUV2BH65Dma512CzYtqcWBLh+O9mnf4wHmHkzlNcP8KLYVk1WUOvQDXsng3mg+Gx1D4VTgWlUFOobC6PFGcfaKWaaCr2aMpn9ap/v+Ll9G9mlMUXGoxwdFFWM24iSfK1kxrno724bQ7g5BkiTD2uHpzHzE0vuXLKUYV1R0ecJQReI6IguB5w/24u0r68d0knjWeJ3BnjnQU/AF4j2nLcBNZywubocoL1+7fDXqyhy4av3cvF97qMevO2spADT2B/HNR/cX2j0iIiKaBMwMGS9UVFZND6Evll3t2sGHlDy/3ya/D29tdiNikC02FmKyijZvHLIKdPsVKEpipvZd7Z6i14bt90c1M7NGHksJiVIUS+vKsLiuFAtqSlFdYkelywa71YJ+fxR9/gj6fBH0eCMZrze6Ka4qsWP9gmpsWFCte/OeLBkxHiUY2t0hwxIVI3W4w/BG4vBF4qb6uKJOP2tvokoNqCIRLFRUofk+kn3Tq6kqROGlBtIZXpbSSw+M6I4/IqNjKJz6r9OT+K/LE0G3N6I76i9dnz+iGQSqSAvyh2PZ+6OQPeAJxTSDq4vqSrGwpgQLakowvzrx39wqF+ZWuTCnygWnLRHWMXM5N3Oe5lfjVbfIqy6X3WJc1kAytaoM/kgc3d4wen0ReEKxjGzh5HpkVcXejty1ZdMFTExsXemyw27LP7SmqAK1pQ4MheJo7AsgGJURjikIx2Q09gU0g+jH+gOp2rfFVugImEKlHoyI7IcoetxpWfeacryVfn8UspL47tLpCaN1MIT9XT48d7AXMaPJjUaBqWwz2FP7egp63dr5lfjeu9aOa3YDZZtV7sTLXz4fZQ4rdrZ7MoaMmdHrSwy1iOpcYP62swNnLq/DdactGG13iYiIaALo3WSP/CoXLSDo6I/Ix7Mkx5iqCvR4jevt5Ru8Sm//VpsHZy6vy7tvo+EJxTIClV3eSGom79bBEOZVFy8L1xuOa0YwBgKxVIatAFDhsmccW1UgNUmMrApsaRzIeP3SWWVYv6A68XqDG+gT6suxoCZR2mF3h0ezXetgECcvrDY1nHy04b58M6m94Tja3SEoQsBqkVDhsmHd/GrMrtBObqgtsaDFpx+4nAhCCDQPBHUfpAiBxEMB/TUVXuM1j5epELAOR1Xyrc9o9vqgl9WdWQ85e32FHsd+fxSRuJJVd7vcaUO9iWw8M7fnWodHUQXCcQU2i5RnjVe9bemvyGqRjIO8+l3J2l5Tv8F5nPbzYDARhBttWZfzVs0uKDYSjMrY1e4BkKgRu3Z+JeKKwNG+RGB1SV1pzkm7hBCp2rfFls/bKE48KP8Pi8NqQcxE4Dm9d1WldiiqikhcgTcsI64K2IY/Z5G4iiM9fhzt82PNvKq8+2MGA68zlCcUw+uNxrPzjVRdasev3n9aQZMwUPElh1Rde+oC/PT5o3m/3swXo28+ug8nza2ctBNoEBERkTa9+96Rt0x6D2O1tLlDsFklNFS4xnzSD284bmoG87yDHmnt+/wReENxVBWxdp2RgUBm5o4nHMNClKT6U0wxWTWVwQUAdSNqKmbUy8uxj9N/Z/QVM9+sKlOxvFEELeOKiuaB4PBELYmAQvrPI4VjCpr6A6nhqoAEf0TGthY3zlkxCxWu3OePBUC504LqUsfwuhNBLIsEQCpOuYRCHH8fem0EDhsMYweKk/Fq9lIiRHZwr1hXIa3dERhRikLKscXRTNbT7g4VXDs7V19GyhXobOoP4EivP/U3oKrEjpiswqGRxZmR8aqzzVBUwbG+AIQQaKhyoXLE5yIReNWX/PyZydTtHpF5n9OI1QSjCqpKRxd41QtArp5TiVBMht1qyZq0KqPuqBDYPSIDV2+9jf0BOKyWov+tyi/wOvrtFfJRMf/5yuxgOKYgJquID1+jBIBZ5Y7EwwYALx/uZ+CViuvZA70F1d/58fUbsLB2YiceoGyFBl5lVaDUYUUopp3hEo4r+Oi92/D3fz97TJ6qERER0djR+7pXjGyVgUAUA4Eoyhw2nL6sNuvGupgKGcppxshd1D4UQlVp8W6+jAIG4RGZxiOHO8YVFXaTGVmRuIJub2KIdF2ZIysbubE/iJDOrNEdQ6FUJurI/W10tqTfDCeyP6uGJz9JzEqvCpEKlJXnOUO5auK+ZTTD9JsHgtjbmXvYsQRgzbxKONMST/r90ZyfrbiionUwhLXzc58/VouE0+a5sHbl7IL7mq92dwj+iJwI8g4HepNBZatFwrLZ5RDCeO95gomZxPUIFB54TX9Vt1f/gUPyVFOHz62kaFzJ+jxpvbZQQ6FYxmch12U0uQm71ZL3kPAD3b6MwGsoJkNRBaJxJeuBgCQdf4iRzFg1NOL9t7tDWed+nz+Kpv4AVjVU5HygZvT+AaDLE8ZgMAZ1eIMHun1YUV+RkcxjNZNdm0epAU/IePj5yPWMdkb7k+r1749XzTl+LL3hOAbSJo0z+tug9wCi1xfBrHLHGARex7nUQAGvWTWnAooqdOesAbL/ZgmR/fe2zGlLfYaGQjGoqhiTh8gMvM5QhZQZeP/mRbhgNSfTmowW1ZXi9KW12Nqc/2RpoZiCMocVQZ0vUl3eCP7t/h144GObx3zGPyIiIiqe8aiNCQDBmIxtzW6ct6q+KLPL51LutMFqkYqSUafHV+S6taM9BDHZXOC13R3C7g5Pxv5ZUFOKUxdVp26mbQbHptcXTR2/kaG49EzZXG8pveZemdOGZbPLDftslpljPpr9rBd8EUDWHXx/WvDEHYqjttSeGq7c2B/QDLzmQ1ZUHOkNoHUwiLgqUOmyYfnscvgicbS7w6ng+uo5lbrBly5PGD0aZRSSs6QnAuT6/VEhUFvm0K+tKPRrwOrJ51ol0v43/XUtgyHTGd2F6vNHM86HnBmvee6CcExBICqn3s/udg9KHVYIAAe7fQCAfV2+rNfZrBI2DJf3iMQUtGpMBpZu5F4+1hfIbiMEQjEFvkg8ZymZzIzXbJ5QDN3eSNZ162ifH1WldswfLp9ilSRUlzqwfoENEEByt6lCACJxDXLarFg1p8Lw/BRCIBI3seNHrMco8LpmXhX2d2nXgi2xm38gmCsQOBpjESTN5893UQoN5LEPNi+tQ1N/IHX9LXPa9Cd6TNs/yZ9iaTWehRBZ70ERApai5c0fx8DrDOSPxPHq0QHjhmmW1JXiG1ecOEY9omK47rQFBQVeASAYUwxvZHa0DuFrD+/Fj96zgfV9iYiIpgj9jNfibisQlTEUimFWuRNRWUE4pmD4/jmVUSeGb6ZrSh2mszjTuWxWBHUyNoH8M2hG3niPcVw3b1FZRZnBoCNfJI5d7Z6s99IxFEJViQ0n1CeyrmxW44Pe548mMpdH7IfMgFr2TjIV9CiQmay0UQVeDbquN5y63R2Cy16OylHWiUwnhMDONg+6vcfncPCG49jZNpTRrscXwWAwplvewMw1QDXIeHXaLFg+HEgfCsY02wokyo9sWFA9qqyxEodVM7vWZbekJpMSQpiq/1tsZjNezWZTBqIy2tyhtPW7UZ8+EbLGatIDRFHFXI3u9C5F5URwNavN8P/2+6MaNbzTAlo5dsBQKJ65ojSdQ+FU4NVmscAiARaDz86scqdhRnuhp4FxqQOjFeSx4RHrMltmweTqisJMuYpU26KUGjC//+JqoiRMx1AIlSV2xHXKI4Xjiu7oDgCAlL2PxyrKwcDrDPTCoT5TxYjT/fd1G1Dq4OkymV2+bi5u+/t+c0NMcnDaLLolBwDg4Z2dWNVQgU+cu7ygbRAREdH40rtZHYsbjNbBEGaVO9E5FNYcug0A566cXdCkXCUO48DraBV7ZvnRri0qG3+36/Vqz8De6YmkAq9mgt2yIhCOyxDIPD75Bihisoo+fyQRbB8OuCdriQoAs8qcpofJmglgjWbIsNFrjWKIxY79uYOxjKCrnrii4nCPHxuX1OZcrn8+J+tnGk3El9/VYneHB6csqsnrNelb1wv+pC8TyP9BSTEOlWSQ8qnkuZGRq+gYCmUGXjX7cfxno/u4pPRzXXMW9+Emvkjua23G28/x/o9nRR/flqyo6PNH0TwQhN0qYdmsclhNPAhaUleWepinx+znP66q2NE6BIfVgoZKl+HrDOOuGr8/3OOHOxhLlVpRhMgqhWC4bYONT3TGazHMqnAiEJUNM9WP9PqxvcWNwUAM/qgMl82CWRXOrL9pMVlFpyf72pl7V2X/cqwe4zCSNgPlW2bgfZsX4fSluf+Q0+RR7rThsnVz8PDOzoJeH44rOH1JDba2DOm2u+OpQ1hQU4or1s8taDtERERUmEhcwdHeAHp9EUgSMLeqBMvry3TLAAmRCMz0+qJZs7aPxU1bcpi+0boLDVS5jIZ1FrDekX2ZqJnltUQNMkljsooD3dnDkJPSb/aNSg2k2kkWVIyY6Cl9v5jZR+GYgh2t2t8r182vMh14NZMzMprD1jEU0l2+u8OrOcM4UPySHl2e/CZV6/SEsVFrocmMVz3Js6bXF9Hdz/LwgWpzh3BCfblmFq4xvU6ntRLm6v8mrZ1XWVCmva4cm0/uTrOnxcjLpaIK9Puj8EficNgsmrWzCwm85num7m73YEVDuWYSlt4VJbmtaFzBoR5/ao6ZLY2DaHOHsMbE5M3rFyTKdhiWwsjzjcUUFe1DITT2BVBf4dJsV+606dbq3dkVwQkro1lzoXhCMcPJETuG9B+uHO0N4LTF2g8wxiRGmtdKR9+D5bPLMavMiZeO9Gm26fWGsbfDi/k1JakRuhFZRY83gvk1JcfrHCsqrBZgXpUrMcImuQKRqIVstUgosVtSf1MtUqLchUCi/viscqfpv5H5YuB1BpEVFV9/ZC+eP6h9Uo9UX+HEVy5dPYa9omJ678aFuoFXCbn/2C6dVYb/d916rFtQhZt++ya26QRfhQA+/9AuVJfacdYJs0bfaSIiIjIUVwT+dWwgIyvkaJ8fff4Izj5hVqq+5EgxWcGRHj8iOTKbxuL2Ijm8uNAsISPJIHMywKP1vkdjtCE0VRWQVQGrRRqePGZ0azQaqfbCIfPf7Y3q784qd6LMacVgIIZWdwhL68qOH0yDt7GyYURNV6MsUf3FGcay1EBUVlKzuetJHodco8sa+4MosUdw4tyKojzQaBrIrrsJJM77fn8MMUWFzSKhvsKZmgRNCJH3tlN1D2XVVEkC2SCVM32pOxjLK/CaEdjXaZf+DsXwhG1mXue0WTImSBstSUr0ORpXUeLIXG9yXxZySiqqQI83klGqoccbhS8SR1VJ5v5Mz/41mvgsKf16ZLOYyIBXRdZnK/0Y6JWUSL6sZTCUMbH3UDCGBTUl2Nvpg6yocOhMnGj2nC70OnusL4BNS2o1/5bUV7qwYWE1trdol/Tr8UZQk1bnGdDfLwCwcXEtvKE4jvXn/qwn6X2u93V5sWRWme7r82XJ4xpipmlcUdHYH0BHsi51uROr5lSgPO3Bns0qodxp08x6bRsKQyBx3qX/LZDVRC3i5LqiSmLicK2vBZJFQoXLjmScvdJlw8mLqlPLT1lYM2YlFcdmalCalF463I8/b+/Iq8zAf155UtYFniav05fWYkV99kQGlS4b6socWX/8JQn46NlL8cRnz8HGJbVw2qz41U2nperuaIkpKj5+33bs7dAeQkhERETF0+GL57wp8YbjaBnUztbr9ERyBl2BRO3QjqEQBtMmChot6/BNi9G9S6E3yaGYjMM9fuzu8GJ3hxeHun2Gkz4Zyc54LaxvQggc6fXjmQM9eHJfN57a14MDXb7CalCmvURzOHCuxjp9A4xrvFaX2BNZP1YJ7mAMwZiMjqEwjvT60WwwcU/NiNIRxTwHzE2oltlGDA/t9QzPVK2l0yDr7Pj6EkGEo725AyXhuDJmw1ST69/X5UOXN4yBQBQ9vgj2dnrhHx4OLmu8R90g5vBBSgTtjMuS5FOGIxjNt/yZyQhqeqkBMfpZ6U30RrcXQ+FY1mc02Sez53h6tqo7GMt5v+4OxjSzLkeuQ096l7QCniOP88gJ1dKDU7k+5uGYAn8kjkAkDkUVWRMgxRQVqpqY2Mifo8Zsuj5/BH2+CAIaZQ+SCq3N7Q3HMRDQmTAOxg8SmwYCWX9n9QKYkiTBYbOgqtSOhTWlsOsEwPVOobGYaNLMBG1J7W79kQKqKrCt2Y3DPX4EYzLCcQUdQyG8drQ/40FBmdOGTUtrUZejmHky+xtIHIeRf0/TJ8M0rOk6QnjEaBJJAgYDUTT1B9DuDqUe8BYDM15nkIe2t+fVfuPiGryTw8mnFEmScNMZi3HbY/sBAKcsrIbLYcXrjYNZbRfWlOAnN5yM0xZnlpGYVe7E3R/aiGt/uQVBnT/gwZiCD/1uK/76ybdhaZGftBEREVGmobCCqorcy/r9UZyQ48ErAAz49YOqvb4oakrtmkOo85VM8knPxJIVFYGoDAkSKlw2WCxSQQGqUEzGvs7MQGswpuBYXwCr51TAZbfmtd5Klw3S8PDDdIXeyh7pDeBQz/Eh/7Kq4mif37D+fq7bc5H2+1yBpT5fBL2+KFQhTGVrCpG4qSx32rCioRzBiAJZFangaHJbEVmFkhaE6PFFs+oSJvs30shAg1HmVD7xMjNt02MQff4I9rR7U/WAXXYr1s2vwrwcyQUHu/3m+gDAG4rrBr/GUlN/ICvQIpCofSgBqHLZsX5hNWrLRtTmNTFqPxxX9NsVkAU2mqCQ1SLBnnadEMP/T0Bk1KBM1HgVEMOfg7hOHdBiJ7JJaWMJ3cEo5lQdP7fyDQa7hz9jQgiNAGpifYGonPGAI/09BWP6AcxctHaJUfe1JheTFRXH+oPoSStrs6vdk3sbSPy96BgK6/79Sd7HLqwp1e1TobW5+/xRPH2gBzdtXqw5IsBMFujIFnqjC4QQ8IYTx7y+0gl/VM55nQX0/x7NKtLf7XRGQeh8dHrC6M/xYDcqqzjY48OpaXWgj/YGMBjMbqsMjyCpLrFDVgUqXPbU+akKAVUVqC51QFZUw+87I0lSInBbWWKHKpA1eaHTZsWla+fktU4tDLzOEH3+SF7DkADgW+88ibPXT0HvPnU+mgeCmF3hwD2vtWAwmPviuWRWWcbFLt3qOZX4yQ2n4ON/2K77h3cwGMMH7n4Tf/m3MzG3Sj9LloiIiArnj6qo0limV0fOzKSbxcyZSZUaGP4K2e+PonMoDGX4BikcV1Bf4cTSWWWoK3Pk9V2zdcRw1aRkRszC2lLT0bwyhxUrGjQi2QXsEEVNZLvmYlQ/NNfm0oeXjgxg7e/y4lif/vBUrW3YrRbYrRb0eCOpTMmRHDYLSoeHTrcPhlBRon/LaLNYIKsqhkKxVMDYIkkIxfWzj7q8ESyfnfuBwUhmsoaTTfyROLY1D0FWjwdII/FEvVmX3ZoVmEy2s0qS/nYE4DeYACYjYl5EUVlFRKfWrwDQ649gS+MAzjlhdkbt3NOX1qYCgYoq0OUJo8eXmPRsXnVJKthnKqc4j8+G06ges866V83R+GyO0OYOIRiVsa/Lh5iceMDjtFkwt8qVUftaQJgaVm9WMCpnnCvhuJp6uAEYT1amRR3O4B15CiXXFI4pSI8/hobrKFe4bLBKElx2K+bX6N+TpQeFzV5+RwYeM/95/B+tg4njYbdKiBvNMCaALk8YiirQ64tAGS5pkAymJwPtJXYb6iudUA3O0NEkfw4FY9jX6cWGhdU5l5vZT9kPngxekNZfvTMzcR7lXtlY1CMt5hq7ckxyldQ5FB4Ri9A+gFZJgicch2c4u7XCacOstJq6y2eXQVGE7gRd0biC0IjlFilRt7qyxI6OoRDKnbaMvw9mJrY0i4HXGeLRtzrzeup47akLsH5B9dh1iMZMpcuOb1+1Bv/x512aQVcAePXoAJ7a14PL1uXOar7opAZ884qT8N3HD+hur2MojBt+8wYe+viZmFOlXZiciIiIxpeqmswBKmLkNZnl0+OLwBeJo214KGIkrqDXF4EqEhlGNWUODASiOOuEWbqTg6U70uvXvJkdDMawsLbU9FvRC/gWkjnV748WNORZKziT/uvkV/hgVEafP5p30DWxDgFL2jp1b64FUueE06EREkhb1wWr6/HMgR7s7cyvBJUnFIOsJmb8NoofmLmPSR63NncoI+iapAqBlsFgVuA1yWIQeBUQWUOus9vk+J0Q8IVleCMyujxxlLgscAxnqSZOQwmSBFQNl3nIZchgu0Di/SmqwP5uL962/Pg8DA6bBc8f7EVcURGJK/BFZCiqgNNmwVAohl3tQ7BbLbqBQrPxnWIGbWRFRY8vMjwzPFDusmFeVUlGPdXWwSB6vJHUUP9krUdfWMbquSVZE2nFFRV9vigCUXk42zKE+dUleScb5coKTD4siSoqugLAkcEYbNXm1lfutMETimcdg7iiIhRTUqUytLLb/REZFsncSIL0TWi976xTQWf3JM8NRRXwDgfGqksdqeHhmv2AgD8iJx4aeCOIa3zGq0sE6iudhn+nRltyotMTxvoFVTn3iZmzY+TLjLJkA1EZkeEHo3o59HrvaixLmxRDj0/7ofDI46V1+EZmuWs00qyLHVdU9PujOT87EiT4IjIgEtfYcufYhUcZeJ0BhBB4aJv5MgN2q4TPX7RiDHtE4+Hrl5+I5w/2pf4A5vKdfxzAOStna15kPnL2UgwGo/jFi42622odDOGG37yOPzH4SkREVHQtnjgKmZohpqimsq6KmvE6fLPZ5QljcDg4oQqBPn80IyNpKBiHPyJjZ6sHZy6vy3v9I6UCcybfzMgZqNMVcv+ea4ikGVrxRJGWOpm8QX3pcH/OgKIZyfqkB7t9ACTdWnjpXaousecc+pwMcq6oryi4TwDw+J4uHOj2Yd18jXxukQhQmKndlzxueoHpdndIc8SX0clj5rxIz04LRGUMBKJo7PMjEFXQ2hnBkYEw5lapUMp9Wa9dPrtcM/BqJvCcbNLvj2ZNyBOVVfgjcRzrC2QEIKpK7JhX7YIvHDcXtDPRJtU2z89RenNVCDT2BzMy2DyhxDXjxDkVGZNk5Qq4xRQVQ8EY6iuP35fEFRWHuv0Z9VN3tA5hMBDTzHTMJbFbc785dzCGgaACK4AevwyzeUzJB1bph9kdjOnex2UR2ZNg5Ww24t+SlD0BoFHcNb2UTPI886adQxnXaY2ETYH0c0RrCujjx9foIzCquOvw9dEXljOyxVNMRF7b3CGsTBtFYbda4LRZYJGknCNPdrQNoXW4PrtDZ5JI3ST8MYi85vMQIq6oiXN0ODtZHc70VlP/FqYn69J8KyLH3/0R//RHZfgiMgJRGXFZHT63Ep+HPn8EMUXAAqBi5OR00vH3oVUju1gYeJ0BdrQOobHffJHkG09fhAUGNVRo8ptV7sRXL1uNrz28V7NNICrjQJcPpy+t1WzzxYtXYTAQw58MgvctgyHceNcb+NPHz0BDJYOvRERExdLhk2G3587S02Om9mexpde1S2YHRuNqVuCoPxDFalSgPxBFXFGzMtO0GI0WNhqOmqQ3eexo77/U4Rs+STJT51Qj4zV9fcMdKrSG4fE+adWPzOpUaktOmwVROfv4JR3t8+Non7kaqbk3pR0s8oRiicCEyThAPhlvMVlFpyeMYFTGUCiGmpLsSWhHsloSE+IYTXYWiMp48XAf+v1RHOr2wWqRMK+6BO6wjL6gisFIFJW1ISyqKc14bzFFRUzOPcO7mXeWPoFY+rB3ILFvRgZdgUSwTBUCNotkqsZrXnV5R3G+DgVjOYcNK6pAlzeSMb+EVp/6/NGMwGvHUDjnpFUtg0HMqy7RfRiTTmt4dziupAKleQfEhtunJuUCNIOuiipy1g8Vaf9fd1PD2/CG49jZOmTq4VxW3Cvt38kf02sfO21pE6BB+yOcPEfMxOaMzqdCJ0VMrFt/G3qB0aTBQAxoOP7vVXMqsHx2GYZCcRzq8WVly6dfUvUyOvXe12jes5Z8qhf0+qJ46bB2OUtVFbAYTOiYlJgoL/GerJKUOmkEgFKHNaPMy8hnfe7hB5/BiIxQWpA7JqvwD0/yZwEwsoBJKKZgKBhLrXssi2wWr9AJTVplThs2LdF6spvJabPg0+efMMY9ovHy3o0Lceqi6pzLrlw/F89/4VzdoCuQ+KL1/XetxcUnNei2A4DmgSBu/M0b6PFqDysgIiKi4ss1a3tUVsZsxu+kYFRGuzuEI71+dAyFEMkR2PPlmrU6bdbvXp3hiOmicmKYsB6zb3csbmaFEOjxRrC3w4td7R7s6fCicyiseww0g7xpv1dS+6qgbqX1z2S7tJ8lSco503SxziqhsTJfOI7G/mDeWUhmjt1AIIrnDvZiT4cHezs9aOoP4kCPTzerdG6VC/OqS+DUmAU+KSonJnvzheNwBxKlFCJxFf86Noh2r4yIrCISF9jX6cW+Lm9iZu/hzba7Q9je6s5Yn6IK9Pmipj4j6efZ0b5AxjUhGJE1H8QMBWOGJRQyw2hjI/3QeXQyPUf2VSsbeuT7zXkdGpZrWLz20OfceyF9UuJCs33NvE7rPM33862qQnefmF13rqCpNeMJmfaOTK5XL9iXfLthg4dGo3lglnypTSPAGoophp/9XAJRGVsaB3J+vtKvVfqlb7RV6jxALFR6KY/RMntIorKCI70+7Gobwq52D/Z3eTGUNtlYqdOWcY6MHGWRKv0xYjemPyRTkfvvgyccR0Cj3nkxMfA6A5w4txLnr6431famMxYzW3EasVgk/ODd6zKeii6uK8W9HzkdP3/fqaaPtc1qwZ03noLNBkFaAGgaCOK6/9uCLn/+M2sSERFRYeI5hnvHZBUVLjsqXfqD3AoNNA4FYzjc60efPwp/REavL4pdHZ6sepSywSQrRhmEyT6GY7Lu5BmA+axHvVaF3MALAXR7I+j0hFPBQkUV6PFF0DGkPcGIVn/Tf1uM2Lk6PPzTDDHiH/NrSjTroo6WELmzzPrynJ06SW8CKgBQFIHtLe5Udl56UKfCZcP6BVVYP78K6+ZXYe38qqzMQqOMqIFALBUY6/ImjrsnFENUVhBK61sopiAqqzjQ7cP+Lu/xAFjarlDVRJZqu8HkbKn3lnaAD/X4sK/reM1dvQn4FCEQlRND85P/RUYMjY4N14cNG+zfdGbO2z5fBE39AbS7Q1g1pwJrh0tOeELm7yN8JoImqhC616F8sraFRuQ1mHZt0nvriioQV9ScD8vMXIu1rhmmr32pYGfhda7TX5pcz8jgYbKUndaakoGwqKwgovM3QBWJz+2eDv0a0kbvv8xp086sTXsQONKhHh+2tbgNR5DkykLWu+aqOoHX9H9pva2VDcc/L0WVx98bw9KrJtalqgLbmofQ64umNh2RVTT1B+FNuw6k799kvWpFUSErKuLD/418UBdVMq9joWju4L0qEsd2LOeVZ6mBGeJT552AEpsV39GZKMlhteDjb182jr2i8XDi3Ep85KwluHdLK/7t3GX41PknwGXP/0mWy27F3R/ahA/dsxXbW4d023YMhfGVp2P4z3OqsMrFQD4REdFYkxWBkSXbo7KaGpKbnJ03szYfhif4yf9uQxUCbe5Q1o2VqgrsbNP/ngBkTiZiJiBoNvPRfMar7lJzK0mTDLLm0u+PYm6VK2c5BTOB12RAbTTx18QwTnNBs/QAnkAiG21pXVlm1laREh+FyBHiEdrDrI0YTTwWiMqwpg99Tdu4LyLDZrFk3Hw7bRaEYorp86rXF80KwCTrO4Y0gpbJIMPqORUZ+6LHFzF80JBu5EekeSCIZbPLUe60wRfRyRYUiWOePimvJEkZ9wuhmIL9Xdl1aXP1IRCRoUI/0BlXVLzeOJiR1ea0WXHmsjosrivD1uZBhGNqxvkhcDzoGYrJKHXYDLMgU2+xyIm6eqtz2iRYcrRQVYFOTxgDgUS9a6tFQn2FE3OrXJhb5cLsciea+gPoLfChgwDQ649iyawyzdItB7t98EdktA+F0OEOoXN41nlJklDhsmF+dYnxG0Tuvxm1pXY4rGWp5ckHcGJk3YsRffaHZTgrtO9NhRAYMFFD2+gYL6gpQSAip95zOr2g7eEec0H5XG9RL5Ce/nldUFOCsuE/4N5wYr/FZIGOoZBmELyQ0SxaZSoKVYxAZX8gisFgFPWVTtSU2iGQ+Ky0D4XR5Y1gSV2iBKaUVgdYHX7QacQCCUra/gvLCspyhEDHuLwrAAZeZwwhBB5+q1O3zbWnzWe26zT1uQtX4obTF2H57PK8XyuEwPbWIWxaUotypw2//8jp+OA9W7HDIPg6FFFw20tD+PYFDqwttONERERkSq4gR3pGldNWvOGDQGIW7VzBUIFEcCs9O8j45sz4rkdRzVWMTN6MSpL+jXhBw/91eEIx3e0NheKoz1FDUnNyrbSVKTrZWGbFZAWN/UFUl9qHJ0LRDm6eMLsc/YFEoCO5xeCI4dzFuk9NBNMy1xbPUYfTrE6PfnZolzeSMXnOyLPqWJ8fK9ImyEku7fFFMKvCOOs3fXKtUocNoVjuIf4j64QqqsBAIIb51cfn2fCF8xv+muuc7vNFUD67PK8MxoTCjnAgKuNwbyJQFY6pqCqxY1Fd9twhu9s9GUFXIPFw6LmDvbBYJMiKSJ2DuQQjicCr+aHyxYus6K2q1GGFXbLBIrKP3bH+ADyhGCQpEUJS1OPBo3nVJYDd3DDvXNt32CxQFBWDgTgO9fhx4pyK1LB5XySeyiB2B2OoKXXAF47j6IiHFI60BxIjNzHy3+mnS/LcsVktqC51ZP1ejzp8LdKt8y0lJmMscegP1jYKROrFG5Mf0dGcJSMzmF8+0g9PSLuER3p7qyXRP1UVaBoxN4/23wjzfWvsD6C5P4hgTIbLbsWK+nIsnVWWM4Cezz6QDHJezXzu2tyJa3alK7Nsgj8qwxOKp8oKaJ1PNaWOrGtJksWCjKe8qkiUKbCNKBY/1hNrAQy8zhhvtXuwt1M7Pd8iAZ94+/Jx7BGNpzKnTTPo2jEUQondiroRs6iqqsAzB3rwsxeOYX+XDw99/AxsXlaXCL5+eBM+eM9W7Gzz6G43EBf4z+d7MXfhAM46YVax3g4REVFBnn76afzyl7/Etm3b4Ha7UV9fj3POOQef/exnsXnz5qJsw+/346677sKjjz6KI0eOYGhoCLNmzcKSJUtwzjnn4KabbsLatcV/JJmr1MBY3koY1YQ0rJmWdkNm5p7HTDDOE4qlhr1aJCkVsDTYfJZCMomMMjS9oRjqK5yIySq6vZHUjaJWMCC9C2J4YqzRUAXQ6QlnfB/c1+nNGRQsdVoh/JnBXrOZhfkSIvtYjGZSuKisotJl1wzIjZznZeRe9UVkKEoiK0wRAiLt5DQT/C91WBFTEtGkkXEkq0WCrLMbj/b6EYjEER8eHjsy2G0kV+3Pxv7jWa9uOfdnNhEqztwxWqebKgT8w/ViJQAVLpvmSLq4omJXhwcuhwX1FceTexRVaGarDQSiKHPaMKvCiS6djLbkW811riiqmjgGGK7rKhLtQjEFEAIOm0Wzlmc67aOtfRaEYgpscRXlI0pvRmUF+zq9Oa91be4QNiyowrLZ5aaCaWJ4MrRShxWVJXaoQkCChHKnFYpIlG7p8kawqLYUzQPBjGt1jzcCp82COVXZyVYZQTijyGsarZIFtuHJ6EodtlRQNW3OpETNy+HAqy8cz7oXBRJtT5pbiR2tQ3A59B98GO27pv5gKqt0JCXH38/EOs1fd0e2jMbN16Tt8UZR6VJy7stoXEmVbSjE4R4/DvUcz1aPxBXs7fQiEldx0rzKrPb5/KkxmuzSzKpeOdKf+vsuAcDwg4nkRJDJoKhW4FUvoJ6eJZskKwJCzZyG80iPH1WlDnR5Iqhw2YuaFZzEwOsMsL/Li1+/1Kjb5vJ1c7EkbXZImv76/VH84sVjeODNNrxv8yJ8+6o1AABZUfHPvd34+QvHMp6E/vzFY9i8rA4AUOGy496PnI6b79mKtwyCrxFZ4MO/24af3nAyLls3d8zeDxERkZ5bb70Vd955Z8bv2tvb8cADD+Chhx7CHXfcgS9+8Yuj2sYLL7yAm2++GZ2dmaOMurq60NXVhS1btsDlco1J4LXfH8WsETeuYzmvVlWJXTf4misjSotuEFQVaBoIYH+Xz/D9NPYHsbw+8X3WKmUOMczapt6yMdpviipwtC+QUT/TTDhTIyYwZtIDAsl9Ueosbsb0wtpSWCQJwah8fGKUYWZq/uoZOfFKuqxzMcexPtYfQFRO1Azs8oThtFlRW5aIpBmdG5G4glBMgSesnwGdu98CR/oCUAWwvD7/UWq5Hhgk4wdLZ5VBUUXOBwS5so5zUVQVXZ5IRnZYICqjptSekemYsW4h0DYYygi89vujmg83JAno8YZR6rChzGFNZYcirSxKeigl12zzUfn4hH0lw0HhuKKmfje7wolyM4FXreCzwZOisKzCac0MhA8F45rrU1SRKilh9NBHVQVcNisW1pbAE4pn1I9WFBWBmIKqEju8oTjcjuxJ0wQS9XMHA/oPzvLJkNa6vpe77Ch32bGqoQJ2jYmpxHDk1ReVcwdeM4qd6nbJcN9FZRVRjYcPUVmFPyKP6to/8rVGq0r/zA2FYppZm6GYgrocvzfzgDDxNyd3qYTG/gCWzS7LenBibmxJgiQNn7/DD1rLnbbMUi4GErXbFcR0Hqwm36ZRdm3u/mW/JldN6JiiIiKrcAejWDa7DFZLcf/eAQy8TntCCHzpL3twoFu/Js8tZy8dpx7RRPOG4vjNq42457WWVM2pP77Zig+ftQRvNrvxyxePoWUwe5jWq0cH8FbbEE5ZVAMgEXy97yOn46P3bsebze6s9uliiopPPbAT337nGnzwbUuK/p6IiIj0/PjHP04FXa+44grcdtttWLp0Kfbv34+vfvWreOONN/ClL30Jy5YtwzXXXFPQNl588UVcccUViEQimD9/Pr72ta/hoosuwuzZs+HxeLB9+3Y88MADcDqzby6L4UivH3FFxfoF1RBCoN0dxrYWN9rcQZTYrZhT5UKpo3hf/Y1ugdIzRnLdMCWCPYkbN70byP1dPjQN6NftzDB8/1bqsCIWNr6Zy7mKMYq8DgSiWZMW5dp2XFERjimpYceKEPkFBMRwRrJ0PHCRa7IqrYDJvk4vHLbkwkR/BgOZATu9/sQVFUPBOIJRGU67BTVljlQADEhkyJ06/H3SE4phYMSQcr2bcDPyCdzmehvpdVVVkZj5XVEFYrIKdzCWGq6b/p5UIdDniyAmq1AEcKwvmLV/jT4zyayvcFxBY38e53yqD9m/S+/D4tpSqMP9UFSRcX84MtiSa7+4g/GcQ3KHQnGUOKya5Uw6PWFIre7hmeGtcOnMDi8hUfN2Qa0D9Tol8JLvK1dgJdd+LuQjrfUao1Ult9/qiWP+AhU2qwXecFz3dQP+ZGmP3K1UkQial9qtCMUV7Gr3whuOY06lC47h/SmQ+Nw7h/+tlYUvkJjJXU92wmvmbzJqhRuc2XqfRjWthq8qRFbGZ/rxNQ5kGjQwcKTXjzcaB2GzSrBYJCyqLcWimuwyGblcffL8vPtj9u9MSGO0gd7kaElxRcXKhgrEZBVRWRkOPqvD/06MvlialnzXNhhClycMX1g+np0sJY6xzSqhqiQzlTsuCzQPBFPnmtUiYUFNSeohcOtgCIvrSjWz4hOjCPT3g9nPW77L8tpIETDwOs3tbPMYBl03LKhKBdNo+grFZPzuXy349cuNWU964orA7U8cRH8gljPomvSLF4/htx/clPp3MvP1U3/ciRcO9eluXwjgtsf2o8sbxlcuWQ3LGKTwExERjTQwMIBvf/vbAIDzzz8fjz32GCzD4+POPfdcvPDCCzjllFNw+PBhfOELX8CVV14Jh8GQxpG8Xi9uuukmRCIRbNiwAS+++CJqao5/t6qpqcHSpUvxnve8p2jvK5fmgSBqyxzwhOJo7A/AH4kjElcRiavwhuNY2VChOdQSSIx6AdImsRkmkBjK6kgLmGjd8yWGjgvjm0qRuPG0SpJm20BUzgy6mhmGO9yvcpdNN7iQnAVZiMTN4sihhUKIvCYdM9PWqDxDMKYipAj4EUbHUBiLaktxysJqOG25purRpgJoHsysE2i3WrKGq5rJIBJIZGL2+Y0nMgESmWOHe/wZpSF6fYmb+2RWZPquyjV7fVxnUiYz4oqqeTyyh9Sb21YwJuNgtx/9gehwYDeOMocVsyuckCQJg4EYwnE1lWGa/MwAQEVyv0clxIfPtZGfw4FAFKGYksrgLKS0Q673kv5+07MOM0p3iFxB2+x1heLapQ/CMTUr8JrenfTMzMFADJIE1JZlX2eTx80oqJRcd87jZzTJkcljnuu6lHMyOA1RRaDVHcLy2eWG51lyqUVKlBBI7gdp+D9POAa7JREQFBAIRWUoaiKzd35NScb+Cg0/GHBrZFA6rFLO2qP53JmZyXg1Qwz/sRECcAdiSH70yxxWlDttefXJYUtc4wSAYB6T0qVzh6KpB5T7Or0YzFFn2BeJwx+W0ReUUWIRsNuzmgwzyF42eSJp1R+dV10CWVF1y2bYrRaUOW2wWRRYLRIsUqKcgYTEvu/3R7GwpgSt7hCGgjHsbPOg05M9aSaA4ZIREg73+CEEEImr6PKGMwK3iprIcHfarKhw2RCIyjjaG8C8alfOjOZd7R7jz1My41XjZDB7/rlsFggIROXjWyxzWOGyWzPWMVYjXhh4nebuea3ZsM3NZy4Z+47QhHvgzTb8v6cPay5/an8vvnTJKt1Js5472IdjfQGckDb8yWW34tcfOA1f+PNuPLa7y7Afv365Cb3eCP77ug0ZN3BERERj4b777oPfnxhq98Mf/jAVdE0qKSnBd7/7Xbz3ve9FS0sLnnjiCbzrXe/Kaxv//d//ja6uLthsNvzxj3/MCLqOt8a+QM6AoyqAdncIq+dm13RLOtjt18w2rHDZsDJt0iG9QOPIup05Z3vGcOAVkuaNTn+es3tLAISayHYdOXnRSI1pE5gsrC3NmvhKFdn1QEdLK3MJSMx4742qGUMck5OOnLGsLr8ar7naDv9KUQWCMRnt7hAicZ0h+cMDuoXQCoLl7k/LQDAV1Ct1WFNZzb6wjFUNlRA4ng19sNuHI73Zw2BHvtd8g+AxWcBpL87BS+9KYEQwJxhT4IzIqBwOMGS+EEiOiS9z2VBit8IWtyImAzarLSPo6A3H4R9OihjNPb9Wxmu3N5waxpwI5EkZw+DNbFNRVd2SF0OhWGLiNpNaB4OoLrFnJWIkA41dOWaeT5c8LmazBrVaFTLLe7XLjla9Bmmr84VlqEKgJkeQOV3ynshhs2ZNdi2EgD8qo9w1nNkqElnBQCIoF42rKHFYU+/RG5ZRW5Z7ZEV9hVP74ZvObhi5myWNn4HEA7xAVEYopkAC4A/HITuswxmUEhxWS2o4ukDiIYUnFENMUVLB+1BMRjCmYEG1+Ym/Z1c4MXv4Om40CXTiPSXelN61pXMojEBURmWJHUIksjuHkhOVhRTIiow1Lq0yG9rbjsQVw7rgaWvK+dtXj/bjvFX1qCrRvp+2SMC25kG0uUOpa0xNmQMNFU7YrBYMBqJ45Wg//JHEedrY50fTQBAOmwWzy50od9nS6qYn1pm8dPg16mgnMq+jqHAlzrOYomr+ren0hA0vQMlHHYUE+JOrtkpA5XC2bvroD4uU/dB1rDDwOo11e8N4cl+3bptKlw1XrGfdzZng/ZsX49evNOnexDy8swNr5lVif5d2lvTdrzXh9mvWZ/zObrXgf997MipcNvzxzTbDvjy6qwv9gSj+76bTUOEy/yWNiIgoX4899hgAYOnSpdi0aVPONldffTVcLhcikQj+/ve/5xV4lWUZ99xzDwDg8ssvx5o1a0bd59E43OtP3biPvNkJxhT9QIOJG29FTdwkaw9jFamgqpHjWWu5lzeNGG5tuEYJUCGyAhemO5ImGRQeL4FY7hvTAX8UjjwzXnO1TU4lEpUVHO01Hsaefmxy3dbn2kYyY3pWuQN1ZYmb9nT/n733jrclK8uEn7Uq7nTyzbcjTdPdNKEJraComBCUICbUQTGho9+I4szoN8OMOKN+Oo45jQEdA47CjAKCDIqC0NJNarqhc7h9++Z74s6VVvj+WFW1q2pX1a59zrnN7aae3+/ce8KqqlVrrVq117Oe93mvXG2q7O1QSX7ySNfsuRfs+ZergRCwcmuNqTE+D5899NjUszPyWEpIsNQwoWkEV602oVECIVX47pUrTWhOF+cH0+R7OhHd7qnXvGeOEILPnNrBiY0RGBcY+RxSAg2DwjI0mBrF8YNNuAGLw4EJsC+RaWXaUCERE1rp+qr/Z6nDo3NnyebT2+NchWBawT/BXae7aFs6ji83So+Z1I/g2oNtfPZsr1JPCaksKnZm3A8k8LkzXRg6haERFZ0oVV1PbY/Qc1g8ol3GYOuT56LvBrEtSeklpIRtlNs8MC5wvufNVrinFK/pseIxgUc3RrGnrqaRlBfvlStNHOhYcftSStG0dKy1DDRMpVhFqCxuWZPxsdcEgxFGHsPO2EfAZZwgbrllgpLpTUBC1MZczwmwPvBi0jWJ80OG9b47ZY1RVtusvUoZym571mPqMYHTO07KR/tCz8XQZXj6oTYe2RhiKUzQ9plTXWyNfIx9HicZbLoajiw2oFGCoZf2wB2Em015G2ObQx9XrU6UsKWe6uW3gBsOL4ASAkMjuNj3pj97lDKy84+ZeTxu50FNvD6F8ae3Pz5Twv76F11V6LlR46mFhqnhx7766fiPf3NPYZlHN0b45ucdKyVe7z8/yF20aZTgZ19zMxYaBn53RjI3APiXR7bwrb93B/7n97xw/gVSjRo1atSoURF33nknAOBFL3pRYRnLsnDLLbfg9ttvx6c//em5z3/hwgUAisBNIggCGMVxiJcEZ3YcHFqwwbnMTdbhlGRInkW1dMfKkiiplhNS4vCCDT0Mgz2+3MTTDrTx6ZPbseUA4xIBExBSwtBprKDhUsbnyENWaTkz4QtUIqrVjjGVsKkMeWedd42/F06AC1EYXr/SMtGx9bnOn0dQXOy5WJhnszsOmVffSykx8hh8rnwYFxrTYyjgEs843Jn6fYRPntzGi562ioMduzDhi7rmpP6rbWsutSugfAdRYKUspcTGwIPPBQyNziQuciqXgsdE6nmwTQpL17DcMmFoFF7AwaXAattEz9KAnNtOqszn6WefiTikWgIImIj9PaUE1toWVloqsdPACbCZIP92oEKHD3QMnOmOwYVA32VYaRq57b2r8T3jmIt9N4d4nd0hbUvHoTBZV9V6ySLmFYoAfmR9iJHHUmrQovlm4Jb7tapnOeFNKpWq2cpE+qVulUg8GG6ItC0NQ29C0EfJvKJRwjlSLE7W09goCD3XNQIuiEpoFAg0s2StJHh0YzSt3s5ByuM1u5mRLZxDZgKTPhFCjduBx6FrFIsNI2E5UXLeXWDssZTiUUIpIC/0XaXAJqr9pFTvJSElrj3QwmLDzLVFAYC+K/Duu87idbdemRIUHehYSv0vJ/Y9W6P5ojhmYdbz8tDFAVjOu2XoMWwN1QbqxkDZp2yNppMcGjrF9siPlcR53NLY57GaNvZehrI+2hgo5et63wMTEgalONCxKke9LjUMHFywsDn0MHAZhh6bIl77VZTDRc2U+X2RT/V+oCZen2K471wf6wMXz79qGX9+R2kQBAhRKsgaXzh43QuvxNvvOFXq+/ueu89Bp2Rqt/jLrj+AN77kWnzJdavFvlmE4Ce/7gastkz87Pvun1mf+8/38drf+Rj+5HtfiOsOFn9Qr1GjRo0aNXaDs2fPxjYD1157bWnZa6+9FrfffjseeuihuUKbP/nJT8bfv/CFL8RnPvMZ/PzP/zz+4R/+Ab1eD41GAy94wQvw3d/93fju7/5u6PoT8/G7yN9vt6vXnbGPhy4OYpKU8Qkt0XcYDi1YOLpkg3GJ+8/3ce/5fhwq33eCODR2pWmAaiSVSb2oSlOquxl1J4Tg1mtWcHJrlCLDALWIHrgMY18tEJumjk4ijDKLeRNs7UUfWCaUYCFROI8KJ69k32VqXM9ZUwlFPpztOilyuOv4eMahToo4y2szx+e40HfhBhw6Vd6S16y1sD0KSn2C94Js30dwA47HNkdYbe/O/zE0X5j6fWoMhX8OmMCJjRH6ToCRx/HZMz0EzrTadS8qvoCLlK1IRJREWGgYoITgQs9Nka7qusDZnTE2BhQdW4eQEptDH+umjgMLVpwcJ8KscNzdCGR3e+eWkQhV36PVQAQmJE5sjPCs44uTYwoOmpW8LXuYhISu0VjtnQee8HHoOUwdQ3dnyVbUFwc6Fh7fHGN9oEiwpDcnAAy8AF7BvWXvKeXxmi2btQopSMwVFXMSkRk74wBCTvx/t8c+rkErvxI5eOB8P04enYc8xaqyX+HQKYXjc4jM/lQ0r5UR0qd3HPzLI5v4mpsOx8/Ks48v4sSGehdFRG5EvM7z2Jd5Xs967M7sOIVldsZ+PJbzbHBGAUfL1jH2eelnooDL3DbfHvkYeoos7YTeuwBwceDi+oOdOCKiYWhhki0gsrdR3wG6RiFFaD3hsdwx4DGBgRvMiKIt8vx+4lATr08x/OY/PYz333MBV640wWdkBP3aGw+VvgBqPPWgUYKfefUz8S3/4/bCMn5mcn/mkQX89299Dm4s8YTL4vtfci383gZ+5WObmJVY9mzXwTf97u1423e/AC+4eqXyNWrUqFGjRo1Z2NzcjL8/dOhQadmDBw8CADzPw3A4RKdTbUPw1KmJxc5tt92GN73pTQiCyeLOcRx89KMfxUc/+lG8/e1vx7vf/e7K504iYAHOnD4zs9z2loe7vR62HQ6Ws/48xwdoFoSbnt8oVuMMPY6el/9S98YEwtFx+rxA06C4asnE1raLYRhW7fgCXvj5YiDCJDE+xZkzLpoGBevq0HvTEsVT5x303cSi3GXYzgnVjnCgpeHM4x7O7ATYHDNsj1RZKSU2x3zqM46pEaw1NeiujqCXXhbdi62UQo0JiXP9AH1PgBDgUFvHWnNyzOkzQ2xvFatsXYNgHOQvoJmQ4ELVlQuO4WBiBdDlDs6cdnEf2caZ08UJUJMIhMD21jTB8AgfgBJge2e2QsjQgIADpk7Q3drETnf63j75gIfrVsyYaHCYQCPRZk4g8HgvSJEMJwHcb6qw0cPt/IXyxb6Pw20DUgLDrSHG2/Mtj7sug9udXuae2PGxPQhAvOpL4G5/0lYaDcOxM4+BzR0Mx6r/doQLgwK372xBCAIuJVwmwcYUThDA5xItMGxvbQNQZMxwwFLX2JbVEpk5gcAwQeYOAQTjIZoGASEE54I+BpsaPnVqBCcQKdLdZQLjQEKngPQ1CCkxdgUcB9C4A+pN9w0NyRkCtckRCBkTdZZOsLXppsgZPqKg4+nzdMPn2DEImn4v9beBx7E5YijhzsBHFHp43guDAL3EHDEYBkgugbeJmtPGYVutNDQ4QxfBeHpMffjOIUh3ksfikU0PFwYMPZdjY8QAohL0UAIMS/2nBQANjKt+PsP62O6Vk/3JcSCkRMBVmwKAx2TaNiYgkP7kOdMpwbZ0wYTEcMgwBCDdERqZeV6MKB7d9OL22SJuakx4XMAqUMuKEQUdTfryAbaJJVupA88NApzZnMwPQ19guxdgOFDPzo5wUlYDdtCHY2lgQmJ7y4/LxccPANGZbIqdoSNsb3nwTQrL6xa2IQCs7/ip5Empe5AS24PpfnCZgBtI7PguFqg31QZNvwe/ZWB7K/1cMs7i/7e3tvEoHcEcXcTBlppfxoHAJ8/kexVfHATYcWcskhM4KQe5vuX3Ywt2iXr0sZMjrA989N3pNtlKJAA8m5jnHJfHSc6GUL/fFA40SnCOD7DdVb+L+o36FMOczwbbxIvLCJeA+pN59xPb23j6iglCCFpTRyYwBh56uI+7To4xCiQ8LjAcTU8OOw6H9OnURqrHhLLoIATDgQ8JCdeZ1FVjBB4loETNadKj2DgfpDeannusrIaVUROvTyGc3h7jA/eqULdIYVCG19dJtb4g8cKrV/Ca5x7Fu+6anQgLAB7ZGBaGJJbhy65uoUk5fun2LkYFC40IPSfAd/7hx/Hrr7sFX3fz4bmvVaNGjRo1auRhNJokULLtclubRmOyGT0P8drrTYiDN73pTdB1Hb/0S7+Eb/u2b8Py8jLuu+8+vPWtb8V73vMefOhDH8IP/MAP4C//8i/nvBMAUiIIZofPM85wrmSRHwQSQYH/ZbSQzMO2U/w3LgDGlfJly+c42gI4EzGZKKSIVZ1cSFAQCCHhBQEMELgeh5uzMGRBgCDBwASBAOPFjIxJgM2BgyAQEIzHnqNDX6RUVREcAXQdjiVTwNUUMeuEi/adIdCxKLSQYLr7gh+rdgHgfBc42NJwuK2UPNtDv7T9OCW5IZ9RmwCIF9YyDCqWUrVtEPhwXFqp/wEgEPl9OfYkbJ2U1hMAliwKhymLCEhgLBD3ZRI+I+g5Eh2T4viCjoEn0Euowk53g1wC7UxPoG1SrFoFRDTjkOFxXAAlHFwuRi5HS0v3t8+VVYLgIvf+hZDYcQUCISEkYGlqMZ5VzyrlWqa+XMaKRcYBnwEGVYIHLqCuSalqS1+iZUz6hydIdyDy2axGNI88PlW/rTHH2CBYtjX1rFOO8z0fGiVomZPz+kwpmX2u2lhI9ZxCAn6QX4eku8TQ5+gnyBaPKXXzanNCfjBG4QUSI1+CCQlTU563Ow4H4xKMEER7VFJK9D2JUSDAmCwVbjBGEYRrCz+YPOeAGqdJ4tXxAUMjYFzAoBIGJYBE7qaU7wOuOyHXBmMPn7uQJlgdX3ln85JMYxpRZcZMQggOItlMIYqUMjFfSgz9ieI1smyZ3GM6ORoBAePpDZyNEcdKg6ZIuZ4j4SdunPFJdvuhLzAMBI6089d8yTYHAM8jcMP3iO+x1GZjNE9HdWEcoEj0EQMCyuN5Km9uGXoy3iD0AjVnMUZSdcgDZ6xwnhWZZy35eyElJAgEY2CZ96MUEs9aNXHn2eJ5k3GGqzomNOHDDcPuOS9+ZwcsPW5n4WyX42hnum9uO+Hj+lUTB1v5IfJB4IMVXCtpiJFsl/T7evK/lAS+n5y7ov6Vuc8D42SyochJ6pljHBi6gK3PnuvGrkAQ9itnBX0oFXluJc5nUoIFE+E7Xcb3spja41V/IyDoGBKHWxSCB8i5xJ5RE69PIfzJx07O9HSNcHTJxouftnppK1TjssX/+4ob8Q/3XcSoJLtuBI8J/Mzf3os//O78hCRluPmgiV982WH87Ed2cKFfvnvvMYF//fZP42de9Ux8V70pUKNGjRo19gHJkMd5fSKrQiQWHEEQ4P/8n/+DV77ylfHvbrnlFrzrXe/CK1/5Srzvfe/DX/3VX+Enf/Inccstt8x3IUJg6LM9OnWt/MPguRGQjNdrGkp9eKStlx7bMBVZUwSNauCQYFxg3SGgGoVGtfBvBDT8kEpA1c+UwhMUy4YBw9ByiXHLBIwE0aozBl0r7kfTMHBqILDSMLFMJbY8tejlcjopUoR+IHFmCJwa8FSCq3XXwfGOiZdf38a5bgBOdGTtend8YGdb3ZcnKXRNL8yUrWkEesEHdUW08njxrGvpJZphmLAsC4ZRbaGuSYlrV3Wc6qaVZIahw9ApymzsLJ3gimUTJ7s+eDhOdA04skDjrOTRnd100ELL1PDCY2rTYn3IcH+ommZCgkPmXkuCwxcE0HQYOeHUmubDMMqzwBeh53JQjYDqOvwweY5GgZM7Pi6OJSyNTrUvADhCgEkVQq0RIFyrIyl+i7o0OwQp1aBRNU41qmHsC1gGVcQZEdBBoWsUAQ9CYlfCjJ5lIlPXoHS6/4vgy/Sx8e85wCSFHj5bhDpgEpCgMbnPJJ9kK6cUFMBymB392KIB26BwCkiugEuMAhk/3xEEgDGjsRJSgODxviI8AiGxNWYwKMFyQ4OuEeg6iftZSImNng9Ag64jJt7zYOg09s7WNB96ohE0mq6zyykapgbKBSgVpW2r6WY8DwkpcWbk55bXhIj7Ow9ccGyHakaNanA4LVUlAso2IroNKiUIEXH7UioxTjC3GiXQwudGo0BDp9AoRdfjqT4ZBSQlnuGZ8aJRDSDA9pjDYwSUaIXtoyfaHABsy4Id9rMdBDAMgqEvcLoXwAkktp3J+NA0LdVHhq7DMDRILqBrcqrPAIBJEtdF1w1VLjFeiqDrgF7gSSBo/vOiUQFKlHc11fVUXQFA0w3Ytg1dS6tXkxs4uqbj8QHBtYaB1TDk3ZIShilyw+N1PcCyJjHwqpE3rlDtkPc5ZiR02Ha+qbVhcBxeEFgLh090NAl9uzdGHOMg3Qfh3kRYUG0+alSHRglM08ByU52l7wNOIEEpzX2/6trkM4Wmkamx1Q8oOo3Zn2mOLFm4mWs40w9wuhfk9iElgC+AJtVg6eozTcek6LkcWkWCbBAAy0Lb9btnFmri9SmCocfwV588Xbn861545b5kq6zx5MShBRs/9fIb8J/efW+l8h+8fx0fvO8ivvqm8jDNPFy9ZOJvfuTFeMMffRIPFmSvjSAl8J/ffS/O91z8+5c945ItkmvUqFGjxhcG2u1J2Kjj5If85f09edw817j11ltTpGsEQgj+y3/5L3jf+94HAHjXu941N/Fq6AaOX3F8ZrmLYmeu8wKAbVAcO7KAddktLCNML85inIeV1SZcJqC5DHbHgsYFxkS1qXQDJcMEYBka2raOxaYB0jRx/IplHFls4OZrpu2Gxq1tnO9N+sXsewh2iqO6jh1ZwInNEY4fVfZIrtXH2OfoyRGKenToMugNAz6XSNpaLi83EGgUR695GrbO9KAvKaLFZwKbQw+Pro/QMCkMjUJIiR3poSdV+yw2jNijMELT1GAXbHh7jGMUbAOQ0DUdK6vptjh+xTJuuukwzuBC4b3ngV4cqOzoIY6stWBoFDtk+vPYgY6FBVuHRpXn58gYzEyyc/ToInSN4uk3HIaUgLU1xpbehZQS3XGAFeQ/c27XARMCR44eyU3y69sjHD9QGoCaf96AY/18H9QEuoSAJQkd20Mb6n6WVpqpkFQhJXpbY7R3kW7A0CiOLtk4CkVWXLncxMmtEW44sgAuJHrjAI9tjUAB7Dg78JjEmFE0Fzro2LoiMcmknSgFVlaq3fsAo0LRjWXrOHxkBUsNA+ajigw3DA2t0FdxjImSs9U2U+1x5bFFNAwtlYQoie7YR5vm21VolGBlpQkpJXbGAVZaZuwn22iFmxK2jpW2hesOtrEYEi9cSGyE849JKXruxAM4JvzDn9c6djw+HHMAMzHGB2SErPhuZbUFzQlg+gwri8U2e0eOLuDmm68EAGwNPbQvPo4Vc1qxOPIYfL3ElmUwBBeKBG132ljqWGjOiB48u+Og3YmU7hIO8dGOEhoJCQeTetgGRTvhZ7kQ9qkBhiyNtbjciElaLiQGmMyfyysNOL6AIb34uJXV/LG32jZxPPG3m55+AMvhHLe4PcbA3sbDF4fwhgP4UqSepaVFG43Ec37sYBsLDQNuwLFD+ujJSWRKhKapYSVMvnzw8AI2ZR8Lto7jh8of0oHez/UrBUKfb0y/P/SAg7sMDYNiebkzNScNAYjFo2gvylRSqO2tbTDO4jn7+BXLuPnKZVyx0ozLnKMX4ObI/tnmCD4XsP1p1XoRDh1dzE1KddVqCzdfsZR7zKPsbOH5hATsnTE2Bl6qDzw6saPwAHQsDcsrHQgJGB0Lqy2JhqlB2GNsDn1F5lrTm4LHDi9gZbV4g2KpaeD4gdmftW68bg0P33UWNnysaj6I5QOxI6z6ZwwHtk5xdLkBy9AAqSIXKHzolME2q9GetGni+BUHK5WdFzXx+hTB//7U6dIPw1l88/Nnf3Cv8dTGd37RVfi7z13A7Se2KpX/tX98CF9148FdkaFHFht4xw+9CG/800/h449tzyz/ux9+FBd7Ln7hm55dOethjRo1atSokcXa2lr8/cWLF0vLrq+vAwAsy5qLeD1w4ED8/Ute8pLCcrfccgtarRZGoxHuvbfaxucThUqJPma8/k/tjCEE4qzgRefkUUKtxN+LEuREGgHOJbZGPtYHLoYeQ8vUcxMz+YynznXNWgsPXCjf9AVUYpGsyklK9XW+68aJQy72XZzdUaThxYGK5IlI1vTaefp+SpN1ydlJPuZJrgUocixJugJKVXdic5rkAIDVlpnK6D4LI4/hM6e7IISgOw7gBhxnuhMCsSwZC+Pqb1IqsvR8z0XABQyN4mDHAhdirgR3EfrOxE82myQ2CS4kaEK2OnSrr6GyaBg0ricB4HE1lkyNYtPxcb7nYDtMbNXzVPh53+UgIx9tW59OhDRHN5cNqajv1weeIjfD5HIR8Tp1zUQ9KCGFic+A/ARFEXio6HUDEfeByziCRH8MXIblllk85omEGYUMyygYeAKR+CnbBG1TRzbSfLlpxGOqDNsjD49tjLDUNPCZ092436aqV3qWacz35E6r5af6InNCLiVGXj7BVXbLQuYnVco/UbaO6e8f3xrjXNdJ2bEUgUuJgIvUnBhwoQjI+HcSAyeABPCpkztomNXWg2V9U5jYPvyDEwhsjTxYmlICEwBtS4dlaDi14+Bs18GRRTt3syiClfHVtXSaS7yudSwYVCWZPN918blzyrKoaWhYbBhzCeTyvF8rQcr8ZyLzq4HH0XcDDMIEjZahoe8ynO+6MHW1+Ri/P6WMydCObZQmOhMVCWcRbuIMPQZTpzi8OB0dc67nwmUCZ7vpzT4nENApgV1RxOr4HELKwqSbe0FNvD4FwIXEH3/sZOXyL7p2pU6qVQOUEvy3b342Xv7rH52paLj+UBt/8j237kmButgw8Kffdyve/I678b7Pnp9Z/q8/cxbrAw+/+6+eNyNLYY0aNWrUqJGPY8eOodPpYDAY4MSJE6VlH3vsMQDA9ddfP9f77sYbb4y/X15eLixHCMHS0hJGoxH6/X7l888LlXl9F5hx0KwWyarMiojCqcWWROHijFKCocvwyMZQqQedANsjH13Nx5FFO1ZyRTjfS6vQbEPDzUcXsN53p0jIJLxATBGv0QLuA/dewLHlBghRGaIBIJmQpucEKglXikjOuZeSMSWRQ65ky8zZqad3ctSmc4zrWZdbH3i4erUJKYHbHtlAxzZSxO3QY9gcKuLq+HIDRti+QkpwKaETggcv9ENyjkBCLXa3R0pBxYUstZXIQ+49V8COU807Nw/ZfqXh2Lj/fB+rbRNbOeRdTC1Jle2ekmnf2CqYdUh37ON8z4WlUwycYrJUZpjXkcfQMPNDlwFFRpWtHSgh0CnBoY6FQws2TmyOYBs09LNVSjSPicJJRUpMPdtJOD6HxzgsXZuad1bb0/W+9kAblqHhQi/f9owLga2hj8c2R3h8y8Hm0EPb0rFQIQy6Cqo8u9kiZSM/W7aIdJ15TQmM/GqbDtP1m9Rwc+hje+QXj8fMH05sqM2fI4t27A3qBRzjhA+3SsaYUGGvNKq913axVk16wg5dDl+f/GwZGiwgfkDXBx6uTChas7Ay3irq5+lnr23pYQg/gX1Aw8AL8NDFIXwmMA44ji42pm6laONAo8ozfd5o5mhDo2xTcKlhgFL1fj++1IATCGyOHBAA2yMfGiE4sKAU8wQEK20znuuvWGlgfVBsNdh3GbZH/lR0SG5FZyC68zwv91kbLtPlMf/uSgXUUrKnAP7pgXU8vlUtyymA2j+zRowrVpr4pW9+9sxyD10c4v33zBfelgdL1/Cbr7sF3/el11Qqf9sjm3jd79+B7nj3H4hr1KhRo8YXNp73vOcBAO64447CMp7n4c477wQAPP/5z5/r/C94wQvi77e2iqNIhBDY2VE2AEtLS3NdYx7sinStcFzV9awbLeSTRGT4f8vUsBBm6InIbQFFXuahbek4sTGKQzGj9VPAJTYH6c8GXAjsjD30nQAPnO/j3nM9PLoxhM8FlpplBEq5lnToBXh0fYhTic/a2bbIklB55zu8UJzcTUIltylcAMtdqOYq/M7Safy1OfRzlVllkAD6bgAnEFPkUt6tbI88XOx76I59bI08fPLxHXzuTA8nt0Zxfy41DTQM7VKsewtRkidpJqbIjolQE+d7riIYM5humsk55uEIrJKoMErUhkY0poISZjf7F48JnNwclSaQmgXGBS72PVzou9gcenADgYDLmGD2mYhJ6nnhMYFBmOxPVHwyisgXKSUu9r0478XFvuqzrZGPoVtMVs+Damr1dJlky2Q3AucZI8lDs20w7/OePvHk2+1Rse2Cum7+7xmXuNCPjp09Fqrcd6niteAlVkX1S8JHjQsJv0TVa2cVr0b+M+oGHJ84uY07HtvCZ07tpO7NZwL9nLGXd/tDl+GzZ7p47+fO4wP3XsDdp7uVrQuAMFlgNoFg4ntTV17VA49BC211fCbgMZWI0OUCA5fDCRRhHCUq40KA8dkq85NbI4xmCMBElfdfScdzCYx9hpHHEMxIaCYxP1FbFTXx+hTAH932WOWyLVPDV904v09njacuXv6sI/j+CkTof373PfjQA+t7vh6lBP/pG27CW77+xtmFAdx7ro/v/MOP1+RrjRo1atTYFV71qlcBAE6cOIFPfepTuWXe8573xNmsX/3qV891/uPHj+OFL1QJKD/84Q8XlvvkJz+J8ViRd3Mn1qqI3S4Yqh1FEv8Wg8vQny8MXW+aGmyNwtAIrDAJzHLTjMlQGS76dnKUgQsNHUEB+TMO0rYCji/QHQe4OFAkihuonx+4MCgNxdTCcM8ySCATop8+39TCPeeEpZZgYYTtjjN7oVoVeXecR7BFX5tDL5cknHV+JyTaq5BLA08tfn0u4TGJgEs4TCBgAkKqazcMDZQSjPZCCpXUF5hfPVyGad518otBEXF3adb1U3ADAT307LXLMqplQ9eFxMW+i0cujrAz8ucicgDgfM+ZuVHjZxSvyXHPpUrS5zGOsc8xdBl6TgAuBISQ2Bn5eHh9iHvP9nB2x6lEEBfdghuI1LhPWlR0S1TC86CS4nWG5DVDve6tQiHy1NhFKJuXTm+PwzKFR+f+tucEhSSmmWP9MgtNQ5vavEpueI0Tc3CkvpZSVrInIISgGVoMjHNUwlFyqWy9n3agjS+5bg0HOhMlNuMCD68PAYTEp5zezHNyrpG9t6HL8PD6AD1HWQC4AcfJrRE+9uhm3F8PXxzgoYsDPBx/DfHI+hCPrg9xse/i6JKNpx1o48iijSOLNg4v2lhuGlhsGFjMsSXJ64YkgX+u5+LxrTFObTu4+0xvZlStlCi09JhcU+KK5QY6eTYpIWaRmkOPY+Rz9JwArGy+2MUmZ1XUxOuTHPee61X26ASAb7zlWO2ZWWMKP/nyG/DCq4vDIwH1UviRv7gTd5/u7ss1v/8l1+I3vv2WqRdUHu4918e/etvHc3f/atSoUaNGjTJ813d9FzodlZDjp37qpyAyH7pd18VP//RPAwCuvvpqvOIVr5j7Gm9605sAAJ/5zGfwjne8Y+rvnHO85S1vAaAyPH/Lt3zL3NeoglkLmELI2aTtSsvENWstXL3WKs3QrVMCnwkcXW7gYBhqvNw2sdw0p8L5gYliLS/k9XzXLSUc3ERY4c7YR88NcpWXG4NZ7TJ7qeUzAR6qZWbaAuT8bqMgUVGyvMclxjmZ5OdR4QRc4MxOgdfijHOkbmtW2YQvYl7x5I9euDCnILn34bGJYpYSAiGBYA4SeF4kSeKoPk2zhJgsQVJF5wYcJzaG8c89J590iK4e3TPJ+VsVlJX1AqVaPd9zMPJZqUdmtkvOdh0MPYauG2B75OH09hgem5ArEhKLDR0H2iYOtE2stdOhwm4gsD0OULalEXAxRXgN3AAnN0d4bGOE0zsOznVdXOy72Bh62B758LnE+b6LrhPACTjOdl30nAAX+t7M52O1ZeYqhPsl5GrAZYrU9ZnAxsDDxZJnOQ8yvLcLPTf1dbE/+cqqDrNts9sxsl+JirPke/K0K62IVCxQFRecczshqsnWUqPzU81Dn+Hq1RaOLTVwbKmBm44u4NiysleUUmJj6IFxgZ2xj62R+toZByibaZK1sMI5ItcWVQJLTTNu7yDcOBi4Ac7sjPHZM914HuyOpwnnrGVJfsh8+ucLfVeRtply2yM/ft8MXIaBy9CPvwL0nABdJ8DIZ7B0DQ1Tg22or4ahwYwiITJetuqepuvFy569Ch1XlMQvgpDActPEWsZGhAuBocuUVVHFYS5k2loiD5dI8FoTr092/PG/nJyr/Hd+8VWXpiI1ntQwNIrf+o7nTX1wymLsc7zhjz+BR9bTiSrWB25hmGAZXvWco/iT7721dAcrwj1n+/ihP/t06oNfjRo1atSoMQtra2t461vfCgD4x3/8R7z61a/Gpz71KWxubuIjH/kIvvIrvxL3338/AOCXf/mXYZrpd+HJkydBCAEhBG94wxtyr/Ed3/Ed+PIv/3IAwOtf/3r83M/9HB599FFsb2/jtttuw8tf/nJ88IMfBAD82I/9GK677rpLcq/zKJiSmDdx06zSTEg4SRVo5oAsF/Cq5xzF8eVp37xskpHsgihpAxn5HOZ9lvGZmCLc43MQgpalY8GefHWiL0tPERdewYJtrZ0mleddtzVNDVaYTMjjUajm5CtOPFMBQqpw6TzMOkNVkkYlxkmfMKvGSn5e2xj6ON91wET+SBsHPCY/NoceumMPGwMvJqjYjPDQCN1xgMe3Rji5mf56bHOEc113QnYkKlGWhKsKtoYeJCSOLdoQUu5O4LJLbuzIoo0rVxq4YrmB48uNWFUX+ehKqPEgRHnf5rVAVNpjamtkve+lDmiZOtq2gbZt5OZiSClacy6QpzojhIS+k/l90h35cR8KIWMrAJ+J3HXIQqJeLUvPzXEynqGsjsbHyGMxIT0vpJRgXMIJeOpr7E++JBS56QbKv5aXbYbNMWTnIWzboUfz5kA9f5tDD9sjRXqf2h7j9PY4bufovNsjH2d2xji1NS5MulZ03ShSgAkxRd7lDdeZty2BhqnhcKjctHUNI4/BDThcJsC48gkPEvN49vnPjj0B1ffdsQ9Lp6AF9ZCQOL48GV//dP9F/PY/PYLf/8gJ/PWdZ3Gu6+Lec32s911cyJmfq9izJudYESYoe+7xJax1pn2NzxX4GSdR9HgWtfOZHSffFqDogH1QjzIucN+5nnomhIi/1vseTm6OsDFU7wmy20k0B/N+HqqKOrnWkxgbAw/vuetc5fJHF23ceGThEtaoxpMZhxZs/M53Ph//6g8/Dr/kA+7OOMDr3/YJvPOHXoSxz/GHHz2Bd33mHP7NV16Hf/NVT5/7ui962ire+UMvwhv+6JO5L6IkPvboFv7dOz+LX/u2585tIF6jRo0aNb5w8eY3vxknT57Eb/7mb+K9730v3vve96b+TinFL/7iL+K1r33trs5PCMHf/M3f4BWveAXuuOMOvOUtb4kVrkl87/d+L37hF35hV9eYBRFmLf98gxBFGHRLMp8nIaTyomya08sSMiO7egTOBQZugIMLVirB0+REABdpojaCZWjo2HpuUh5A+WhGKp9kXZqGFibFIrhypQVAIrioVHxl3ptFSCpIs7kbdErw/BmRSfF5Sv42j5KnrGjeOEueW+ZkWZ+Z7Tw83mMCGwMfXiBi382lpoGySPkIOyW2VEWq4aTSUKdkbiJWSEBwlSQrbwyn6iCj/2cprmQlEpwSAhCCvhNgx1Gk5PZo8txNZV8vSmZV0tsRP8pCb0tTpyCEoOcEMELCsAhjT0C0VTh39p6ySw0JQIv+LvPrmhxDgRAppeLY51jK7N1QSnCgY8VZyne7dBBSlirWZ0FWIKCWGjo8JrE58sCZKu0GHI1oTCWyJl6qUGgjTGY39FjuNe463cVNRxew2DBACMGprTE+c3oHA4/tTvUYHtMdFatOKVHFdEowK9eekBNVYW8c4NT2GD4XOB+SkG5IaM+Dkccw9jke3Rhh6LLCeq60TFyz2op/vtj3pqwqJBR56QZ8Sk1q6RqOLNoqsWBIul97oBUnIgPScyzjUiWhK2iUx7dG2B4p8nyxYeRGm0QPWXY+6lhGTPJ6TMSbHUWJO4uatGqkqhtwXOyr6Jbl1iQ5l5QSd5/pAVDRLx1bw8bQh+MzDHaZUC48ceGfmJSXTPFaE69PYvz5HY+XEmRZvO7WKy5hbWo8FXDrNSv4pW95Nt70l3eVljvfc/E1v/KRVBbiP7n9JH7gy66d/pBXATccXsBf//CL8YY//gQeujgsLfueu8/h0IKF//j1N819nRo1atSo8YWL3/iN38DXf/3X43d+53fwiU98Atvb2zh48CBe8pKX4E1vehO+6Iu+aE/nX15exm233Ya3ve1tePvb3457770X/X4fBw4cwItf/GL84A/+IL76q796n+5mGk6FBCFFyIgXZ8I2KDRCctViAZc4uTXGoQU7Dt8uO7cQslCtQqDImHwaQIVTbw19uIEiYcrW5SVJ0kuRIhQTH7sPLU68A6890IKQKFR8VUFZ3YWUKI2HhWpHj4upkOXUNWYQF9k/LzVNHOxYeOhiOtJJ5hBAyeqVecXmLWoJ0moumaEC92shLDP/A+l6t229dMOgSCE28BhObY8RcBGSbOVMm0RIJBUwgVGYsaGRmISYBSFmJwlTYbZiioQJmITPAkACukZgG1r8TEbPjRAC3bGP5ZaJ5aYBQhTZuTHwCklin3M8vjXG5sBLtXPL1NCy9KlEN9G1qnS3zIzzvDHXMrUUkb7bsHs3qJrCKx8S+YmsvIBjEJJ5Y59BI2F2+rCePheINJTzeBS3LB2Lth5vDO2mvnnwmJpvW6aLD9xzAZtDD1IqhexuUHYfO+MAq00DVKcwdYqbjy1WWGMqxt4JOE5sDqd8fask0coi2W95LUkBXLlk4OoE6QoAG8P8NpFhPbLEq0ZJfH8bAw9Dj+GB84OUgj45RzIh4AQcp7bHgFSEZTaCNLIYGPscR5dsaJmXYDyfZdpppTWJGnEDHhPX8z4DWyM/da4sZLihMfJ5fO9nuw6uWm1NHceEwPZI9UWeDUMZlhpGrHoGgL7HMfS5un+ifLkbBkXD1CGExL3n+rB0io5t4PBi/obsblATr09SuAHH2z/++FzHvPZ5xy9RbWo8lfDq5x7D6e0x/vvfP1Razsl8gNgc+nj3XWfxbS+8clfXPbrUwP/6gS/Gd/zBx/Fg5gN+Fn/w0cdwaMHG97/k2l1dq0aNGjVqfGHiZS97GV72spfNdczVV19d2V9T0zS88Y1vxBvf+MbdVG9PKMu07DGOgaNUSaZGsdDQ04swOR+5FXn6PZZKOJVGcr0/5Q+Y+P5s10GjxF8zSRxkqxhZK7gBmyqbBCWTawohEAj1v6ErAplzGZNAIpSn5ZHR2XD6JPaaFKtUqYpyH72L/TAkv4R0bZlaHEpcWIdEJRYbhkrOlKOoylNIJu0A5lVeEyTVoADnEkyoBEuEqHMzTmIFdNYPsdI1yKSPUqRu2Ga6RrFgG4XE61rLRKeRDqlP9vnWyK9su+VzCStUjgLTfR9ZRagkdLOJ16rNQaHsGJZa6ftIbaAw9XOUSCiq49hXyWlGCfLKDTj6YV8vNwzoGkk9g1F0mgCgEUUuUUKwYOtYaZmppHdSJhSvFVBGocnQZqFl6bANiiBMHneup7xUaViPqthrgt+8uUFKiV7mORESGCdIJY8ljkvJDcvnGjvHn1Ndc3d1TWJn5GPsM9iGVnlToEhRbegES7qBkcdCknSyoxPNv5QQHF20K+UEiaq+NfRzk6lVErNnyti6Nnk+yHSR1aaGlkHD80vQsNC4xJKi6wRYzhCLTsDhBooMjIR1O+MAhxYmxF+y/tEcGymx7TByI+9emFAWCxMvXoVojFRplkjtnofy92LxOXtOgIEbYOiFGzjh7zeGPq5da8JKhDkQojZANErnjkrQKYGhESQft/gU4bjjQkIIAUEopJQq6eTQK/WAnhc18fokxd/efQ6bw+ovgRsOdXK9s2rUyMOPvPQ6nO26+F+fODXXcX/w0cfwLc+/Ytc2AKttC2//gS/Ct//+HXG2xyL87Pvux/HlBr7u5iO7ulaNGjVq1KjxVMG5roMzO2PlwxiSjASKpBplVD5jcPTdAEeXGpOQvktYt74TTKnRtkY+dhwfGqEYewxCCNAcSaoi2WZfY2IFUF44CL0g49p4HBpV2aGLvB4PdSw0Q8KyaIF51+kulpsGGFdhmZSSFLFWBaVlZXFCkM2hhzM7TqXzz9PPR5ca8WKbkgxpkXOisc/jkO4yP9qIhNHpROdMKYEdku8+51gfeBj5DD1HtTsTMl6EX7HcwMFEpvKqUETbdL2isdA2NWiUoGFoU+ICALnMeLLPqvQ0JYBJASbSCs2i9qpK5kf1mFW6aWkYehzjGWG6XEw8k5Nktc9EiohI3sOOE6BjaaBkQr7aBoVOCZabBjSC+BlfbJpo29Phz7HTgKyQwK7kZrmQOL3jqERtQuJcz0n5ei42jFIlXhZ7tAHO7RcvZ4xlCUoKKLIr3DCLlP9lRNfeMNtqgxBlRdBMELszx37BKXVKsdAwpkLyk7AMDSCk0toyqnqRx/UsLDeMQhU6kHgXpcIg1HiL3i0ajea/osD8fJzaHk9tWI19BmBClkaWHSc2R5WsfJJXd3NUoqe3xzi+3Kg0zwzcoNCOZ7fDceQpqxKXiSnv5Me3HCw1MxtdwJRKfr8wDgTGgYBGgQOdSbTOPNHls1ATr09CSCnxttsem+uY73zR7lSINb4wQQjBz77mZvQcH3/3uQuVj3tkfYh/fmgDL73h4K6vvda28Kffdyte+zsfi0MbivDmd9yNaw+0cf2hzq6vV6NGjRo1ajzZ4TEBxxezfTRDiDA89EhOspkiJBc8BLOJkY2+hwMdqzDh14JlwNQpJIBPntzBF127OlWGTJkQ5K/w/JBUKaoSIQQCSmmUPQMXgCwRU0V3rVMSL+x9JrCVCCVtWjou9lwMEotHU6NY65gp1U4eVLIXgaHP4QQShHDwkIjQCNAOEwQ1LQ2veNYRpQgVEh9+cB0+F5VJhioEdtajNOpjQki8uh66LHWfSXiBKFUvAwAk0NDplHr0YJggpueo0GuZOWaqUnNDZlRO4bfRL8PTGhpBHg8066pVSHadErRMCl9MbDoCvrcwdmCiAJYzvAYMSrBo6wAhsAytVKE7Zd0hlfckL5ljpnwXE/sByl4gP9Q5wnAO38as1UBWEBklGtse+ynS9fOBPGLKz6lTttxi08CxpQbW+24qgRmf0c89J0DL0qZCy2eBELWRMwt5JF4Z9mTTECYcG/us1ENZSrnrJHWAmmsNfeIt6jGhrqtRcClDRf/0BseGw7Hj+9hEDyAqYbW+CwFS0RHJTQgpgXNdN5d0LWpjIySCs5ufAReh1UUQb/xIKVXfRvM+os8WrNQbt6x/1QbDdPI9QJGaRcfujP2YeB24k4RouyV5o08SlXy8L9HGRk28Pglx+4ktPHChPBQ7CUqAb3jW0UtYoxpPRWiU4Fe/7bnoO5/CbY9sVj7u9z9yYk/EKwAcWWzgT773Vnzz734sDmHKw9jn+ME/+zTe9SNfgsVG/qReo0aNGjVqPFXBhVLACJF1xZwNl4lYoQgUh4NGONd15lJ+cSlLk2YKKeNEWPed6+PZx5emSLuVtonrD3ViRVTD0GDpihhYz/EVzMuUHsFnuyO4IoJHQsZKMy5liuQmhEHPkBw+V5mXjy83Skm57cgugUm4XPUHSZy7bYfXFkiF9n7p09dwx4mtyiQIpaR0hUzJNKeZ4STD3xWfZOQzNEytlBstOjpKyNUtIOoj7IFbSUYyY+wxMCFV1nOfYeRxZXEQqpaLwmrz4AYcQ69aSKpJCQQI/LDf8sZxprozEbV3Vt2+M/LjkOYo5N4yJvdVRkJolGA1oQrdKxWRHBPRt/ec6+M5xxdj5esw/MwvUez7HEFIleCuZYWKyKT6OLQ1kFLC3YP39QT7T8TkbZJNXUXm27lwAXiMxSRfdn5hQll1VHQCSNerZD5hXOBi31PzdLI/d70ZMhvjgGPc47DPD9AwNFy12ozfG1xIXOi5WB944bsMuGq1BVOjsVJx5DFsj/zZ+zWJvw89FvuISggEXOJs14mJ36IpMPq9z0WliUpKGb+Xis4ppIBGJlYGRQkE81SrhABXrDSxM1LJ96JyI5+j7wQQUuKhi0McW7QhpcR635uK/PCZqJTIqigh4Djg2Anbf6lppsoDKgql7PioDoBq0l7FhF0dS1PvZAIcWbIxcBj6HlPKcbEfc8L82KXNfI3PJ37/n0/MVf7Wq1emfERq1KgCS9fwe69/Pm65cqnyMbef2MI9Z3t7vvb1hzr4w+9+4cwPvo9tjvBjf/mZ0mQSNWrUqFGjxlMJQkic2h7js2e6uPtMrzRUswzRIltGhnr7jEgVKqSEF3D4IdkLILWxSiiwNZomoNqWjkMLNlZaJlZaKtHTkUUbhxdt2IamvAx1CoMS6JSkFq/RMctNAx1bLw2vLs3qHpcpF8Lk/YkJWdnv1KQEbZOgY1EsNQwsNwwsNw0cX27gpiOLMPX0orRjG3jx09Zw9WoTxyoolykhpfdZlPRK/Z+/IM4u9qNw0VLiVeYTNSoRTP44Tglec/4+9hnO7IyLLxoiJqKkRN8NsDXysTXy0fc4toYeLg489IvqUXJTW0Mfm0MPPccP/SqL23mtpeH4goHrD7VxzWqz1Ju56kNJoTYdsqq0JKm60jJh6hRciPirPMRYlvw0P4pa755zfVzouWpszsHfqY0bDW3bQNvS49DgCBTIVfopVL8bArJnAVxVa4B5fKKHHsfOOMDAZbnHbYZjMhmpMGtzrez6Ukr0S9Tuu4Gccc0kek6As10Hnz3Tje/p8a0RLvTduH3dQOCxzRE8NpnreUhCz1I9R3NcwEQ6eVN4mJCT+a2oP8/3XHW9hGd48jzJ99/m0MPJrTHO9Vycz0RLpA5LXCrgojRxYe7x6uYAKK/3UztjbAw8dMc+toY+zvcc6LpK7FVkt7NXdJ1gSqUb3ZbHEp9BCrCbx8/QqfrSKEyNwtCV/c88G2r7jVrx+iTDyc0RPvzQxlzHfOcXX3WJalPjCwEtS8f/fMOt+Lbfvz1WWrdMbWpXPYn/8c+P4oeevXey/9ZrVvDr3/Zc/PBf3Fk6IX/owQ38+j8+jB//muv3fM0aNWrUqFHjcsOjOwE0TWKLdAEJXOi7GLoMCw0dpq6BQhFrB9oWQJSNgM/EVLKbKciJZ+A95/pY77tYappTixOljpm/3lwqxVHyMwMBsGDrqeQvFASPboxy8xEk67/WsbAWhhATkJggixZvkepN1wiuWWulznHP2f78N4AEMSCLF9wExf6pWyMfCxWicpS3oMp0n2z/48sNPPPowlRofoQzXafQ/zWJhWzilQxKz5BStxUXi5IjlakVbZ2CUAKNKuVehIHHUqrkqKmPLTXSCb5yTu0FAic3x9NetCFMnaKhm3CiRT6K8xTpGp2H/8P2yMfW0IsTIXngcBnHcsMs9KXUqQr1z0tclkTVZEhMSLAZCspzXTfXy1gj6nM94r5TmJ43ZGH7zots4r2zXSf9bFW5b6gkPFYmydPZrgMhJmr6JxMahqbsV2S4MUUUoT5wWCr8O2lT4DIBzedT9+szpdxuWTriqXYPfRcRmLmY5cc749zLTQOJaRYApmwwosgAISW6Y2WlsFNA5m0N/fg9Me8tZzdCKCVYNDUcSpyvbevQcybCzaEHN+C4YiW9EdZzAvTGfmpjpOqGXLLJS8nJCjd6se8iGxTiBgLbowBXrDTniqieuj5mJ4hM/Rz+oixpJKDmipWWCUqUz/l2BW/bvGtHyfuMGXNuXl33C7Xi9UmG//mxk3OVNzSCr77x0KWpTI0vGCw2DfzZ930Rrllr4YrlRmonMQ/v+9x5nOntTxbAlz/rCP7jK26cWe43/+lh3HFia1+uWaNGjRo1alxOCIRKyMO4xNjnSuUElZxiY6CUeusDDxtDDxsDpXLacYK5sv8GXGDkc5ztTidqKvJprYLsRq0E0HNZ2jOW5mc0dwNFYuWhNHR0H1ZOUSKT5LowzyO0CnabDIcQRca0bR2NnCzlSauIMiw2DKy2rdnVzhQgmf/V95Ofsov4KDFNaZVCou/IYpqcyFN+RiR0Kow855QX+26ofMu/5FLDiJN3AYgSWat7iL5JnDivTfOuO/QYegW+waOEgk1KCcdn6Hsc6yOGrTFTYzsT1u34Kix6KyRzz3YdnN4e49T2CI9vjUKfSXU/0XkHLsPp7XElJVzD1Ka8fm1Dg23q6n9DgxV+TSnDJCplli/CwFNJ09YHHh44P03wbCQsF6po+mRY6ELPTXme+kyACYnu2EfPCXLHYvJxXH0CokKlnJ4yjBxSXtcoLF31Q8OggFTHBqFiM+Ay1xu2qt3IrOe/TBEbJZzLU8HPmoHKQvMJIVhqmlhuqa8oUqEIXCgLmyzpmrxQIET8fpln7l1uGjANiuWmgZWmgZWWgY6lnoempaNp6WhZOlqmXphoaugxbCQSoPedANsjv9QjtQzJTYlZJGURomdgKk9U+PudUQC3gtp1DoF8ZUTjqMgI6PpDHRzsWFhpWVhumWjlvAeTWGkZONixpqx/NEpAqRpvu/Hg3Q88+baCvoDRcwK841On5zrma246NNvkvkaNCjjQsXDD4Q7ef8/sZFtSAu+4t4cffl57X679fV96DT53tod333WusIyQwI/95V14/5teUltr1KhRo0aNpyySGdeLFpW6RrFg6zNJuSJF3sANUslcLgWyC72ItOu7AVyfgxCCu0/vYH3gqfsgihCzNOXbNg/vuj3yK+eY9gKOoc8Q2/QRtQEtJSDERDGZwoyTyypp2nNAAJzcGmPhVBdHFhspZR+gPvvs1xLyxiPFiUp1jSDiz5O3cabrwOc8TiCmUYLVtgkhZUI5qe6EQI03KSW8ikTRUgWl8NBl2ByWbwykFK6J3yW/SRFJOY2a1869kPzJ63qPC0QtGnlGsnADRTKJ8z13ivQTIm0P4AUid/Mk8q/kQuJi30WvRD3HxcSbmADoWHqq/MhXFiAk8Uw1LX1qrFmGhmBGUqe9gIkJO8mExIycdBCQ0KA8ap1AoG3lk8JamFjv84EFi2K5ZYJLtWGWhKFRBCVekw1Dw1rbAqFqXVVmJ8OlLN6EmYMQK5tLpobhHiYeIWRpDo8y+wEulC9qNpQ/mVyrYxk42LbCcUxwLtxMdAueJ0AdujNWiQ5NXfkhCxltwHGs9z0Iqew8ji01SnOL9BOkcH+XNkBJqOgWI7XRtda2Yv9wEtb/sc0RRh6LN5byiHTGBUYeg8clbINCSolzXQdjf7o/orITFOtaqwyzpI9rNCctNXRIAEcXGzB0ioHLYrUzIUDT1LAhJHqOSgI26zpFwzKpjG+ZWumceakUrzXx+iTCOz55emrSnoXXvfDKS1SbGl+I+JGXXocP3HuhUpjRhx8b4Zuut3GVvffrEkLwC699Nh6+OMR954tDBS/0Xfy7//1Z/MF3Pf+SGr3XqFGjRo0any+kEx0Vl7MNDS1TR8A5ABKTNUVIrnXHPo+J13l8B+dB1kcvCrt+fHOME5tDAMCj68MpwuG5VyxBI4rga9sGCCaLW10juGqlmUucLTUNeBmCCVALeS4lFhsGAiZU9uyEqoZxRW5JKEuDPD/cWZ84Tm07qXJR/bKqz2mUk4FCVFO8xiVKIoXzMoYfW27ieVct4etuPoz3f+487jzVnbrXvsOw3CTQNaVMHXscpkaha8pPL6vU3Rn5pco6SoGWoaFj67jmQAsGpXF5KdW4Tl3fDWaHOmclh3JSg+j/7ZEfk/9VEHCReKam7ycibXhIDOZhKrFW5vICSCX6klDWE5ZO8ejGCITMJgnGPiu8fnwvmYmkkXNS29DQ0XRsCT/ekEhW2+Myzo5eBUkSxg8zyCfnKI8JWCV+jMlpyQs42paeO1fpOsXYY3ECr8WGkRpDl3K50DYpFhoGuJgmXtu2Do2iMHGRrlHlW0tme7MCYXvs+V6KT5C1Aqh2VHRsYjOBcVzoKXX6cnP+zb2IOG0aGrJxjtHmSdvWcXjJRtPU4XMRz20USnVeBs4leE6/jBLEZMBF4bzrMY4zOw6OLzfAhZh6tnaDoaeI15atYTu0stYpmZqvfJbvARuV4kKgOw7ijQgC9R4eej5cxqc2W7iQqfqXJcDaLWioTCWUYHvkx8+JpVM869giKCHgcmI1MQt5tYs2AklZoRAdy6hkR7Ab1MTrkwSMi7ltBhZsHS9+2uqlqVCNL0jcfGwR3/Ml1+Bttz02s6yQwF8/OMaPr+2P6rVhqkRfr/qt2/LDS0J88P6L+LM7Hsd3vejqfblujRo1atSocTlhnmXcyGdYbBhYaZnYGHhxcpC8cyUX9/Nu9BfBoKR04bkx8CClVKQrAW48spBS8eYdeWJjGCpgCa5eaWDo85SHaiCE8rrNwNRpTL5k0TQ0rLTMVObqJOIkZAB8zkGosvOKE7aQagl4YrIvJjHUNyNPEQJCCmgU0HyO8BaxPnDB5UKub6qQMqWALgRJXz+LIhJhfeDi/vMDPP1gOw4FpwkPWhkSmB4T0DWK1bYJJ8xi3XUCdHIsEiK/vaKlrU4pdJvixiMLuHq1VVBqgvM9d+5QZ4npPpCYkDq5oahhG3Eh4PgcoyQxkzm/QUm8kVBmAVBled91ApgaiRV2rZBgHHsMLhOXTp6Vg4DLQr/iphDx8yCBUkUjyEQ7tznwchMLBTOJ1wnT2HdZKvRbShk/LztDH+OA40DHQsfSp8LYtwuyxEfYGfmFYdBF9QqEBGMS54cMyyuicIPM1CmWQuJpqWlgoWGkxoQRKi+rKMRlgRpRFnyfh51xgCuXG9gaBxml4/TR81gNxGeQwEbfi9uj0IKg5BxcSKy0zCkCMHtMzwkwcDm2Bj7GPgNBRX9iMtuL02cCtkmxYBNsj9LXTBKEM/Y6K8NjAjolWLQNnEa4iVc8RRVi7Isp9XcUebLX8Pui8ZcuMymR7XsCZfux0JDQiHrHRESwSCntd2m3AMQ2K0Ue5MsNA0870IK2B0uVMtTE65ME/3DfxVzPrTJ84/OOFX7ArFFjt3jz11yPD9x7AWd2Zo/Hfz7p4Dufu3/ZL69YaeJXvu25+J4//mRpuZ//u/vxpdet4doD+0P61qhRo0aNGp9PRH6j0fdzHr23a+/l4BlruYgI7o8ZuuMAAUtTHFKq7NAjj0NKmfLp5Fxg7AfwWbqG57oulhrmdKhygR3A0A0wcAN4XIWTZo9ZbaVJ3IBLtC0dx5ebMWlEsDtlcOxvJySYiFSSSNmEjUJvzI89ugkpgZW2iesPddC2dLRtHdceaCkPyVBh+XgkiQqx1DCwVuBHyIVSKZYRXI9vKX/RSJ1pGxqOLTXCthA423Ux8jkOL9ighMBnIibu87o/ImuLsNhQWeqrJCSLUEWEJTM/TJ6nnPPlXSP8nwukPBzzEIRKMSlDcjREx6SIHEzX2tPkUdF9+FxiY6gUuQc7FlbbJgYeq7RBMkvtmofdUDCUUiSj/ZWCNb+nhVSiIjcQhdncxwFHuyQhHJcS0QjJrS/J/XYKSw2zVE03T6Z3IQR6DsPAU9nrHc7xwIUBrikQoWiUIlqqW7pK6haFituGBgtq3LoV/Hv3LTCBlKXGKzqm/M9R1UYeq6QAnTWXanT6Wcke0xsHGPkcF/suhjNUrgASycsIyAz6JOASbVPHsY4Zh8X7TEyNo6LnecHWyzcmCq4pARxaUKGkecnjirrBNjSstky4AYdOJ++Wpqnj4sBTatBEZX0mQICppI0CJaR0lY3HhOVO9i0goVTeeRYjLB0cMz8ixnfGONWoUt5eKtTE65MEVRSGWbz2luOXoCY1vtDRsnT8t296Nr7jDz8+syyTwP++p4cHnEfwHbdeiaXm3r1XX/qMg/i+Ly1X3bqBwL9959145w+9eK6wsRo1atSoUeNyxPkhh0aBPkazC2cQrUfzSbDi40Yei9V1u0WVEFS14JNoGBqETIcrd8dBeqPXCdA0NBxcsHFh4OEItWO1ZsBVGKUiLYawdS1UNkqc7zrwAxELEoSUcHwOL0zEY2qKMJziiXJunTEJWKpuRaRRVRACHF20salRDMdjeCx/YXl2x8GhjgXL0DDaZljvu3jR09aw2DCwnPls1bJ1iLANL/Y9rHVMLGT8eqWU2Br5cWZtPbRuuGKlWRJCO03+JNXJHVufUi/mhaXGiteCwbHUNFQdMg3RHfvYGHjgUnn0HQzbI1LXzoOIwDjfc3KfgSD0FEz5OEbETE69W7aOplAZ6N1AxOMuIsw0ou45sh+IthcMDbhypYmzXQdcyJnPi8cELvRdnOu62Bp6CLi8JGGxXAgQoUgWSncn4pk1a5zadgo/o1dSjyfKZAnaeVrE0Chalp6j8ExDSJXcKrYLyVxMI0p5myUWRx7Hxb4Do8S0VkqJBy8Op36fVDrPQmGbJf9QlRwrwW42maLiWWIy7ywBF7jQc8GEgBSIn6VormnbOjqWkX8riY6PFe1zvr4snU4lDcxChBuCANAxKIYMuR6pgIqMoISk6ltmD+MzASklKCWp0H8mBDYGHl75nKO463S36u0AUMpqU6dTSTJNnSoiNdVucu75FMjvS1unWG1b8ZyZvO+pKISSfmKJDqEgSrmaGdbxjzltuzH0QUmx0jXC1ihA03RBidrsopRgIYfg3i1q4vVJgLtPd/Gpx3fmOubYko1nH1+8RDWq8YWOF1+3hn/1xVfiz+84NTOM8P0PD/F3Dz+If35wA3/+/V805R+zG/z7r3sGPv7YFu45W+z3euepLt522wm88cuetufr1ahRo0aNGp9PPPKJfwJA0LAtmDqBNgcZ0jQoztsGBm4wpX7bbuhxYqSAi5SVz2lKsNJSiZJmJS8qwthnhclMAGBgaaCEots0IA91wB/uYHPoYXvkw2cC957r53rTPqpTuExgu2PGi6lACOyMVP3PNo3U5431gYe1tqnIL0j0x0GcKCg6fgsyVxk1ypCWj0ElHB04QUysNQwKLjBVV1Mjhao/AOi3TGiUoO8EWO+O4HMBQgjclp2q/2MAboMiaQ8t2DB1ik+3TFx7oI1PndzOPTcXEt1xgL4bxASXbVCMPK4SmCXGAiVA714LbVuPbRp8JiAhY6Hwua47dY3u2MdmuJgnj9pT7dcytSllVt9VSVK2GkbuuBp2TAxdhqapo9PQAamOGUYksUbQtgxohODIko0HLwxKlZ+6RjBsGhh5PC63aelomBo2hx4GLsvNFm5Qgu2E7cRWQ4eta6ruFf0GA8bhJAjrwA8gpYRGCboPNLHUNGBqFDtjX2Wtz5TPom9qGHdscCFwruvuOsv5LJxPfN8qSdJcNg+NvPx2jTAwtUJSN2ACDuPQl5sAJEYen5pHAiZghErtAx0TF0AgIeM5QEGR367PMWoYaBgaLuQQKRLKxzmyj6CEwDZo6v64EBhVtGCJ+pkQAsM0sKVT2IZWHOouJfoFxK+lU3hMgCJhVZJTrm9qU/2hU4Jhy4jnOJ+JmaRav2Ui2y0EBKNxEM9vQwDjTtraoUgFLoTyQ11qmdgaerE/MAFg6prysQ1nGSHUuXpuoBJoJaw/1lomDJ3CbJj43AUrjgSIECWRk1Dcm+vzeE7uu7OJRJ0SdE0dXsDh5bxzku+BhkEhH+lg3O9hc+TDEwRjmX5PjDoWuJCgdJrw28p5pwop4Pgi9czolKBhaCCEYKdp4ISpYeezi4V9eLHvls6FU57SUIk0JYCBpauGKxmL2Wc22a4jS4eupS13LEPDVgFx6YcbpRGSn0Xic64pq5mTmyNczKl7HpJb06YWqWsj0auyIGFCYujlfzY5B8DUaNpL/HW3VLr2LNTE65MAf/wv86tdv/n5V9TJhWpcUvzUy2/E0GX44Zc+Df/qDz+RO5kDkw8HH39sGz/73vvwM6++ec/XtnQNv/G6W/ANv3lb6Qvmv//9Q/jKGw7iuoPFmXpr1KhRo0aNyx0iVAgGQiDwgcimsGWqxU5ZKOVuqRkmJvYGlkZzF6OzURDfHyKyaaSJ8MNI8are7/nHVgm9zWKpaaLvBPB9pWylmXjSeVRcPuM5srr08Q2Dqt+UEK+Ta6d/dgIOjZIpZdS5nguPCVy91kLXCUrrvDXyYxVf1KZKdSlTpCswuZWhy7DaNEEpwYW+uhYBCpWJ0Xk1QmKvwNR5C5Yiub8O74WAhNdl0KhaJG+PpokGLiW2hv5MdSPjod9nyjtYwmMcARcp1W6qOpmftX1cV1FC4DEOIXQgsb4nhExfh0yiZKM/6ZTC0Ag42+3TXR1lZOOCXUy8mhoBE9OJu4Cw/yu0Z2SBkSVkAEUYdTKbIgQk9P+cdPfY4xhShpappyw80udiqTmUS4mRz9Eyy8nlqpBQ1gpFRHNZLwZMTBFB2URkQL5iMKvyq5KkC5itDDSzKusyBSeXcYLHqbHkcfhMAyG0lNhmQmLocxyydVCqlIl9J4ATcDRNDQ1TQ28cxBEPuwETEm7AizcLonB1hFYZ0Zw647x5bTnVXFJOka6TOgk0TA1CSCy3zEJSdK9wAo6GqaeVuUCc4C1S8hdBqWojIr0CEifTtel3XRLzeCxHWAg3yvIQCAEmROHnJp8L2HqOn8UeURuAXua40HPx3s+en10wg9fccuwS1KZGjQnalo5fe90tuP7QAn7wy6upSv/k9sfxjk+e3pfrX3ugjZ9+5U2lZXwm8BPvuBtsv9zNa9SoUaNGjcsAI5+HXwxDl8Fju0uG1XMYeuMAPUctZLMQUpFEi02jcshrEtllCwVgUIqGTtEytZhkitY3UTg2AOyMfVhGxUUcVAhihNxlWvjL3bZVEk6GIMjz0ezYRmWyzuMC2YCgogzxO2NfJfwREvedL478KbKWSFoGmBoJiYuJFmfkM/TdAFuh8nhr5KM79uP6+FxgHKpHkwvXfC58uhZBmHl77DNE/I0QinTQNYrDizZWmmZcJ7+EZHcDXplMSmLocfQcBsfnhUdn+Rd9NyH9Bf3PhITHRKh0ndyfHoa9p75MHU1TR8PU480CjRKYl0Mej0wjBYzD8TmcUOleNIabplZKtBT1iTq3Gnsjn8U/Oxki0khuFERzCyaexkxItYnFlR9xdiMiQtHv54aclWipeAwLqGfO8Vn8lRcFcCkoeJ8J9B2lmh/7DG7A4QYchBCMPBZbmiQTF+VVTALgMr8B5nGUdXw190TvqoahQUpVz7LxVBU+F/E9ZTHyGShRKlRKJvNzxyRYa2pYbOhYsHV0LB1tS8dSw0Cn4J1JQFLktUhYKWQRCBFaLajHbVCi3o0I+ugren9KyEIrjeiqgZAQmT7SKAWlFJRQWDpNb3Rkqrs9CtBzqkfGRNEUa20TK02zNCK2aB4pw9hj8XHZkUGQSIxZgLJInd2iVrxepojCE/709pNzd/yzji3gmrXZWUBr1NgvfMetV+J3P/woNoezwwDe8q57cN2hNp535fKer/utL7gC77/nAj784EZhmbvP9PB7HzmBH3npdXu+Xo0aNWrUqHE5IVpQqFBUEofeJuEEAhqdVkhFqKpk3euyViMkNyFI9DdALSyPLNrx4jLyfR15HAjDSGW4kpeIkoCoEOO0f1z6s7NS4UTEYYmiKQc8tiRA3AgeIzOVPVUIwUAICKlOmu05N+C5i1EhgQt9Bwc61hQBPAsSiIk+UyNo28ZUNuudcRATVBF8LtEdq+ROyfYrIguKQIhSMvPY21chUgISovrcNGic2KWMKJeomKkcBd2bEWRH4zCrPFOJj/Y/klBCZUKPFMUBF2kyM5HoiBBFhEQ/70YFtt9IiAABIFS47gdZqe6t7wQJ8krG/sE89NKlRP282NAx9hjM0O9Y1yh8nh035RYRedp8LiWkFCCzsi3NuhsJ0Op7SLmYmZTqEgwHLiY+xUxI6BrBOPTG9gCYBo03vEyN5kYixPYIRfWrSJgOPUX8HltqTM2L630PtkHBpZiKZNgrCNT7Q6MUtk6x1DJhahQ6JeBQJL+mUViZDl5umSrRYAHhGZGYhKh7ozSt+k22ipAyTihGAJzeGaskYCTpuUviObtharFN0H3n+ug6Qe7spWsEjcRnBoMq4jb6rJDcONQohaFRGJrIJS0F5FQyrlmwDVpKmI99hp7DEMyr7JcSHlNRDdFYkeE/kU55Fr/GhcxN9LUX1MTrZYiTmyP8xDvvxlu+/ka8/eOn5j7+G+ukWjWeYDRMDf/mK6/DT7/n3pllfS7wQ3/2abz3R78UBzv2nq5LCMEvvPbZ+Jpf/ec4QUQefv2DD+NlzzyM6w7mZxWtUaNGjRo1LmcceM5XgBIKuzF5bzYNDU1LAwHgBRymUa4icwOe9i2rgOPLk0WukGphJaXEud6032ce+gkf1IMJT8Asbjjcwc3HFnFksYFbr1nBe+4+h1boXdod+9gZB3ADPpUJ2ra0OCRwtWVhaayIlbW2mVLnbI98XH9I+cc+tpmfoIxxge1xtaQiDYPi6FIj9dnD1inGPldkJAGedqANL1DJkIpwoG3CCQSWPIZef4Adh6X6uajNdErwZWF0W6yYDNeRAkoV9fjWeOq4tqXjsc0Rhh4rFGkMXYa2reP09njm4jTyDTY0grW2NaVMOrpkQ6cqfP4ZhzvwucRtD2/G6rFsGLdGgGdctwr/TA8ek7B0imMEKS9AS1dtH+HBCwOYORsOSVyz1or9XJPYHvnxPZoaiZPA7ox9SAmstEzYOsWhxUkSN8YFTicTvhVACIHNUYClxO9cx4UIySG7YWPR1mEZGihRBPLWyC9Ud+mh53L0TFoXB5XH66XCWstAIADXZ5AAWhWJl+WMB3MWY1+F/mfHf/Qpfugq1edKSynlVlsmLvTdeEwfWrBwsa/EIN1xgJ2xj8WGgb5THIqeHAupujYMGDqt5I8aIdvPlk7QNPTcjTFgMlb2graloWmmqZ2GQbHcNMHCxG3jgJeulwDg2FIjfp56ThAnxBq4AUydYuAwrIX9kiw7cILY7zmJnZGPQEh0LA2DnNDujqUU9wET2KnQvjceX0y9x4SUeHxrDCEllqWEnmPnUGSHl4foWcz+7uajC+jYBp5zxVL8+zOnzyAIfBiGiYsiPZ8+/6plOD7PjUqINgajzaezXadU2b/SMnHD4Q6OLjXQcwI8sj5JxMaFwPmui5W2mep/U6c4vGDjwU+fwWrBebNjxtAIjizaOLWdP78d7FjoOkGYAAzYyAiuTI3gxuOLkCHBmWeXE2HoKiJ9reAdF1mJHMDkM0BVRJ7DS+E8k91UaRgUxsDLjVSJsNgwYquT/UJNvF5mYFzgze+4C3ee6uKbf/f2uU3TCYBveM6RS1O5GjVK8O23Xok/+OiJdPbhAqwPPPzo//oM/vz7vijOMLxbHF608dZXPhM/8c67C8v4XOA//M3n8Fdv/OLa+7hGjRo1ajwlYOkTtYgdLp4GbgAupkVEBNjzIoISAlMnsQJ0XsiMyjGJaPF+oe9ifeCmlDbRMXlHDr1JuPvm0I+JmnwRb/ln6ugjt0EJhJSl1qwqtDaTMGXkw/E5oku3TBcde/ZSKwoBzWuaaDEuoRIy5ZEK957rzxWKWfopSAJOwKayxGchwjEQtRmBUkdlA/eTCbnO9VzYBsWFvgsmJCiA5UTiHwAYeAy3PbyFkc9jmyifC6yEvrNhFdNVrrBW2hh46I59eIFAK3Fv2bY4tGBBSOXh6zFF7GUtNqp+jJznKYm7r+RemJAYuQwbfU8pDjNK4KahYZzjs3upIYSAN6fSrQyGRqFTCo1yGGGyniwh6nEej5uWpcUduRMSf7ZOlWdlaqNJprxfq0LT8sfdPFBEVLmdwF6gPIBzvERB0HcZhrv0BZ31bCWfBVLgNRDdW1FghRMImHq1FjDo9F1GdXR8vu9E2eQaQN9lMDQKN/TfBsKEXgXHbA49nNwc4dTOWCktZXoMHV2yc72LixA9Atn5Z+DyWA29PnCVEjYsd7JgkzEC5xIBE7GPtJAEjEtwoby9s57EXMhSgtjnMkXaHupYaOZEuQzcAJtDH+2CCBgZ+ne3LR2EkMpRDUXIPvcaIbhiuak2FcJ73x75qXf+pRhJNfF6meH3PnICd57qApgOc6mCL3362p5VhDVq7AamTvHjX319KQGaxB0ntvFrH3wY//Zlz9jztV/7vGN4/z0X8MH7LxaW+cRj23jnp87gW194xZ6vV6NGjRo1ajyRaOoElFJFMoTI27f0mChcpFjG7KUEEwJeEIWi07lJiiSklJWTYBnhAk9KibM7TiqZ0yTUuvrGafYzNEH1JDnLLRNcCGyVKtAIKJSSk5AoJJeDUgIaXs/xlfdu5JObB4nJYjyvRFJh1zI16FYUkr+7TWQZqnHji2dOIxP0UFnX7zgsRfYSApUJvYT380Jv16hrBJDfxm6AgKdDQQdegMWGGd5DunhUTEiJgIspAooQpWAd+xxcSCR1aZQSaGGmayMMH26aGiAb8JjYla/xpcQo4NDcYEr5DQDuPngXz4uxL3KTqs1C2eg9tGBh5GkwxxTHl5vx74dugI0wEzwXgE5VCPhSw4h9i7tOAEMj2B6p/k4SrwGXsVJP18jUM1RUp/j3e5gMAz5Nu3oBj9Xqebx1nvVBHhqGVrrBsxsP5PjYqV0OpBoq2WbFs6s6SRGvwYScMddmkJ2zZPIqlwYSyiJl7Dtqjg/HzvaWj0NNwMqZJoRQG2f74bwhpQTjIraAkXJCwLqBmgsYDy15EghmvH8dJuBky0g1L2sEWG1P1KgaIZk23l2LjzyGzfA5HnoMtk5h6JnkcUwZqcjQVid6npOYh4wl2aeJENWPqc2CbJnq56+Kmni9jHDP2R5+9R8e2tM5XvPcOqlWjc8fXnPLMfzeRx7FQxeHswsD+K0PPYLnX72Mlz7j4J6uSwjBz7/2ZnzqV7dT4WhZ/Nzf3Y+vvPEg1trF4Y41atSoUaPG5QZLJ9AoSSVBykXJYoTOWEmMPJbKKj0CR2fo4UgirDuCTpWvapk9rJMhZHJ4vhjJENydsT/lO4qSY/OQVeVahobDCxYuJsKRs3ADDiO0UJi1piMAlloGllpqxX2x52K1Nf3ZImACAjJWNgkhMfIZAq7Ud/MotKI6GRrB8eVJn8zTLsn7emxrBFOnWGuZcRIWkZVlVToTYpVVtSNnK49jsj38CrgiHmxDQ7bJIp9ZxiV6TrmyLzuuksRqw9Bg6hrWOjZaloFexbDysvsog0Ynasr4mD1c7xLkgpmJvSpsNTqthLzQc+EGHEOPYeiaaIWqt7ZtwDY0jDyOkcfQMDUcWpgWG5m6BgGVDGkNVkxQjX2OrhNASBUCvWDrpXYHWeiaOgZSol+QDT2CpREIqebslqnh4IIF1+cpgtXnojTUuWFQjCsk92rkbKgtNQylkNcoholkTC1LL0yyFCH5fEbfRUpHU0u/RXoOw2pbbYgUbgZFxOhedvEikImyd+yx0G9aYhwmWmtW2FzcM8peZAlsDMrteAImChWvPhPoJWwxRuG9bo18uAFHdxxApwQDj2F94MUbfTM/H8yDzD1SSiCFemd5rNhhWggZE5p5ozc5r0opcabrYMHWsdw0Y0/r7bGHgAn4XClvGZe7mt+S/tjJCg89BmTcJ/I2a/cbNfF6mcANOH7sr+7aUwY1S6d42c2H97FWNWrMB40S/PuX3YDv/9NPVT7mzX91F973oy9J+XXtBgc7Nn76lTfhx/+qWHHbcwL83Pvux69+23P3dK0aNWrUqFHjckTpp8iSlYTPRIp0jXCh70EIidWOFStSNEpxxYpSom0NvVz1nZTT6puUTCdRjhCC5HrZZwLthIQoOmQekWc29N5jHI9tjrERLlKz5+rYBmiY/GvksWrMKwBI4OLAw8AL1GJOJlSsUiXEsXQCS9fAhEBvHKTIl+7Yr7xYHvsqsUxWPTvPAnG5aaJhaFgPSYGhx6cWtDIua2Dk8SkCPVUoqgMhKXuIMsziX6SUWG6ZuX872LFikjgqO2+CryIEXJEdOiWlXshFBJMIVdJVa9MwtGnriAoHP5UMs/I2bpiQ8JiAz5VP4zgQsYWIrlG0bUUg6jmqeED5cRaRfFE5LiR6TlBqYREfE/a3RmkcZTDKkKhZNA1FvDZNDdcfWwQAnN1xwMMbPrxgQwiVEHFUQF5XIV2T9YugU5J6fgbunBsIifuSUsbetlrOwOu7QUy8Fg3Mtq02MXYTyZtF8hJDn8XvmJHHQel0aPx+InpXyQzzWsTdPL41ju+bEgJKkXrek8ku85pu6qyJX+Rtag48lUhqrxZ+EfGe3Eo7vGBDhP65mgZ4w+IkdQOPFUYKCCljdXqEvqs2IpNJGyNv+MVxAJ3SPauZaZZ5zUEnjCaKShU4Z+wJNfF6meCX//7BlFHybvDVNx0q9MqoUeOJwlfdeBAvefoaPvrwZqXyO+MAP/IXd+Kv3viimckRZuE1zz2Gv77zbOm1/+YzZ/Ha5x3DS55+YE/XqlGjRo0aNZ4ojH0BQgERqkUIkMj2PUHZ0qIs8VZR5nifC6wPPRxezN8cLTplVhFDCwpvDH0YlOC+8wOcCf1ACYBDCza2Rj5WW2ac3GUexilL6BAAXccv9DqMyGMvYOi5s1V80a303ADjMLGQV5B5Ofq9M4OsIVAENKUqSQmJKh4ugQ2NYDFUsk3fXfWlKaUktl3QSNqVVchJsq6ObUDK6UV+Hpww8RmtsFqNF7YIs3SHdg2UKFV2ICQ2k8lwwlNqhIBxgWcdW0TL1mFQCkpQOcoqee08MCGxPfLh+hxXF6iiAfUc6ZTkEi5PiOj0KcC8zrLKSLbjyGMYmRpa4Rp3IxwbRW1NifKFFRI4vT3GyOMYeGreTHaZ8vIV8dqjiKwVQkwRemX93DI1SJ8A4T5TwEWoWJxMSroWWsfYFELK6XDvonsD4v6P7mVr5Ktnhyi7jCtXmrnHMi5wsefCZXwyhBLzS9NQId99N4AV1mfgBuiH75xY/VpgP1D06JuRR+4+hNz7XMLxGRinqU5Yahg40LFCdTQq5RvZL8wSzUXvFksnsV3KLOQ1ZbTBVPbkDFxWuGlVBXmrcBVpo0jJA20L6wNPPZMFqm+PCTAhFMk8Q0U6e76U0PdieRRe0NBo6vnLQ5T4jRL1DF8KEr9m6S4DcCFxMifz6LyobQZqXA4ghOA/f8NNeNmvfaRyWMBnTnXxi//3Afynb7hpz9f+2dfcjK/91Y9M7agl8ZZ33YMP/NiXzZ3duUaNGjVq1Ph8wBMAlQBNvNs6mTKzQjndgMMyaG6CprKQV59LtCytwK81fxmYXeQYWnF2Y11Le8dJAGe7YwycADIMcdW1WUYJaeSpIKsEw0tZ7SoBF1jve9geefC5qKS69JmYLGwTlwm4AOMCHpMwqCJkTH2y2GwYNF4EugGPCShAkSnBHCaC3bFKJuIFyo+WS4Bm6h5wifM9Bwc7diGxnkcgV/nIF43RpYZRuNkeZbTPnni5qUjnaw604kzcjIuwrWQlgrjKCp5JmUNup9GxDeyMM6qvOX13K6ncco/bX+a1bWkQYu+2AZcSjq/GverncLwnlZkFxzEhwWW+73Xb0mKLE48Vb4r0nBwyq6CsrVO0LB2RINBnYk8kYMfSYBlaqNJP9zsTAt1RAAFFwgop0TCUl/c43GAydAqfifhLKcSz9yHjb7kAtkcBTJ2H9U8nj8q77Uj/WUSmR7/fB94VgNqs0xNkoE4JDiw1ZiYE3CuKHAa2HIER99DliH1JJSI7ngmyG3MDl6m1qgS2hn684dWy9IK5ITy+5PEPhExtFMzLV660zITiVSEZPcKlxFLTAAHw6EbxhpcXCOjWNGE6NUaixGgBhxuoDQHLoPH7NGrHee7E1AgahgaaiMJoWRpGfrUEc0Iq8tg2ipOB7hY18XoZQKMEv//65+N/f/oM3vruewtDDsqw1DTw5dfXCr4alweefqiDr7++g799cFD5mLfd9hheePUKvm6PdhlXrbbwo1/1dPzSBx4sLPP41hi/+U8P49+97IY9XatGjRo1atS4XEAIQcOgpSRqbxxguWnMpeawdFpIRBXxU2JO6ywpZRzKGWU87jsBmFDJe5qUYKlhwvGFClmVsjSTOhcSj2UyOifVRlLKmHOIE0qF1gB56FhavKiGVOTchZ5TWam22NBz/SyllOg7ATwu4QaKwKVEQCSIR8ugMWHbd4OYePWYwIVeuY9gFiOfY2vkxyo2AHEYt5QTpakbCKwP3Lki6bIhuLllJGL17rzojgMst4wp4vFpay2c3BrNlYVaJauZEBkTdTHAfYHe2IdWErK72NDBhYjVbAEX+yJ3XWoaE09MRLyY+gUTMtcOZC9oGBRNUxGaVqh2jJpFI/kEexZVy82F8HxewGEZGgYew1rHguOLbJEpEKQ3XvJGmqWRmLw3dRqGwee3bSDkRMEXouipT9aJCzVH5etPq4GEnpdSqqRKEcEqpIQQ0/XwucSj60O4gVKymxpFwMWu+ydvM2O6PdVz/0QKsaPbaVs6DrStqUrtZUwWvrqi6S3n74xPX2+WEtbnQiWMkulND1Gw8RNFH8ya8wMuEeZghKERrLVN+EzkWgJlQUi5V7QQEgSRfUX5+xdQybv0gMcWPLahohTyrhHNd8nPL4RgbsVr09RxIHynRX6ylBK0TL0y+Rr56XZsYy4f9lmoidfLBIQQfMsLrsBtj2zi3Xedm/v4VzzryJ7DtGvU2E+85saFuYhXAPh377wbNx7p4KrV4hCvKviBl1yLd991tjT87Pf++QRe9ZxjeMbhrGaoRo0aNWrUuLxRuMidsUDhUmUMbprpz4xlC1UzJwN4hZpULuYEShXm+BwrbTPOeAwoX8W2TbHcNNCxdJzeGae84KogCgvvjv3YtmCenAoUmPJhzSYimwVFOE6v2uUMAjmLJL1xZnsMStUil5ByK4mpykz9DtgY+ClVsxsI2Hp+3QxKpknqCrchodRHZUqiokU2lxKOz7E18nBEb8TJg6492IYAEPAhHFbsPZg9105J8iydOqV2A4QQrLYtWDrFxtBHbxxUUvRRArQNClPXcqOuypI9USYwBodG1XkUWaxGBBNKLW3qKgTbYdPevWUghMDQlYUC5xJNQ0Pb1rE+8EqPo0QJiPicz2RVkm7gMqWWjxTfKUuUyTWTRNXEh7MafKYS+Ng6DclNOTUXci6hU2DkMrCKCvNAAEXdSQp/mEZ3HBRuCGXhMZHKGZQfpVAdKSV/+G120yTiI8tE4i1T27dNg61wDj/YsbBgG6n2u2atBUunGHscXccvjX6cF1xKUJDCI6mqpgAAz9hJREFUkbXYmC8hX8BEHN5eBVJW29B0A46xz8GFhJ5Qf1bRjRJCJhNw2K5SSJzaHoELYNHWsdg0sDkqn2cjP19lSTAhO48u2an34Kz6SEmmlMOzoFOCxYYOFvo4A+odfqBjYbRVjXgFFDncd9Rm336hZuouI2wNPfzfey7s6tjaZqDG5YZDbR0vu3a+hFkDj+GH334n3D2GO5k6xc9/47NKyzAh8f/+9WfnVuXUqFGjRo0an29IAOsDD72xDyYEuBAQQqAo13BSBebkLIDLSLuGqUMIiZ2Rj4t9F+t9F+NQOVK02F5sGCoDeKoGYd1jxVZiURwqYpK+cckqWYaGnXEwt0XQ1atNXLHShG1QjDwGJuTciWwFgIETxArceUGgSMxZ4euFKKjuqe0xHlkf4dT2GI9vqcRh2aRiVU4nodRXeWqgIuLCzGGUZi+iVb8395B52wtDt+863cXDFwe4/3wfd53uojtjbBiU4GDHwmrbqlRZt8DzeOq82nwhvSIR2j1vGKuhUxzoWLhmrY1nHOpgtW1htWVipWXiYMdC09QUAU8V0dWxNLSt8uelqAZV8/O0zfyw6FlQ6vHiVouIU0WohySNzGZEn5Q3tIkqP8kdFcHjEj3HRy98rnthMp9ATJOugFIkuj6DE/DSjZLkddWGSEH4fclPWexX8rgqyF4pr2a2nh5TUT+WaV6bpoa1CgSWpZHYE3YWJhYtHDycl4WUOLE5wsWBu6+kK4BYIR8RzSstM9VA+m7n9wz6LsPOeJrAFbLadoLHpbIcgFJu9lwGL+Bo2/pM9SYl6t3dNDTohGDsM/hCxJEaDhPYKkmsFde1oOnPdV1sj/z4q5tzn2nMtn0B1PyuUwKDEhxfbkCjNPWZJvIR78xpRyGhbBP2C7Xi9TLCn93x+K4miWNLDbzgquVLUKMaNfaG77+lg0+d97HlVCdS7z3Xx395730zidNZeMHVK/iOL7oSf/HxU4Vl7jzVxds/cQqv/+Kr9nStGjVq1KhR4/MBj0t4o2oqm4iT42G4qkpCo0KuSwk7CdxzroeeE0xCsnvK57KIsCWEpMi5ZCmfy1xlkESaWElWaXvoYeCxuUmIgcuw0DCw1DTTCZvmRGQpYBva3LIVAkVsugGHqdPCNisKwWRcAERlxI4OHbgBtkY+GsakMkOPgQvlwTfyWBjaqaFlphWm2SakIIVJx4rGRdPS4HORUuJJqUJ/s+cSQmLkM7iBgKVTGI0ZDVjSxSxUJD50cQCfCRxcsGNFVdlGejYqcNYo4mJifVGKSBU243xJ9H0Jk3F4ZJIkqmPpsAwNXAiMvGTCM5myHrANLRwnkxJqw0XZSJRtKiw2jLjzKVEqsqzjiG3q8OZQ7dmmVpiYrwxbI5VUr0oioKHHYBka/Mx1snd645EOzmw7cWj+LCjPzWo9F3CJgFe5z8n5dI3AqkAilpbIerJeQuTVgySywQuoTbuFRj59VPasKOKLFM5xgIqsWGyq8VAlomBnHMALBMYBx4G2hbZNwbhM2ajE10e1nu5YmlKLFoTCA8B1B9tYbpjQNIJHTyfvscIFQoiCDcDFho6By/JD8bMBBlJZcVSBwwTaJWOxoVPYhoZjSw1wKTF0GTaGPtqaBitBtEspK91o2Xuay+qbn5F3cJRks0j5Hf2+aSpPZCC9KRxVebVlwQ14vJlTBftp71ITr5cJ3IDjT29/fFfHvvZ5xyplEa1R44kGIQRv/cqD+NH3nZ/rQ+lffPwUbr16Ba+5ZW9K7p/8uhvw9/dexOaweLH1397/AL7mxkM4vGjv6Vo1atSoUaPG5YwkGTHyGHRKckMdo0+UEko5BwJ4vpgK8feGPlaaBvSMPI4LFRKeTLDlMgF/4JWHY8v09x5TnqcEwMYw2JU4YXvko2PrWLCNSkqdWWia2tyK2QhBmOBmoZGv/OpYFDvO9D32PQ7qcayFvnXAhKDOrm+dgMPpTfp04DL0dYrDi3ZM+GZ1U5sjD2NPJV7LglLkWl8SQrDUNOAGUT8rL8GVkEiLriCFwNbIhxASpkZ25e2aRW8cwPE5XCawPfTihfaszYORy2I/31m1iBTi2gySobK9QwZMAkkXh2QymbLwcEIUucp4qBgnBDvjoJKfZTRmGjoFpWRCVBMOQyOIeE1Ln/OeSFVaK43kEVxIuAGPN4SSXRnd26DEo7Jparjh8AK64wCuz3dRm71j0dZTVhGl2wtkYoEyC/RSeOjm1klJhcsuFYQenwfaVjxfaET9X2XUlJVhyZuc837HYbLAnhMo39QM2pZWKay/YepTtjIRVpoGOg0DfYfBC9Q8Povfz/vzyGUYB/lj1NQoDI1OvesoCeftaJ6QYUI4IdEylP94kNkIy2JYcv+6RmDoFLpGwQIOQpSCNBudwIWslqQSilzO46csncKQ6jwe42jbkw0hGd1c+L0dJlCLSPtZSBZJbgRExxICHF9q4mzPgZ/Txpd6k6MmXi8TvPPTZ2LfqXnx2ucd3+fa1Kixf7hm2cT3funVeNttJ+c67j/8zedw87EFXHdw9x6siw0Db33VTfh//uIzhWUGHsNb33Mv/sfrn7/r69SoUaNGjRqXM7LUSFECLkrUAjPyVMz18kzAYyJFvDIh0B0HuQuYMtpUQinbPKYScUQExuYeydJIJXjzsUVAKrsEnoiDjEi4QMxWljUMio1QNVvVcxGYqC0JIXACDjbyQyXPdOijQctJFkLCBXZYqApx4zHVJzEpmjmkjLBsGDoWGwQX+9Mb2IQQRVTEZZWy9kCCIB77DONAoDFb2BhD0wgsEZHEmPwf/vD49jjuq5Gvki9JqVTUpkZgUAo3k6U+m7g4CgvWKYFGSS6pLyRQxdiiirpyv+AxiTM7ztwew0lIKF9TJiRW2yYQitg0KuMQZ7Oio4etUziaykI+j4osiYCr8TnraC+bmQ6IVclRFyzaBrxApMb4E5X2iXEJq6IdJAHBFStNOAHHI25xPgoJwNK1VPKl/YIRPgPRXBYwAUOn8bPlM1G42WVoZNqPeEYzB6w8yZfAJJla1ZEUPXuRlyjnYkoZDSibDszhp5qH7XGAcSK5lZRAbxhgrRFaXOQ1QOZGxj4rTaJOiNqcygtAEIl3lBsw6BpN2avM8mMuAwsTyMkE8Z5HdApZfb7rOUGuor2VSNho8ZxxlICpRfcn597gSZGwyZ+Imic2sqKsglPb+5hDqfZ4vQwQcIH/8eFHd3Xs865cwjUl5u81alwO+PdfdwOuWp0vr+fY5/jXf35n7CO3W3z9s47gpc84UFrm/957AR+4d3f+yjVq1KhRo8Zlj4prFiGRUoLMIhiFVCHZ0dewIExyFsYBR9cJ4AQCDhPoe2xf1JEA0ApVOwJA29ax2DTjr6Xw/7W2lbvQbBgaGuHiVkK1xzykaxJRWDcLz5ElqqqsZwkIggQBVdV6YeZnqYKmnidJUV7JYYVM2gc7Fo4koo5MnaJt62hZOlqmjoahoWPpaJoaKE2rkiLSmPGJp2HL1mOSubCuYbtZGs3tdwIVyhzkkH3ZcvuJKkrcvSJS1KqESASUkljhNrnO7CuttAwcWWpgrW1huWliwVK2Fi1DQzNHPZ2FDEmcnjObdJ15rqjeBAB5YsnwCA7jkEKR+Tol5RHZ4d9MSrDYNNAO/XjblvLmjb4MncI295+uaegUS00jNfYdJtB3lZ1Ld+yjW2I5UdS6ZarEnjvbwqLnMnTHfmWimWf6ucg8QqcUC1a+3lCjiNt7FtxAkdEeE6F9jMTID+eI3HtP1ybPX32tbWKtbWLB1rEx8HKVqQOPY33oxxuRWUK8bLxXGT1OIDBwWGixEv1W3VD0jo/Ak+rUEgRCxpYtXsDhBHzmfJpF7PUs5yctCZnMYlkbDELURm/PCdAd+9gZ+4Ubw/s5x9eK18sA77nrHM52nV0dW6tdazwZYOkafuc7n4dX/da/VEr8EOHh9SHe8jf34Je/9TlzJyGIQAjBf33NzfiaX/kInJIX+U+/+168+Gmr6Nj7l72wRo0aNWrUuBwgZPmiOAmPC0Q0WGTpVkTAMSEx9Hjp+3W32K2CbgqRD2dmcRpwAT8QpQokn4sUuZeEpauQ6Fn1lFALz2xoowSwNUp72lYh3pK3sRx6IgoBCEh4jMMNhLJq4AJSRMlJJstWGUas+oxDShVmWnRdWcRk5N7nNKqoMjeHHg51LGzOsqLIgCauGSXDilR8sz4zpuuaX3bkMTRNrVSRpZ6NcjQMioahYbskkUxMHM44VxJGSO5lLUCqQOZcLNlm0bdl2eizSZbsRFiylBLjYJZaXYaevdXq7Pp8KnQ5UqwnE5Zl95h2uXzYFVbaJhqGBj0YY+wD40BA85kK404Y6kZV0jSKjqXPXBtZOgk9adPQiIoOKLOnSKJlatCpItuHHstNFJYXqp9GcZZ5UpLZrGo3zDOes81W1oy2qUHXCVxfpIjdiAssshgow4Kt1PWLqHZ/0a2ZGonvM7IriXyXy48X6Jg6dmT1cS1QruyPYBmhh3jYf1wIbI/8VFSFoRG0TB2mTtPPGAAtxzpj6DEwnlY6WzrFgq2Hz2oF24KwPrpGYIjyCJwsKFW3Y+oUGgEoJaCEYOwxBKzcmiF1c/uEmnj9PENKiT+87bFdHWtqFN/w7CP7XKMaNS4Nnnl0ET/2VU/HL//DQ3Md99efOYsXXrOCb7/1yl1f+/hyEz/xtdfjZ993f2GZC30X//0DD+JnXn3zrq9To0aNGjVqPNmRXOBLKUBIMfFEd+nveCnQKAgJ3B75oAS42PfAhMB2xWRkQDoMP7uoFKKa5YDHJDw2W/lZdiqV2IYp8pwoUtA2KJqmlrJ6UGq1QJGYoaXC0OMgPiBlSxF1jGNr5KWut9wwcj3uek4AVjXufJfDgHGBzWGx4qgIpj7xQozI70BIbI/8mVWhhKBlUtiGHifnSmLocYwDgUVbBwqUcsCE6OtYk/DomHeSqkkMjcxcvM8r0JQAGqYG29DgBlyFWc95jqIq6ZTg+EozTAAk4Pg8t2/ikOFdEhNcIjd7ex7UWJ6+0MBlWGwYCfJKqXV3I3ilAGyDKjKI7C6pzoWeq0jNIUPfl6BEqhB3j0OjBCtNA6aupe6FgKA39hFwGSp2idomSUytHVsH5IQopVBq/KalgUtZmXhtGBSUUkgp1QbNbkDUfeqUoGXpaFv6hASUMjfB3qVCdlNESlk6D+mUom1TaBQpz9fsplplSOSS1/OgyAtVowQ6Tb+PW6aOw4uNKaugWTUwNIKObWDgBoU2Q7aurGJEfMw0oR9wGVr1RP6+CJXTSjXPhECQOIYAU7YJHhMYehwaVZspK20LRUha3DRMHaYuUpuVs3DliooKf/bxxdTvjyza6LkBznYdzCnC3RNq4vXzDEII/ugNL8AffOQx/MUnHp9rEvyqGw9iqTmHaVKNGp9n/OuveBo++MA67j7dneu4n37PvXj28UU88+ji7MIFeMOLr8a77zqHz53tFZb50zsex6tvOYbnXbm86+vUqFGjRo0alyMahobBHAtiKVX4dlmIn5xIzmDp00lBnkjYJQTh5tDHMPQB3C/ME8FTBbNsAwYeBxOKJBj5HKZGpxbcBATjUGFnhD3XMBWBujFwsda2sD2a9uAVUqoQf0uf8tWtSkDNY0sQgQmB7igApfP1i7J/KFZhzwIlaiFv6xSjHGtEAUWIZEOZs1A8GSlUy1Um+lOx8tUQlbQNlXlcShFeE6Vh4k2DViKLDI1iwTZh61ro2yzj+23binC7lBH9BiUwdQomJLZGAVqWNpXsZ3vkxyrnhy4OVPKfKYV+uk2TSulkqbatpzwzlWp33tBoRSa73vRxXEgMPYYVncLUEsq9cMNDRCeQciqfXVYtLaAS6VkGhUYJFhsG/IDDmTH/cgFsjbxd7ZFEft+RSpEJZRPRS4y1gAkkqQkhRKVkdruFldls2+1wdJiAndd2ZJrcTSI5Z+fNO4cWbFjG9LPo+Aw+V73sMYGGqU09+oq0lKmfC913KsxTZVi0dWU5ArURBgBNS4PPxNSmi88lrlm043JaQsmtUwo9Y40RhMkAgUn/cK42dOdNDq9RigNtM1bBRnWLIjO0iudTvtDlJD2gxrw+Zx3LUBOvTxD++s4z+NTjO/iJr7keqxlm/8hiA//5lTfhR176NHzfn3wSd50uJoaS+KbaZqDGkwy6RvFb334Lvv43Pop+Bd+vCD4T+Ol334t3/tCLdm05oGsU/99rn4VX/3ax3YGUwH/468/hb//Nl5a+aGvUqFGjRo0nEzQKWCbBPPk3qvkkppfVny/9a6QAm0W65YXr7hb7TTELKWc2oJnIOL/jBOif7oJSAlOjWG6ZWG2Zsfpz7LOUX+DQY2iaej7BSwjcQGDR3v0iczckXN9hEADkHCS2TsmeVXVxXWfe7v5SRhoFLEJSeX5MjSD6yFnZ4zXTXIRgokwX5SPT0jV4LCi8GgnP37CUp+6FHkPb1uEzlXwn8l4+23WwVuKlm03eNC+alh4Ta1JK5cfcUNSF43NshBsEPTdA09IxcBmGboBnX7GEiz03Hvtjn8HoRwmQ8m0o8uY6Q9dAAxETo/sBN1BtuNAwsJVIql3l9E1TCy1CBHi4KQai7sfSVYj/LOKV0N3Pz1WWX2ocTn4euPl2BvsBmkuKVrtWXoj7TsFmxVrbLBw3A18lOhz6HFxOW2sUrVkppbB0ZQnjMw4mVLK7iVVK2nKBQqmei6JPCCFYaymrvJQ7TIJbDJgoTqpJFRG5NfTjzVmdUiw2DIx91YcUKknZgm2goWsIKEnZZxRhvy38SKiuBSbtEnl6V52tKVHvnrKhqRHkJgfbC2ri9QnA0GP4/97/ADYGHv727nP4sa++Ht/1oqumJgufC9x3flDpnCstE18+I2FQjRqXI65YaeKXvuU5+ME/+3TlY55xuINf//Zbdk26Rrj52CK+90uuxh98tNje44ELA/zBR0/gh7/iuj1dq0aNGjVq1LjUWG4YIFQtIopIR50SrLRMXLPWwqLlYnPoo1ey+WmGxEp+cG8aSdHI50vtqhHgiuUmDi3a2Bp6c23sfj6R5ViVx2t5i5saTYVncwlwLhFwDjdwIEoYIglgYzhRu2lEKYSkTKianyBDTCYEhu5kzJZYQ05BERCTsamyfc9H7kSl6YwWn6XiJYTANmiliMWmoUGCwk0oiFumlsryTQjBassoDqetSH4VebO2w4RNUbksjBx1VzSkzBwrjzw1oxtwcCHDde7uk9Elzxsp1KJNhY2EKjvZ9oGQGLpcPUvhCSJfxzxIKTH2+GQ80Ml1CYCFhgFTp3P7DxdBQoVPjzyG9dAOZOQVz90RKIDrDrZxoeci4CKeA7JtNAt7ebojIrDsHISk63GpNuF0SrDaMlXyMZ2iYao5QacEXjDH7mIFbA59LGTU0BEiq5Guy3F8wVDzkFTPjJSy0Ffd0iksvZzUi8L2CVHKbxqpNHOQJCMjRAmtqvgox+Mpcw5Dp1jUlcI0+TcuxJRn+ecLesnzDQAL9jTdSclsd9lLMXZr4vUJwG9/6BFshBKDgcvwX997H/7i44/jP33DTfiKZxyMy/36Bx+uPIhf9ZyjtSKvxpMWL3vmYXzvl1yDP/qXYgI0wjOPLMAyKMx9Gu8//jXX4+8+d6E0od2vf/BhvOLmI7h6rbUv16xRo0aNGjUuBYwCX9MkmJAImMDGwMPAnV7k62GIYaehTylYTE2FQFJCgakA2HBxIifnqRLmvV8gAJZDlU+0iipbgF1OaBpanOAmgpAloaQhNobFCYu4BC723anIuhghSxat3RcaxtRaYi/NN0/PS5FWdM1z2WTZhqEpD9IZF19pGgAJCeYKi+55sNw0cb7nzizXNCnGQebaiXpzIcB4NRK5rIQWem82TQ0Dl8EPQ4ItjUJKYD1ck+o5jWAZFBSKPKWEwGPlNhMjn01Vxg34rhJ+zQLjsrCdI2IostooasOBGyjVacVrWpqAqZsgeQbIuRWpVsRlAstNA91xUCmJYNPSoIUPZ/LWUsTrjHN0LG1/xn3mJKstM1bvZtMlXQorisWGEdus+EzA1pXX9aVEkbLToARUV8TfStOcapvhHjYB88L2i0ZuRMiq97HaLhJS7ttzmCVkN4ZeoXo2D31HWZUkx0P0rU4JFhq7V8XO2nDIteUkqLCrvOsqFaImXi8xHt8a4W056rpHN0Z4wx9/El95w0H8zKueCZ8LvPPTZyqft7YZqPFkx0+9/AZ8+tTOTL/X+873IQG84Y8/gb984xfvOWShaer42W+8Gd/zx58sLOMxgf/4rs/hz7/vi/assq1Ro0aNGjUuBZJvJ9ugqbDyLIae8v0kRJEyTMhYoRqRpQET4NE6L1whLXWM0ENQwhpRBEykQjKjhZShETRNPeX390TA8wVaYYZkoJrq67JAFM+dwL6s85KZ6TN/kjnfTR2+H3UoQEQO5PURIQREVnSJTRyua7PJQTvMwE2k2jrwAx4mYUIpYUMA6BXGk21ouYnJAi7yM8QnzulxgWiL32cilfCnHMXOmUJKeAEHF0glx8mGoecd3TAUWbsx8GCbs0kjNxBwfQYmEBIr+0f2RD61Gg3D6E1tZuZ5SpS1QJIoK34OZkNiouCtUrjSCI7nTIoDHQuWTjFaH5ZuWpkajQUjSQ4w+SxRCrQMLbQfSCt3CSHQtGlV5F5hanRKCUqI2lgaB/MnJ5sFpRSd3iwKuMDmwAMIKicam+eaIBI74wAtU89XfkvA4zz0WpYYeRzjgMPx9zf6wg0ETm+P4foM/RlzRZ7SswytHEVvEeYhXQHVP0XTwl5H5KzjD+RsRFbZoG1Z+0/m15LJS4yfe9/98U5jHj768AaYkPiVv3+oskn/9YfauPnYwn5VsUaNzwtMneK3v+OWmS+G6Km491wfP/hnn575AbsKXvqMg3jVc46WlvmXR7bm2gypUaNGjRo1nkg0EwulxoxFU1G4byOxiBx4PE6W0nMZei7D5tBXIbERWaBTLDcMmJrKvE2IRMvSsNQwLilplwcCYBRwrA88nO86eGxzhJ1xWhG6uAclzaVEXlupxfveSCsuJDYHHjYHXiGJJ6e+SdRrL4pXKTH2GC70HJzdGeNzZ3vYGqq6rA88bAz9lLXAXhERILN8e12mQrO3xwF2xgFGPsfA4+h7HKMS8sI2ppOXZRFwgYt9F10nwMbAQ88JwEKPVcbFTPuNSI0u5OxwYCC0p5AyJD4K/COhnuXdEF+EKPXZwQULy00Dy00Tx5cbsa9rFh1bR8AlxgGHy8Sux2+exUEELiS4zLc6iBBtABESZU0P4IT3nz2zoZHKpJTPZWXrEgHMQZynUfY42DqFnlCm65RCC9XbSSJVoxQtWw/VzjoaZsIjF8qSZL/Dw4WUsMKkfIcXbeiasi5ZaZugpJzkNjSCq1easbVNFRQ4nEIICZeJyknK500E6AXKy7XM9zyyFzjXc7ExVHYSlyIAhAmJEmophjbnJFv2fO0ZJVWZ1yZm6tQl515rW7nXpgAWbKPQo1ojmLnJsxvUxOslxG0Pb+Lv77tYWuZ7v+Qa7Ix9vO9z5yuf93UvvPLJs6Nfo0YJji838euvu6XyB/CPPbqFN7/j7lIPs6r4T99w08wF2X/92/twZme852vVqFGjRo0ae4FFAUtTRGlDp2gYFPocC9YsoiOtEsLWoGTyfk4sjgydYqlpYq1jYaVlQaM09rp7QpG4YNHniKRqZR+TE1dGkUuSz8UlywgvkJ/4qywEO8JeelFCkQJOoIjOsc/BZaYu0eUzl6kS+ZnE4UUbBzvWnoj1jjWdSRxQ40QjykKgLEs24wLnew7GPgcJvY49JtAbBxAzElwlseME2Bz6uZ6sSaw0jRQBt2eUNLila1hqmlhqKjuKolDrlqXvWbK21DDQtspJDpWArIR4jf6Xqjrney66UfKq5DyB0N/xEswFnYoKuewTSOJ/8pHXNrahVbKZ4QLoexz9cCOtzNsbACyd4EDbxFrLwGIFcpoJiRObIwBq88/WNXQdZZ9wdKmBhkEL50AAGAd8Pgo0p52cgCvLizlO0TB1NHRaiYCXEvGzOauu26Ngz+R2lfdUdbOM6thxAqyHm2TrA2/f1LpMiFKimEsVbZPFrDkhQpl6tVN0jnBTgD7BHwpq4vUS4o9n+FeutU38yEufhv/63vsqn9PUKV77vGN7rVqNGpcNXnrDQfzk191Qufz7Pnseb/3beytmWy7GgY6F//iKG0vLDDyGf/fOz+4L0VujRo0aNWrsFk2TomVq6DQM9WUbKdJ0t+9EU6OFiqPkwmem8o8JjIPdLdR2u/aZRRJqhMDSJ220nOf1dgnQsTQc7Fg42LGw2irwW/08wAkEdkZ+rMLqOQEGTgA3oYzcEyElJ31ZpPQs4F3VdSteO7l43S7xvC3DgqVPFE2J67ZMDWttC8+5YglXrDRxfLmJpx9s42kHWrh6tYkrV5rQKAHjyjM5JhQS5+AScPz9TzxDSMYDuKC9qopzykpJSAghEXCBgIvCTZ4LFbxtZ8ELeGFGeUBtAC3MsBm70HfBw/qS0PbBZUJlaXeS89Kl2SCKFHJVyMopkPy+WLR1HOxY6OScc6Gho12R6C0jhClU5ETT0NAyNFi6BkIIaLiZVhXRWIk2dgZOAEOj6NgGVltWPvkqM/9nYOkEHUtDK2EHktd7PhPoOdXfPRKhrzkhFdW2kwoGZQyixL6QlQ1Tw1o7/13FhYAb8Gqh/nsc6MluMTQazn8NXLXaxNElGwc6FpZmbHx5Acd2UaLABHacAFxILDV1HFm0cHy5gZWWUelzTdnm2FJT1S/gAo9vjXFqe4wzOw7O99z4HZX7HF0igWPt8XoJ8dvf+Ty87bbH8NsfeiTX4+ffv+wGfOjBDXzmVLfyOV9x8+F8k+AaNZ7E+MEvuxYPnO/jXXedq1T+T29/HC99xkG89IaDswuX4FtecBz/584z+Phj24Vlbj+xhf/5sZP43i+9Zk/XqlGjRo0aNS47EJVkaexxuKH6SA+T81RRVEUIhJgZ8t0wQj/AUB0YJQIhhMBnYu7QaEKQWB1OL5SyZE3jEidgiTDwVNh1KVs9Yz2pU4KGMWn/SEm6VyQjwQVC30+C2KeRQJHxZTZpRZCJ8xf5VToBh6nTnN5KdeYUVluhlQUhuHKlCYNSeP7udF+2TmHPGAvRer9t66nEL4wLnNgY4vROOkHrgbaF8303TpTkCwErodCkiBLU7R6Km574dBZRA/tCLUqg5wbohtnOV1omVlomtke7I7rLkPWeTYJAJZaapUzzmcD6wMVyw0gNo74bpMjqSF261zbSKYFGFMlNE8+PZWhocAG3OH9vjuI1vy59l+GAoWG1baIZCAzdAFKqBGgLtoGBy2If3LJrNUwdbiBy7WZaVrFv7jwh4OOAY7zjwA047IS/60LDABfKc3jgslwlftFVmqYOQ6NgXMxUg8+LnhNgHPC5fTzL1KxSFlv6zIsihXnfZZWSsakK7a0OqT2ecKxH9gWWrsHSAVjAcstEwAXOZOZELkRlmw4A2Br52Br5WLBVv7sBh6FRmHlZABPQS+aGaN5gXGJz6MW/Tw7tPMUsFxI74Vy3n9KrWvF6CWEbGn7kpdfhQ//2K6ZUqs86tohvePYR/OL7H5jrnN9+65X7WcUaNS4LEELwC9/0bDzn+GKl8j/6ldfhK55xYF+u+/OvfdZMX5tf/L8P4JH1wZ6vV6NGjRo1auwGHlMedmOfwfEZvAxJOTdNllhrUELQtnWsdSwc6FhYbplT78VZi48qkSGGRtWXTmHqKgR16DMMPLYr//bkcinvLZ5duxoarRwODGTUhXMi4BKBkIUL8UDIUjLB0qkKhw2/sglsLiXyFHZVMHAZ1gfelM9uEnE+i8xi1+ei1A9x6DIMwi8aqWMJsJtlcVm3RtWKPCCTZaWUeHh9GHuHZo9LKsSVH+Tk74ZO96xAG/kcoyqbExWvM0vRmP1r8biY78ZsnWKtZZSGoEeQqDa3ACrxUM8JsJUhhz0u0Bv76I59jAI+V20jRZ+VIX9WWiYWmyYWGgbadtoComFq6FgUHZOgbapw9gVLKyVd8rpCQo05SkjoodrAkaUGVloWdI1WEuXFpFRB2cjXu+8oewwuBAIWfu1i8yV7mcWGgZWWiYapTZGcgZAYeix3k2apYcR1T/5133SI4Ulbc/p4lpF8O87+bEqQIgk05r///SL6Zp3HyHmYA7a7jbG+y9B1lPVKlfstUrwmf5/dREh9dih4kKL3d1nSu3lRE69PAA4t2PiVb30u/uD1z8ezQmLpp195E/74Yydxbo4QjWsPtHDrNSuXqpo1anxeYRsafu/1L8DBjoVXP/cojizkh+e9+Wuux5u/9hlTHxh/6QMP4Pf++dG5wy2fdqA90+rAYwJvfsfdu/oQUqNGjRo1auwVYyYxDiSGnkoMlJstfQ7sdyAdn/HujdWuSUjlQRglz5kXqQVXnldnzoIsmxFbI0pNuZb8aps40FYKv9WWkQp1vVTQKYFGJ2RvECZm8gKukjWVtM+eF3OJc5NQAV0VyVBTIWUY7l2enR1Qi92ondfa5kwSzuMSHpchISThBBxewOHt8+eyqO55w3nkq+cuj7CkhMDQaCozeESsayQT7r0LWxBbp5UTBwHVxwQlyqc166eYrGHL0tGx9RKF7XzQqAplr5r8Zx51qstE7iaFxyV8HpHp6ny2TmHrymol+lpqGFhuGLDCB3GSoCtdB7tEsNGxdBiUQKfqnLahwTZ1LLUmz0p2rVJE/hSNt7JjkteInuWykh4TSqEPRV7vOAF2nGBfFPYRirirovcYQWJjYB8lh0cXbVyz1sKx5QYOdiysdcyZ83vy8mUJl+bxdnV8hpHLwg2lQH2FiS37jr8v7+eBl68wropkHSxj/rfMcA+fUcoI7iyKno/kb5PjjwDYY/DBrlFbDTxBkFLid//5UWwPffzQl1+Lo8s2fuePHpnrHN9xa51Uq8ZTG4cXbbzvR1+CtbaJRzeG+KbfvR29RBjNT37dDfjXX/G0qeP+z6fP4Lc/9CgA4JH1IX7uG2erWJP4nhdfjX+47wLuOFFsOfDZMz38xj8+jJ/42mfMcUc1atSoUaPGJUDm46BGCNZaBjwmdp1ZuwzzZJ7e7+v6BUSeqdOYMMhDkpi9Yrk5lSyTEmCxaZQm7dEIQcuicAK+5wzVGlUKMJ8JDBN9ZGoES00TQ+GDC0CjGnyJ+PNPy9BKP9NESrK99juliNtitWVOKQfz0LS0VLizqZFS04DkAp6mQubLrQaS2Bn7cAOl/t7v/fDI9y+qSZLcivojlxMIy7VsZdHhBByQEjqlaJjpUPndDiPboJXJMFKxOQ8u2GiERGXL0nGxnxQEqTrrlIASUihsmIckieuGOQjbTEE9JDXznn1b19A0NWyNCg+PPVXLNhgsQeFxXuhV3DB0EMLhBDwcDyphl0bVs7xRvJwAAOyMg9h/EqSYRK2izi5CdxzAC4noyvTBHue4SNGeHRMNg6JECD+FIpuDLGHWMChMXYOUimsRAKSQU7Y1hkZwaMGOlZnJZGyHF2ysD9S4dwIxpXCMZjSNqPPkgQuZShCVtK+lwJRtT5H1Q1TXIszzpGXvw9IJbENPratLkRg0VfeKojlCophsnwd7TSA68hhGHodOCdbaFiQkLJ3C1jVsDnz03eAJTbpZE69PED784AbuDL1c/8c/n8Cf3fH4XH4lpkbx2ucdv0S1q1Hj8sGBjlK6Xnewgz96wwvxnX94B9xA4C1ffyO+/yXXTpX/1Mlt/L9//bn453d++gwevDjAb7zuFly91qp0TUoJ/vu3PAcv/7WPYuAV+9H81ocewRdfu4ovuW5tzruqUaNGjRo19g8UwPrAS/1Oo5iLiJon7L5p6gCKV86mRkvtAswcSeOsdVnb0sLrAkIIbCaSdGgEKTIyj1hILv7X2iaWmwa2Rh5GPodGlRJtlmpscj0CAhX2C4LqPnup+lBIodRyUd0Zj8JtBXgY1ighweZgQISM2mJ3xGt0paYxWRZ2bB0jn81UWWYX5IQob9pxznGRCnD6HHJiQVABlyY90gSbAw+rLRONDGHlhOu2vDGTvC0z0b95SN4pJdUJio6lwwvK2auDHSsc2xQDV1mS5PUFkHBrCNE0NeiUgAmJhqlNqRGLxD+mTkC96nYnBMo6wqv4DEVX1aiyc4jGXB7xutI2oWs0NRdma13ESTs+w9jnkHL6XrK3LiBxaMHGcsuIrRAWGyZMjeD+i/nWZMlT9BylclywDWW7UtC2K63ivC7J/mBC5CYxaswzTe2HuKvgFLahQ8rqzGuSeC2zGnACkbsZkfUjXm1bqXB4W9fQQwAJYLVtxmu/hqmu3RsHMTHaNDUwV2CxYRQ+AwNfwKPFhGbLTM8lpf658tLkdjI1CkunoKj2rO6mCgGXM32HqyCaE5ebZun5OlYZlUkw8jg0quaFlUzCsi99+ir+7nMXnlBRY028PgGQUuKX/+HB1O9Gc+5Kf93Nh0sn3xo1nop4/lXLeNt3vxCPbgzxXS+6eurvp7fH+ME/+/RUEojPnunh63/jo/ivr7m58obF8eUmfvpVz8S/fefdhWWkBN70l3fh/W96SUwQ16hRo0aNGpcaixaFAEXL0mHqKvmRx9MbhfOQrkJOq3CK0DR1UErQTCRNycLSaanicp5EXRFSy6HM4qht6SkCLG/pFCler1ptglICSglWWtbMDNiRf26U/EtCqQ3VORWp1h37hUrcwvMyZR9woG1CD+suhfI29XyBnqeyglMiYDcmx8WJyMqwB3VRdGiSmCCE4PCCjZNb4/yDQpzPsUxrWTokWIoQsTSiwtVzFrlzeegl7A/LlssaJVgIF+U7M4iAaVItX+HVMDX0nCCXFJl3dOsktA9gAg2DQsp8IjGuY1jRG450sNQwsRFuuhxetNHQtanGONixwLgEK5sUcu5DQkKnJBwL089zHlFMKcVCw1A+ocVXS2GuRHphPbnAzGc3GsMtU5+Z2GfksZT6VkhUtjzpjX20LA3HlxdT9iUDN6hsySCkGvsmlACEAiCUpDYhyrydI7JfSolRwb26jINSgipR8ASo5iE84xyWTkEJsDX0MPY5mJDgQsQbF3lomVqhIE3uYnLrZuS12bZfaRm4OHAhhATRaGpcU0Kw3DLhMzUfH1myYQzIngi67L2VzRcS8pJsLg08DicQlZ9ROqfitWPr2Bruj89ttLHZNLVS4rVd4ke+0janfN6TiDZ1n8hYntrj9QnAB+69iHvO9vd0jjqjeo0vVHzJdWu5pOvADfD9f/KpwlC4kc/x5nfcjf/nL+6MP6DOwjc97xi+9qZDpWU2hx5+/K/uqmz2X6NGjRo1auwVlCjyyjZnZ/iugrapFWZOLsJyiQCAUopGgQ9c06BTKsGe42NnXF0ZM6Vaq7AIjq651ppslFZpuZ7L0HMZ+i5DP/TUjb5iz8c9dMHQZeg7QRyWmVXvTmPG5419+jiSHVaEECzO4feaPK5jK7/c5YaBlZaBxaYJWjDeCFHES7Oij2CVvpdCQtcIDJ3OnSRNhdbnXCtsZ0OjOLJop1TcZcppjZKpzXqWIFq5qKD4DU8/9jmee+USnnN8EQejc+ZcWqOqjqstO07u1Am/lhoGrj/YwmrLnFIgdywDa+F58+6IknxKyNQpVtomFm19T0np8rAbEmqWWIkQtU4Yejz2zZ7nOTq+0oCla9gYeKm+o4TMFbqshTnXTJ1irWNN9UmeMjKaKyKSecE2sNhQbZ+FHyoQ51GUz4Nr1lq4arUZ/6xTAo8pFWrfnSTO0iidWCvkoGlqWAjrb2gkTe7vourZ280+ntceaOOWK5fid+kVy82436Ln2tQprlptYsEuVrrG55+3fiV/K/OR3asUNuqPpqEp6wGdoqGrd3fT0LBgabH39rybpS2r2Ad6t9ApgVHwQC03jdKNiZWWAQpSOnx0Si6Jurjwek/cpb4wIYTEr/7DQ3s6x/OvWsZzr1janwrVqPEUgJQSP/5Xd+HBgnCeJN772fP46MOb+A+vuAHf+oIrSl+ehBD8/GufhTtP7WCzZNfutkc28Rv/9DB+7Kuv31X9a9SoUaNGjb1gL2uFA20LfTco9C8sutasBUrb0kHA4QYcAkrd0TA0NHMsDUSFSw88DkunIITAnaHEypIzqbUayf225Fxla/1qLECZOtgJ270dkipWjmIxiXFBOO18NVJYtHXlIZhDoOVVYS/jjFJaqjiKwAXgBrzSfQgJjHwW1q24dgLqnBqlcyduW2mZsMOEO8krRMo7SpRNRaQ8VwWn6xIpIdth8qpuwUbDPMrpsc8xdBksQ8OhjoULJcICXaM4tGhhrWPg1LaTqtdyy8JSU4IQRWxoGoGla3jGoQ62x35KsDC96ZGvgKOEwDI0MCFTCj+KiqrtfQQhBG1Lx9D7/9k77zBJrvLcv+dU7jzdPXlmZzavNiiuwgoJiSAEEkiYYDLCtsBcgwETjDA2EjLXNmDAgGyDAYGxDZcMAoRIQkIWyqu0q9XuanOanHo6V7h/VFdNdXdVdfVMz+zO7vk9jzSz09VVp+pUOu/5vvdT6/rG6z7mV3DHea5RMueFPDxTQFTm7QkKUomcLOsGdN2AahgozhY9z0FKaF2D/CLAEyERq9JhzBTmxFSBo8gUzXMizZEqS5b5YkVj11JbiGpstlh1fviNsfgGFfREnqJNEUAoQB1rrbYamN8dSajZNiHA6nQEIYHHSKYAyhEMJMOglEDiKY5O5RGT+brvedEq7Y7AX7wXOQLLEY/C3I9m728U/pGibgTZhCJwSITFhhkGQVF4CkLNyb8xlyCrqOwt5EckHiGBR1Et4dBoDqOZIgZSITvKdW4dfFMTwAuFCa+LzA+2Hw0kDvnxp89j0a4MhhNCCF67tR9/2DceqLLzdL6MD//gafxg+zF8/LpNOKs75rlsOiLhs398Lt56+8O+6/yX3+zFhq4YXrq5q+n2MxgMBoOxlDg9BCWBAvUZ4lV0RCUUVR0lVQchZqEWzTCQL6l2xWmpJtqEEIKIzCMscTAMU9RphX+aYRgNC0fVbiYmu1fzDtIcf+HVapT/xxGZb5hOnSvpkHjTPkJtoETzlCCq8MiXtDoRtplUXEqIb+RpkL+1GoE2Lx4AjduWK2nQDJc+aGKf/LbhPO5uQklPQqn6d6sO5e7hDAplDaG4ArlBOj1gioSKwM1Fa1f+rogcFIHHqvbqeghWJpm1784ITNPiuFp5pZWVEgCSwKNNETGZ9085bqYQXNDjtiodRltIxEQlzdxqYVCxzm+p+kmK6mNiQQmBqhnIOG1DfKy0uXrdFYpAIXC0bpuUAD1xGYTAFnrTESl4saQGjFYCTiTeFB/dhFdFoOAcdgiZmvNvIfcLSghWdobN+68BHJqo2Jw4K9LPc/3OiHTTg9mc7OpOyOiMyxA5oKSZxzhbVO1rxTAMHHFMWnjSZLv8/NgJTJFa4Eidl7gi8nURsdP5EopqEx7Z8ziGhbKGoqpB5KjvMz0m84E9ZO32wP1xqkimB3tI4oCsywIexBUBg6lQlS1NrqRh14kM1ndFbe9uSgjCkim8+rW5LyE3sTf+MKuBRaag6nWzQ83Qm1Bw9Sb/1GcG40zk6k1d+K8/uwhyE6kQDx+YwLVfuA9/9+MdmPSp1vv8de34iytXN1zf+7/7BJ4dWpiNCIPBYDAYi43ieBcNMu7iOYKSqiNf1jBbVDGZK2EiW0SmqJnp9z6CD6mIe7UDNFXXMZIpYiRT9KzoXIuVtuqF2zs2T4mdtlo3RlyoktiEQOiW+muhCHPFyAgJ0CfELM4VlYUFjSv8t9HqmNdgUEobFEmZH/MR/S1fWDvK2/FZXZSn499u9h9lTa/2WF3AoUwoAlamw1hZKRo7k2+uGndHTJp7XybWOkW85ZIBhOtSm6t31BmxXtYMrGgL2W1ZmQ5jIB3GQCqMFakwOmNS3USAqusoq47/NB1iq/0IYPqZTji8PQ3Pe4z7tgOfLzXFj2pF2KasBojpRRyuREVHJB7piIT2iIR0RKpKpV7bEa26jwNm0cClhHhYTVjoBlD2yaQQfPo9ERJMKwtSnf49H49XJ5Gae0tJ1TEyU0C+pOG5kVkcGJ3FofG8w15kbllCCLQABqfNuv9InPs93AAQqrQ3aG0fZ48InBnBbhUydCtmOJ/7kKobOD5V8C8KVll1s1ZIXmuMSebkAkdplY+y/b2atmzsjmFLbxxrOiJ2dHWtBczuoQyeODJlawCDqTCiMr9kRq8s4nWBPDcyi/GcirCH9vOWSwZw9aZO/O2PduBXzww3vf4bLh1oGJrPYJyJnJjO42M/2elbjMAN3QD+68FD+OlTx/GBq9bhDRetcL3G3n/VOjx8YAKPHpr0XFeupOHG/3wUd7z7Mlb8jsFgMBgnHc4l9ZAjsEUXriLgNcIw/Ae889EvgxToqKVRZJwkUDOt2dGenoRspwLrhjnYssTN4ekCpvMlAARhkYOmG6Y1wlx4nG+0jrVYWOYR0qv/ZjFTMCPQrEGfQM3BOyUEisBBFkxRejJbQqGsBfLS03XDjiKua1NFCLK88HxFbZ9+c2tFC+yEfcmXVBgwj5VfFJgbjYQy5/lbHT1Wk3ru8Z3abcQVAQJHYcCAYZjrPDqZR66kuR7Wo5N5KAKHrrjsstXmqN3XbEnDrhMzdgquGYVufhaVhbp3UkoIuhMKSqoOTTewoSuK8/rbkI5KeNFZHbh3z6gdOek8fUICZ19Lc40xfwwkQ4jIPMqajj3Ds55td4vS9kPkSOUeZTYkrvDgOWoXavJC4ufELE3X7Yjz+mhVD1sNn/OpM24W5SMuK3ReI8QZZhcASgnSUQll3UA6IkI3gJGZQt24ZF1n1DU9PBESkVBaU9CoEaYfJoEicnOFqJwLEKBY1jGdL0HwiO1TeA5lrX7SjgAuEwAuzOPBw7ncxKbzZYQl3j7nOx3+0vOxM+ApaSrKUxIoVF2vsxmhABKKeRxCIo/OmJltUtJ0UEJcvXqdh6QtVD8WzRbVKusPAoJ8yfTfJfZfYJ+3lDTwmV0inJMM7VEJRyerI49rj0TtpATgfk1b4rDImYUy0xEJQ9MFz+JureTkH9VljK4b+OD3nsSzJ6bxR+vDeO3Z7lXOO6Iy/uOtW/HD7Ufw0R/ttMPXGxESObzuwhWtbDKDcVrwxJEpvP2bjwYumuXGVK6Mv/vJTvzPQ4dx8ys2YdvqVNXnPEfxhTech2u+cJ+nLxdgvlj/xf88hv/6s4sDewExGAwGg9FqNveYNjp7h2dRrChYImd6HVpRKCExWHSHgXqhtHaQ3Sy1YyC/StZB4Stp1NZgWeRpnVA0W5wb6OfLWiUt0wjscevEOiQ8pa5KpVkJu/pvnkXJiH/VcieaMZcKXN8mAzxH7e0UypprRXeJa1BIJKCoQYkpkmSKjdPcG5Etmn7AXummC8F5/tam7DZiMleupPwSRCtejzFFQMxRbKwnoWBDVwwPHZhASOQg58t2eqslNLpNXlBKgCZPe1cbCMf557xe/Yq/WoWZwhKP9liliBYhuGhlEg/uH0emoKKvTUFXXIaqGgAxJwysVTrHsCJPIQscZIHDBQNtmMqVsG/UJSc44KHnCBCRhbrotmREMt+vZ4uu57UbVYJLwHvVbFEFhdnnlqWCJdIIHLUFvNpMO+emOEqaEu44SnBoPAdCzKhCSoh97hEC21bAbwJkdUcERyZyyBRV5EsLv4oIiOskmQEDs4UywiIP3dBhGEAZZmSxXpmIcItMdCJXJruy5WoP4PaoVFVgkBBTHNQNU7ifa1tr4CsTKPa+LfCwWecGV4k4LWmG7yQBIUBMEZAvaiioGgghCIs8OK7ajzYk8lW+pMcm83O+0ta6Kj8jLl7qQP2+EZiZJF7e0hTewqtfEUHAvFZkgVYJxM1MuljEJL5q8sFtsti5XwkXwRkwo53P7ouDgtj2AiBmUbi1HVE8fGACB8b8fQxaYZdkwYTXBfCTJ4/hiSNTAIBv75zF3Qfz+DiXxtWbulw76VXn9+OaLT34q+88gV/sGGq4/tde0DevaqIMxunMg/vHccPtD89rwOTGs0MZvOErD+Las7tx8ys2oiM65+XSk1Dw+defhz/5+sN1A6nqNk3g7368A//4qi0tvUEzGAwGgxEUQsyBWntUtAc7zmgfRaBIRdyDBNzwe842E5lot8/xsy0koCMqQ9V1POcm1jRal+NR2xWXwVMz4k0WFncCtJFDQpVXa4PXAZnnkI5KIDBFl6kZAk0naML+0hU37/uQQBHxKUYCNPZ4VSrrCIucWfBM1ZoWNFtJo7ctr74K8pZmifVKrgxVM+DUx0uV60LgCESeojsuoz1afV3lyxqGpquNlGWBg8wT89pp8lXRbfF6F1CfhWs+ToUlJB1iRUjk8YL1HRjNFFFUdSgih0JZw2M1WV+K40B49byPI4MrbSEBBBXR0ucdui0sIhGqLhTmxXzmFzTdMAsP1Yg+ll2ELFAUynpd5KlTaM2VNBybCuAJ6mwnMUUkK8hjtmZCIyoLDedEzuqJQ9VMH8uCWh3p24yfrgVfYwkgcgQcIciVdbu4XS2aamAy1zj6NizzkEQKtXLvECs+17WYHs1NN72OgVQIq9JhPHl02v4bAbxPzHkM43gKJCKiff7qul4fAWvMbZKrWCqEZR5h8OAIQV+bgrHZEowmm0BAIHCkrnDU3GYNcJWCZQbM68zXMmABw9hiWatrR7FcbBgNnFAElDXTT17mqelD7mij9XevLNe0x+QmIfWF1QDgwFgWugF0xyV7uaWAhWfNk2xRxT/94tmqvw1nNbzzv7fjTV99yNP3URY4/PubL8C7X+DvH8lTgndc0dhjksE409jSG8fq9kjL1/vzp07gqs/+Hj947GiVb8wV69rxkZed1fD7/++RI/jMr/a0vF0MBoPBYATBEgAoJeAq/znpiin2AENpFGm5CHqaNSg1IwkpBN5Mve+ISmgLzT/QQK4M3MMSj4gsNMw+WcgYq5ErAKn53U8IVkQOybBoC0oyTyHzBBGRIiJxUAKKyLVjaPdIq8Z77baEFWnEUzMKLlMoY3imgKHpfFOiq+fWKx/M63RzWWlIoEgoAlJhAVGPCLBmN2GJFPmSht1DGTx9bBpPH5vGPbtH8fTRKTPF3SWqDKjum2RYRCrEo02hvgWXgg7OiUcYZKOotN42BRetTNZ5MRJC0BGT0Z8MIR2RPNN0PdvjsV2/yD/AFEZ4n6I91l9NOwoayP6iYRCEx8c6TOEzky9XRESjIsISJBQBcUWoq6Ze5UdqGFWRm244P6WUIBWWfL9jWiP4709nTEJ3XEE8JNhRklYhpmbvd9b92TrOlJgRhdEWBoPxdC5a2vJ1dbIiGULKRUwTebNdzQSmUVJ/PpRUb/uL+TwfCKr3gVIKvvY/ziyaJric64SY50JHTMLqjnDt6ufa7TbjSfzbnIqISIbM50wyLCKmCL4RvvO5xv0+T0cldNT8F5O4quvAEt9DIm8Xf6xtYqLmfLDG6hGJr8pECAqtRNhHJO9rpBXPkKpttnRtZxD/ds9zGJ5xT3P+w75xXPP5+7BnOOP6eUnV8eMnjvuu/1Xn96K3phomg8Ew06O+9rat6IgGj9oJynS+jA9870m87euPVM1Y33j5Srzq/N6G37/td8/h6/cfaHm7GAwGg8HwI6EIdpSSp/Di+LMscIjJ5oDFbRBrGP6DBGkexXGsbziHjtbgaiFWPTFFmNtnw9+XtNlW85QgGRLQVjlGYoB2KpafLiXBfAtrECvRS7VFYbww01r9Y4qC+Mi6nTaSYAodqm6goOoolM1iZ82mj3oNjAPWWHPFrS9zZR1T+bIZNRYwjKnOw7RmI6puoKzp2DuSqYpGnMyVsH80h4jEQa/zhvVepcwRRCUOXVEJbYpQJ0qkoxISNcerNgIRmN8gXqAUyZDYUBwE3K+jWpExCG7CqyllAhJPXKMd3bZpGAZ0w5j3ORMWOYRFzr3gkIOSZiCv6ihrppevIlD0JxV0xxXbO3cwFcZAMoT+thAE5/lDgKjEw0+vcU56EQDlBtcuIQh04/IqatT0nbryBauI31Ln8a1uD6M9KmFVewTtERFtioBk2LxOViQVDKbCiCtC8HYZ9bL1gfEcjk7m5hZxfHYyMhedz2zFo/CWF7mS5nu/SYfdJ1GaZaETHrquQ9V1aLqObNklIriGOg9XgUNnVKp6BqcjEla3h+cVsUpAQAlBT0LxfGeixN12Y74wq4F5sH90Fl/5vb+48vx17VjXGXX97NsPH64zCHZCCfB/rlyzoDYyGKcz3XEFX7vhQvzxlx8I7JncDPfuGcVLPnsvbrluE15zQR8IIfiHP9qC/aNZ217Ei4//9BkkQgL+6Ly+lreLwWAwGAwvSM1PJ7XihiJyUEQzNZ8SK03RLLahwxQcwzKPjIenYhDhpq59boWhml5LNas7ItjQGcXobBGjmSIMGA18TJvzE3WmHUsc8fRkjck8CCEoqRpkgUNE4hGSOIx4BGkEoZnBcr6kIyp7FLQR3KtCWwgcQVtIdPXRo4QgFZEW5KkflXgkQ6JdyKaWsMhB4Chm8uWmCtQ0Ul74isBJAMz4pFs7Rf/a84KA4LkR98JRcVlAROYxmSsjUROx7RehSAhBRCRYkQ5D03UcnczXiYm13w4J9UN20mRBMgJgdUc4kAhvLu8i9hLvNGWvPXa73hJhAeWKuJmtiNmZfBmaUXHerHzBgHkvkgQOIZFb0HkoC5ydBeBWpMi17YQgIpmTU9Z4IyLxSEU8UpsrR0EWqKtVi+mfSSvLmuuvtYxIhIS62hJB7wRxFzuR+d5jFZH3tCmQeIpURESxrKOo6lUTEkE8bimxCjhWM5AM2X6disihJ6FgIltCUdUh8Rw6YwrCIsWhiTwUkXO1VamDGHUHsPYK8BPX/M75VlF1q29SRDStCdy/FJF4SAKHqFTtye27NwsQaZ3irGEYKKk6CqqOstpYaK3DpZGhSlSsAWBdZ2Reka4WpucrEJV5dMVlFNQcVE2vsrdoda8z4bVJDMPAzXfsdA/1rsBTgr+9dqPrZ7mSii/e/ZzvNl5+dg9Wpr3DzBkMBrClL47Pve5c/J//ecx+YF66OoV3XbkGf3fHDuyv8YwTeQoKePrD1JItafjQ95/C7fcfxIdfuh7PW5PGl99yAa677X89o90tPvDdJ0FA8MrzGkfJMhgMBoPRiKTCYdrx6HEOCARKkAqLdsSTW/RGOiJCEbmqQiUAUKhELhZVzS7OMZ1XPUSyOauARkVUgkKJua75+rZrmgFFNKN3LVGmUap1EARqRuKJvFm8KyKZEai1/osWssAhLPHoScj2MS3Pxwh3nli9QQkQl812mwKW0XAgzVMzzTMm867Fi6zI2/HZoi0QNhKv2yMS+EqhGa5BlLDIm+m3Yam5gl2NepmnFHxF5PITXgkxo6lcJ/L9IsliElTN9LU0YGAyW0JM4cFRCo6a5xBHzIJDtPJ7QSTQNYpiwTx6HDVF8doIYoGndvE5iSd10YyKwAEEUIT6c9KryWd1x1wrf3vh7vk71/Ne2mWtSBWWOMzWHP+yqiNT1CA49quk664icknTK4Jp8Lb3JhTMFlTkSprtSTrf2wK1UrkDqDCksh2OEIRFWuXXLFCCiDyXSm3Nc9RGEoZFvkp4JS6p+F4kPQTh5jC3VbSuB8e2w5WJJ0JMT22JN//tdl8UOQpCzPPBMGBHK3fF5bqo3/NWJMyxnGM3Ccz7ak9CgUAp1nVFIAuc7SObCosoqoWGIrpRr7u6LVWz93NwFNAXueB9VS04EuzZqhuGfZ40SnJJRUQQAmQKasPT2OtYBXmuOpfIFNRAY263dP7+NsV1ItDaCIGZcbAQ4ZUS06M7FZbQFhZRqJzvQ9MF23yZI8S1QOJ8YcLrPHj1+X3YdSKDsVl38eWGSwexpsPdg/Jr9x3w/B5g3nzf8yIW7cpgBOGlm7tw00s34B9/8Sxef2E//v6VmyFwFHe+53J88q5n8Y0/HLRF2Q++ZB2uPbsH/3jnLvzsqROBt7HrxAze9vVHEBIoLl2TxvXn9OCbDx6yB1Zu6Abw/u8+AQMGi3xlMBgMxoLpDHMo6To4grqCIyJPoYicPTCqHR9JPEVZ1ZEn3qPHoqphIltdGEXgKDpjEoZnCqafZ2W9CUWwxYNm6YhKkAWK7riCNR0RxBUB+0ZmMZ4tYcwh7DXC2sWiqkHVdIQlHglFQKZYBvVJwg4UjQWzkA9g+sd2xc2imxxHXAUGAtiCVkwWUCjPPypv3lR2SzfM1FNnJFi8gX9ukIFlROKhCBRF1Uz3VgSKkZmi58Ba5GldVHRt1JXddDL3HVqEb2SUU6jz7ckmx8oRyRRe3SqAe+H8bDJbwnS+jKl82RQJDQMxRQBHSdWkwlReh6ppyJS81lS9DyJH6jxFASBUOd+SYaHqnKRYmG1HVatcmsURs5I94GI14LEbEk+RK2qu/VotBLvL+fZfm4g6DIkcJIFWBUo5hSNKgPaIiNHZxsWgiGkSarfMT39yfmYV/AuFzf6rvWda7akVtESeoi0kYNIS1dBYOHx2KANN15EvVR9lXTdF60Y+u1X7YH23cryd25ZEakerOuEr2zAtPsy/dcUlVxsPN4sKU1ye+/e6zigyBRUjMwWEJR6psGhHahuVXeQ5it6EgpFMwXdMZq3fiVJjATM2W8JAKly3v4DVP4sb8eqMeiYBt0UwZ+PR6LlGKpkLybCIkqaDpwRTuTJyLc4atSaIimUtcKCTWwS+ATQ86Z19Nh8oNb2LL1ubxv6xWfOcNoChmSJUTQclQK6sNrTxaQYmvDYJIWYU2ws2dOBzv96Dbz5wsOolMR0R8Z4XrXX97tB0Af92zz7f9b/6/D6s6XC3KGAwGPW84/mrsL4riivWtdsPVlngcPMrNuGPzuvFJ36+Cyem87jh0kFIPIfb3ng+3nLJOG756TPYdcK9CJ4bubKO3+waCby8Kb4+CVUz8Nqt/U3vF4PBYDAYFjGRIKnwUGKyGZHhTIerSdmsHWQmw2JjQbPyeXtUQlnV68RcYG4ctFBdJ1qJoLQG4LphgKMEyUrUSW10nB+UoKpatarp4H0C43iOIKbwmMp7R1ZadgICR6qq1XsVJIs6PGbnG2270BhdZ9Rcuaazrcg1gaeuUUSWDtKo6RylCDkC6oIKUBZhuV54TYYEu00cJYgpAmYKZc/ztbpitncDar+ejoimGFARaPjK+TZip667r8svxZg4hEJCCKKViGFNNyAL1E6ZdjKZ11BUNTtSEAAmssU5oZzMrRkA+pMhpMICVqbNSYqSpmP3UAZRmYeqG3XCVlQx7Q/csAR2L7uMWjiXTuxpU+yMMk/dtebvHKWIKQIyBdN7lxICnqMIi9Vt8bQqIKRp3WvvyCymcmVPEboZGw/Lj9b+rs+yhNSv22uSyi426PJxIiTOCa81oqQbhbLmGvmZK2lNia6AKZSLPIWqUVBotsgPmFHkHZVn0IGxbN13BUqhVU6Mo5N526bFEo/TUam+T1z2LRESsDIdRtTlXHbuDUcJEiHRfCZ6MDZbwtrOuX/3JhScmK639/BqjyJwdRkZAkcbZjRQEtzD2nnOjGdL4Aixj2Ow7wf7OyEEEs+hr82MCAfM/uYqxRPzZfN8GZstIh2R6r7bsB2Vn6WAomtE4lyfSZpuIOBtat5UidX2rAqg6wY0A+bx1wFVa504zYTXeRJXBNv/8f3fegh7xs2b40dedpZnpb1P3vWsrx+lyFG876p1i9JeBuN0hRCCK9d3uH52dl8C33nHJRjNFKteci9elcId734evnLffvzLb/YGfkA0i2EAH/r+UxidLeL/XLH6pBi2MxgMBmP54/f4MGDYIqbImanLlJi/J8IiZK80agfZivATFjmQGj/YtpAlUFkRtfN/liUUARFHBJ9hGAiJPKbyZZQ1HbLAoVjW68RDP5zxSCGJr3umpyMSOErAU4KypkPVzUrlBHCNeJMEcyAocJwtHHhtNyrzSDoiSpNhEV0xGSBmOjVPCUqqjuM+woC1Lie1BYAILFsGzjVKyc+30/JpjBECt8XmxvfN9Wuz54HCc3Up/bXH10z9dI9EFCix+8bcvs/Gak4fSggUkUcqTAFC0BE1C84IOfO88xT9/I5JzUfJsGhbNehGdWSfdaysv6i6KZYRYooUdhS70+AUgKbr4Ci1I4gtj1Jnyn/VbvtcNrbA7r1IFVxtDjzMSRNry4cmchjOFMxoVsNAXBFskd8SpQgxxTqRp1iRDCGqCIBhXjd7a7xz/buz+YTfiMyjXLkXhBag4hBakdgDCGG+hdpq11v5mS9p9jnovB664zKEgEUMOUKgVTy6nThbHBY48DzBtM+kE2Cej4Jq3id11Bd2UwQO6bCIsazLNcpRGJW+1416AS6oVyr1EZsJqoXPRkeoWHO/JKR60qQREdl8PjkROAJCKASOgMKM9OQpse0UOmMyZIHi0HjOfaU1RJW5Z25JNaMtazNbanHef5u5FQ9N51Eo67awGxbnnnO6YaCo6q6CcZBtWMvkA4yr2xTB87kV1IM5KNPWfb5yXhFiTniNZIQ6kbv2HG3UD83AhNcFsrk3jm39YTw3PoVkiOJ5q1Ouyz12aBI/evyY77refMkAehPKYjSTwThjIYSgIybX/V3gKP7iyjV4ycYu3PSDp/DooUmX73q/xBICfOCqdfjnX+1p2IZP3bUbw9MFfOwVm1xfZBkMBoPB8MN6crgNU5zPqc64jBWpUF1BoKBPHt0w6iLdZIHaw1SC6gFfM/6s/W1KlbCg68BzI7OYKaighEDVDGQKpWBRQqTuFwBmYERtAR6nxddIplgZ2FYiVFGf2m5XKXd5AYgrgu15ylFS90yXBM6OPtU505tR5Kmditt4f0xEnqIjKiFXMkWtfElDWTdcRdeQ4B415EcqLNrvOAJH0JtQkC26F7/yQha8i9u4vuoQ02ri0IRDjHDxoCXE9IZ1iu8cAeJK9bA1iG1ELTxHqzwz20KCOalgraqmi/y8jK0ovrkUdIJQpeBPSdVxsCK6JMOiHZTjFO9ONBDjrW0Ac0KE81CFK5MMMk/ttN4g4mBQwbzWVxYwj99AKoyD41nMFlRM5w3bomQiW0K2pEHXdTtaU+IJ4ooZ+Zstafb7eLOvwlYacDMoAoeQwCFTUG3BniMEqYiImUK5YXq6hcTRyjVsCt9+NisST10jhd2wRMmiahZYEzmK3rY5HcCMnK54qgZaoz+ySF373hmZSQGIwlyUKuA+DorKgqvwCgLEFMH2y6z/uH77rrcK4p09kIyISEZE7Dw+jUJZbywI1nx+dDIPTdM9vadrVydwtG7CKCzx4CgBKVJoGgWl5iSnAdPmIlNQkSkEu59SALIjOMhAxd5iHvYQdX93+aA2QyboVoKcg0EzPsIC5ztZODZbRLaooSMmeS7TDCOZImZq+qOk6hipBGYVy7rpl2u0VmitpTUmMGcwB8ay+PbT09ABjOV0PO9Tv8N//uFg1TJFVcPf/PBp3/XEZB7vfiHzdmUwlpo1HRF898+34ZZXbKx6weYraRdeXLYmjXe/cC3+9tqzAm3nPx84hHd/a7vnywiDwWAwGF5kVaCo6a4ip1W8BDCFFzexKOjA3e25x1GKdFSyoy4tKEFVKr4fEk/rohv3j83iudEsRjJFjGaK4Gn1sJynxFP4spYk9v9M0g2KyxD4D37ClaJFXigiB54jVdGHFhGJdxWUCCG2Z2xgDFSJtl4RwIpAEXYpTuK+TnMdK9NhxBQBUVmwf5o+ts3JO+EmCjVZUErQpswdCy9twdrf3riMmMQjGZbqBa/aNFqYfUuJGSlaiyUIOr8WqrHTyDre0WSBuoqPFpt74zh/oA1ndQe3iJvvmL6omu1ytrW9kgrs9Kv0kxKbjnj1EFFSERHrO6NQdQNTuTnxzdo3nqd1InktLQ5o88QAsLYzgv62ELpiMvqSCsIS72kbUktHVMamnhguWZXCOf0JbOmNY3W7v69kV1xGTKKIihQRiSKuCK7ZsLUeyLU4U/wbiuWk5qeF4zh7rcPZF5JA660AjNrlDeRK3lGzMQ+rC7MNnh9VLwfSWMQz5pb1X1c9fpNgbuvrqHnOjWaKGJouYDynYTyvYyKv2c8xTTdQLGuek1K1pCJS3XEJKt77tdn6xOtPzSauBIt4DbbSRue+brjfw+eLW7y8PZlNAB1mkcTJfGPP54XAIl4XgK4buOkHT6HkkMY13cDNd+zED7YfxTf/9CIkQiL+9e7nsHs447uuv7pqHZLNvpQxGIx5Y818xWQBlBK87XkrsW11Gn/57e3YMzyLbatTuG/vmOf3X3OBWTTrxstXAQA+8fNdDbf5ix1DGJ55EF968wWuUbgMBoPBYLhxIqNiogAUqDkw4ChBTOIAQiByBCuSIXTEJEg8h9liGbmShkpNGFBCAkdxeC0WkXhISTPyS+ApBErsCu5BMNMXDXswbRgGxrMlZB2enwaqo03CEg+JpxifLXq230wbNb8blXmEBP+hDQGqwlxjiuC0d0NCERALCSBwT7VWeA5xhcd0ob6SfG3WmvPbEYkHRwgmcyX3CGEXcUPTdWh6ddqnwBEI1IxA5nlSZaNk4RbF67KJqm35fe6Fvw2DzwC8KmqTQyJkRooZ9v/MNPzehALqIzrXYgdFGsBsSYNcU0DHbS2kYjswkilAoARyJdqPp8QWNheK15GwI1V9ive4HUcrGC6mCJjIlmAoBrIl1Yyg9DlUM4UyIjIfWHDxy9CKyDy64hISIQGariNT0KDpOlJhERGZx2S2hHxA4cneLwpQozaYvTL5QAiEit1Cs/Zg6zqjOCblqyLhQyKPyVzZN2JfoART+RJ2HJ/BbFHFVK6MREhEqsHkTntUQlTioGoGeI6zx/dtIRFlTcexqTwA2OeaRanGM5SQuYT4RoJW0GjEoKn+zpXWfkPVDAxn/AsIxmShLsKw4YZq/+qzU4bhHgXe9IoCNqeZVRyfyiMiC+iOCw2j2rvisuskQOCo9Mq9wGvxfNkUhJWKoC4LnKdGD5j2REXVLOJZ16ZALTLxy/CQK+8QS4nraV85aKpuLFkkKhNeF8Dt9x/AQwcmXD976ug0Lvq/v8GHX7ahYUGtNR0RvPmSgcVoIoPBcGEqV8Jbb38YAkfxzT+9COFK2uD6rih+8q7L8N1Hj+CRg+7XNmB6XL1kY5f97xsvXwVCCP7+Z8803Pb2w1N4+Rf/F196ywU4f0XbwneGwWAwGKc9tQOrqMzb6cWUmiJlVBZQ1nQcGMthIltEuUatXJluXAHYb2CejkgYTIYwVInqaXofHL8XVb1O2JEFDppu2H6z9gCREFBHuF5nVEJE5pEraeAr6fwJmcdAKgQQszDLVM570E9BIAmksk0KGHOinSRwiEi89/4RYFV7BEMzBYxlStBhICxy6IordUWNakUzReSgiApUTceRybzfoYKqGzg8kUe2OFcdWuAI4o5CXl5IAkXeJ436yESucj6ZfnfpiBgoRd0NryIzQYUDnlLXYk+ywCGmCMg1UWitavsB/waY/dKTUCByFKOzRWzqiSFTUP2FR4cPctBDZzgi0yMiRXdCcS1Q1AhLQOMpwZqOCI5M5qAb5vnCcwSr0mEMZ4pVkxrOdgYVkRqdZ1Yfc5QiEaqWLqyiRyJP0aaI4Djg+NScCDVbVM3MMswJaOGK17N9OA2AwICuGyjBQFkzhd0T04UmHDqBg2NZM8jCkb1tRdxZQpMbAkftQoCEkMrkQAArh8pPXQeK0JEvaZX0bqPqvqI0mCQCUCmgNh9TDaBQUm2vTcHyBm7i+9ZWa/d5fNZfdCVoXut0w+3yG58t4eB49TVTmyVBK77afvj14kKabhgGVN1AXOZhwCz2aG3LrdCb7DJxZhhG4AKWHCEgxIDIU3sSwem/W1J1lFQd2aIpeHa7WFrmShriirlBiafIFOE6oRf0LJR4WtX/AkegaQYIMe/rVoHEZFjETL7sKdC2siyK2yasQ1zW9NZuzAcmvM6TXSdm8Km7dvsuU9IMfOJnuxo+GP7u5Rs9qy4yGIzWMjZbxJu/+hCeHTKj0G/8z0fx9T+50H7xV0QON1w6iBsuHcRHrsnjf/eO4vd7x/CH58Zsz6qXn9MNpSbF7s8uW4mQyOGjP3q6YQrVSKaI13/5Qdx6/Sa8/qIVrd9JBoPBYJzWTOZK5uCyMl44MpFFQdVQrAhuEYm3n1m1KAJnFxjJVlJGLSHDS1fY1BOzn5PxkCl+ZIsqCDEjuXTDwHQ+uEfo+GzRNf3WmgjNOqLlajPCVqTC2NIbByXAhu4Ynjk+U5W6mFB8hFdiDs674u41FXoTCrriMh5z8X23oJSgJ6Ggx6Mug6aZpYA0Y07Idg7rOEpsi4Z0RMLYbNHhEwqkQhx6kiEUyhokjmJstmhH+wXx0FNE07OuVnrIFDUoIu8Y6FYiXY36YlBB8ars7dfKlekwYrM8QBqLHG4V35vBFDt9QsIqCJwpSqxKR1Aoaw39+L0KKbvRn1SQDEvQNQNHhylU1Wh6nO8UQmglQpbALKrWFZORKahoj0rIl1QcmczVTboA1QV8gtDoGPgJMfHKNShwFCEXKwxF5NCfDAGALT4bqBdIKObSwg3DFG6sCaTRTBGzRf9CUQAwlS9jKl9Ge1REpqDa3q4dURHDM0UUVFJ3vDhCEJK4qkkBTTea8p8uagZm8hoKtD7qUeZpXcSrG+Y1GUzyOjGdBwFs+wdnRq4UYFvmBr3aYCLytC4y140mEt+9i2i5fOD+/bm/qrp5MwuLPNqjou1LHrR9Xg0K0u2T2ZIdnU+pObE24XgOtVn3DDInwnq1w0sXagsJVc/1trAInppR+5LA4cBYFiGJQ48gYzqnoqRp9rldUHUYhlF3NjknAygliEgcZDe7ogDGzJquo1DWoFfWyVXeD9wwjEaTVq0RQzXN3RrD2c1+9hithAmv86BQ1vC+//dEoBtPowv1+nN7cMW69tY0jMFg+DI0XcCbvvog9o3OzZY+sH8cb//mo/iPt2ytE1N7Ewped+EKvO7CFdB1AzuPz+DuZ0fwwg0druvnCMGt123GJ+58pqFpf0nTcdMPn8YTR6bwsVdstGcAGQwGg8GoxW0IUqwMqGIyj4lcucoDMyoLyJU012iujT0xAKbI8eSRSegGEK9Eibq9t3bF5CoBQhE5rHL4HBbVSbvAju8+OEY6MR/hKmgRSp4z/RNr/eLawiLGsyVkCvWDLUooDB8nTKuN7VGprkhXUPaMzCJXUmEYRl1Va4Gj6GtT7IjJmMJjbLZo929covagVxY4dCdklHX3KtO1xBUe03kVPDWPy2xJdRXgaiFofRVpvzGzUIlK88PyOJzP0Nu56pKqV9lC+HkAEwKs7giDUoJ8WQMBwVimiIlc9bkdkXh0Ouyiqo6cy2GMKyKSYRG6biAqcsjDQKO6TlY0KM+ZMolT6F2RCsEwDFy0MoWwxGE6XwalpPKeOu3a55QAUclcR9DItUbXYe3HqYiI8VnzWFnVw72/W11JHIDrsfMrbtbsGTs+W8Y5fXF7/D6VK2MiO464IkDVDeSLKjTDjIK1vH+dAtlsUUXCQ0QCTEuDiMTjmeMz5nc89p+jZop5rbDo5nupOyL9/Tg2mbfHHaWa/ld4Oq8xhrVJ59oSilBVrND7u3MNNo+h4VZHD4D7vceruFYzEzGWVYMbzUa8NjMn5XXZTFYmJgkc3uguyxowz0E3QiJf95zuSchVlj8cpeAo0BGbe2YXyhpmCirGZ0tQRK5SsNG9nWs7IpgtanUTqUEOvcib185MgUBT/Q8aJai/BzhoVQwq5+abgLlnfToiQRY4T4ueVsJG+h4YhuGZJvOpu3Y39GwNQjoi4pZXbFrwehgMRmOOTubwxq88hMMTubrP7ts7hrfe/hC+9rYLEZPdB4OUEmzpi2NLX9z183t2j+DDP3wKEYnHB16yHv/2u+c8o42c/L9HjuDhgxP4wuvPw+Ze93UzGAwGg+HETAnUIHIEssBhJl9G2uFJyVGCrriMmXzZFl8HUqGqSJpcUbUFvajEI5NXYXgMgv1YkQxhrAmRsq9Nwb4RDccDVHX3wmoTJQT9yRCOOJ7tlMylW09kS1Vpp3GFx3TNs7k7LiMZFkEIcNVZXfj93lG0hcR5C6+OOvf17a5dsrIoRykIBaYKOjKlMvhQGTFFACEEfW0h13eXWqbzcwKjwFO08SJyJRWzRaswk8cXifmONOMiVC8KAUbUiZAlEs5BKxGyflpyWORQUueifZ3RelxFzOlrU6AZqCp2SgAMJEOQKhMM1nUSlXgk8gKmsqbYEVN4pML1xXD8sBallCAkUEzmdPCcOQQPiRymK8KuM32eEFMwS4ZN0dYpgloibF+b6YFLCLF9IvvaQq6+kr2J0FybFyGrVuAI4rJgC68WC9kUBeoCIpyIHIVmRXIGEMZMO4YcJIGCqxSuW9cZwUS2BIGjIISgrOk4XvFgFR0p09ZPv6jws7rNCS2Jp3hwJ4dSWbUbJnBmH0Vk3jWNG6guptUstcWDohJnC3hOL+ZabUPmKTTDsMX62r1rUwTbj1PgiNkfTUT9AuZ5Oh+CRqq6XYsxR3R3tBLNGJN5z3tcd3xuIsVrG6YlCzDuMclonys17a09XA2vCcNbeBV5ivaomSVhPaqDTKTIwlz0dkjkUCxrKGk6SpoBkaOISLxtESHyHJK86QU75RBfG02WAUBPXMHxqQLiioiyqqOgap52NF7H0SKoXU0QrMySqvU7PitpOsISj0yACPqFwIRXFx7cP47P/XoPvvjG89ARrS6A87vdI7j9/gMt2c7fX7+5+SqnDAajaQ6NZ/GG/3jQd5D3yMFJvOkrD+Frb9tad903Yv/oLP7y24/DMIBMQcX//fkuvPaCPvxh3xiOTTUeWO4fzeKP/u1+fOjq9bjxslWBHm4MBoPBOHOoHYNY0a1zwkD9c4MSYkdoEZgDjPaIhNHZImAAZUfVYJ6j6IxLTReuAcyBrchTIIBO2RWX0RmTsWfIO4Ch0ROwMybZQhRHCTZ0RTEyU6iK7uU5it6Egtec34d9o7PYPZyBoZupqPtGZ6vWFxI521PUei+PyjySYTFQJG9T+IifMkcw6zLu4ygx7ROasHJw25xfpewgE8VuROcxWA1ilxASOXDULB62MhWu2pHJbMk+FnXFkRwBgoZhVIm0luAVVQR0x2VMVApAUUKQjoi26FpFJVXWK13Wuc0gpEMchjLEFsFDAgfdABSBIizymC6UUdZMIUzmTZF1RSUl30l3XLHfFZ1HsyeugKMUwzMFqJoOgafojslIO6qyt+oN09oHiadYmQ7X3aNSYakq2syZzntkIgdNd6s1PkdcEXwLuCVCAhKYC5YYSIZwqMEExfCM+U7OV8QgVTMwNDN341J1HRPZMgSOYJ3LWCBI5KPpa8sBOg9RAJKpxt7aYiV6v5bJbBmd8caCbL2ftLvE0xYSoOo6DMO8DjlKbGsCJ6mwiNFMwb5+FIEiFZFAK163/o0hoMRcip/neIbA/T7h9bfaomvOKFqrSF4qIrkKr7Q2Hd6lyZQQRCuBOZO5sqsXeuA9dQi0boIg4C/ChyUeisAhV9ZgGAY29cSwZ2QWmm4gEcACpSsuIyKZBSL1isjbHq0vJFj7JhDkvu2MvBV4ilxZ9bSjsfdH5CtFEU2LHvN3U+j33Y8milR3xWWMOyx9AFNIlngO/UkFs8UykhHR3Od5T7g2hgmvNRyZyOH//PdjmMyV8crb7sd/vHWrHYV2eDyHd/3P9pZs55Xn9uBlW7pbsi4Gg+GPInCuKTy1PH1sGq+87X585Yat2NQTLPp0plDG27/5aF1K4/ceO4p1nRFs6Ynh6UrakR9lzcA/3Pks7t0zis+89lx0xZsTfxkMBoNxZhGT+MAV33vbQiCEoC0sYnS2iLKuY/9odZESiecQkwV0xGQ7gnRlKuwbdQaY0TRrO6MY3z/esB091rMtwCDOa4mIxNuDQELM9MtL16SxeyiDsUyxEiWqYG1nBBLP4YH941UD65DIYc9wpmoQJnIUWwfaAAADqTAOjWexMh1GWOQxUyijrOkgIFWRVF44oxY5t5TqCt1xuUq0S8ic7VlZe3gkgSKi84E8LZtlfqV7TKLyfITXxsvwnCnmPTcy67ucXCO8Oo+0ZswVahM5grDEISrxoJXIV2eE+ELwkw+TYbHqRFYEiu4Ih7xGIXIUXQkF04UySqpuXp8hEWVNh8xTdMUVrEyHXSfjz3ZkX1WdK8ScmOiMtWbf/FiRCuP8FQmkwiIOT+RxYCwLmadIhER0xWXsPD7tiMqr9q0sa/72GRTwrHzOUeKanh4PCYB3XVwba5JK182I2jZFxGR+LuoYMAXxsKOAmnW/8ZeKK+sHwXMTJZTKqh3Z3IiuuBxI2PLcpuOrfmsxDLOgXSNiigCJp1B1s3CTs++aDHhtGkLMIoJukdteUZAJRcCIQzCz2qhUJtQA81oslDX0tSl44sg0yppZ4HEwFWr4jKtqg3fDEeQMsb4flnj0tynIllTkHZ7mBlB17rlherHyZpq8yNnrjAbwKrWuxQ7LTsdjh/Saa6zRfZuQeq9UvsE5nXBMdgbBGUHcjM+2xFOc1R3DgbEs8pVMh1RYwrbVKYREMwp9ZToMSggOj2d9syoWAhNeHUzlSviz/3zEnvU9Pl3Aa7/0AD7zx+fgBes78MavPohcaX7VNZ2sTIfxiT/asuD1MBiMYHTEZPzP2y/BH3/pARyb8q8kbF33n3z12XjFOT2+y2q6gff9vyeqPGOd7BmebThjV8v9z43jqs/di49ecxZed2F/S1MtGAwGg7E86YnwKOo6ooqA2UIZmgHwPAFv1D8jBlIhHJ/K2+mjAiVIhgSc25dAROaxZzjjOXhMhkV0RCVki2akStLHE9NJX5sCmaco+ETMpiOS/UzzfbQRM1WW93h+OnVMS6yIyQIuHEwGamtE5rGlL47RTBGqZmBdZxQXDCTtCdqV6TCOTpoReR0xCR0VEauk6oGEF+cissjVVZe3iMoCyo7jRQlBd5THeN6oE2ESioiQqKM9KqFQ1lxFCTec7xDeRWwCrcoVkadQBIp8I9NSB0EFprgiIB2R6oQJJ5LAIaQZyFUG0wYAEDOKyrkVK/K7LSw05dcYBK+2AabIX7u3MkeQCAnYUBFPVU3HZK5kjzFD4lzlbzdxsjehVHkuNyuct+q9UuIpBpNhPHhgAuPZIggBNlWClWKKgLN7E1WijrNgHSXENWrQ/txF5bH+4vU9gaMYTIXrqt47cRZbsurNJ8ICFIkiW9QAGJB5MwK+MyaDEPP+eU5/ArmS1lAQA0wf0maOsCxUnyPO7ulpkxGgpEzga9jtyBHilhBv9oFISV2hpyDXu1+kMmCKeIbh3p5UWATPuRcS9NrNsMQjbRiYzJVNUd4w7Ghxp01HT0LBi8/qRLaooahqiMqCq5dxWOTtwpOujXBp+HwiXiklWN8RxXCmUHVPN60N3KNhLdIRCQOpkL080Pi4A3P3356EghPTBc/JvNrrrFE2ZqxyLJ1LhSR/cbT5e5d53iTDIiJNFsRSRA4be2KVInkGtq1OVYm3VkaEq/90i2DCa4WZQhlvvf1h7BmunlnNlzX8xf9sR0dUqppJmS8iR/HFN5xnm+ozGIyloTeh4Ftvvxiv/48HGw5YciUNf/ntx/GHfWP42Ms3ec6EfvbXu3H3syO+6wpS2KKWTEHFTT98Gj96/Bj+8VVbsKo90vQ6AH+vagaDwWAsHxIyRYdGoYRFiBzF6GwREs/ZkV/OlE6Rp9jUE7c9Sjd2x3B2fwJxRYCuG+AphebxbEpWok8GUyHsONY4W8NJR0zCiamCaxSuLFD0O7z+qM+Ai1RGtl7PL2vt7VFp3u/TVsSPAXPAZVYENwsCEWL61u4bnUWxrJtRcSERvQkZOwJksDjF2VRYQKGs2f1k7VF7REJU5jHh4onZFRGqRAdCgJDEoZRr3gaCePzeKggh6IjJGJ8tBY7GbSayLx0R0ScoeOLIlP23WiEoIvOQxTnhzIpu1ipWGs5rgxASSDxrRHdcgW6YBYMOjLkLfe1Ryb06OSFV0WO6biAk8oELIBVVHb97dgSoRO7miip2D2XMcxemoOK3j05v24VyaCKL8Wz9+HgmX8bQTMEze0sRubpMMULMyGTATP2WBTp3JRkAVzmWfppIKmJ+bzxbgqYbrlYhBKaYaji8ViWes4WXZMUZoD9p3q8GU2Gc3Zfw7Ge39QcRS528/Oxu7HdZf66kYni6uWJWXldXW0iAJHB1RZPq1+WPxHNQdcPcJkGdPQ2BKSbz1FtcT4REhEQeRyerrSFEjuKc/oS5HpeGCDxFKmL6h9baBkRlARGJh6obGEyF0BV395b9w75xlDXdt1BaKiIiOzHPSH7HLrsK3SAIi5wdncpxBD0JBSVNx/hsyU7770nIvsKr02+YgGB9ZwSaYTTMEnBOfsYVAW0hwXWCJyzy4DmKkEAxU1ARq/gT513uHxJPMZgKVZ08lgir+oW2N/lQst4NBlzsV4LCUQIOpMp6x7SS4H2L+bUCpv4ByBZV/OnXH8FTR6c9l2mF6AoAH79+Eyugw2CcJAZSYXz3z7fhTV91L7JVy7cfPoKH9k/gH161BZesSlV9pusGDo41XsdCeOjABF76+fvw7heswTuev6oqwiEI//SLZ/HfDx5CTCLoDlMMtsm4UjuO561OIdWiFDsGg8FgLD4RkQJZc4BLiDmwTUdEHJ/K11WLJpgrrnXdOT1VAialBGs6InjmeP07b1wR7OcMIQQlTcf2Q5PgKYXAU5zVHfVtY3tEBiW0LuKsKy4jrghVETPtURHHp/0zUBqxvjPa9HMRMNOcZ/Kq3c5cSXNNWzRFLBkXDqagiFwgv9eyptvVxQHT8643IWM6r6KoauComUIflXjb+06uFAjiKKBWxrSSI9p3MBWuEjWDZNJIvClaaboBa/GFpDLXEpZ4O5KXEoL2qIRURMRUrrxgYad2O1sHkyipOp45YYrekkARUwTMOLbDU4qwBOSLml1Ex2071gB7IfCU4qKVc9HVM4UyCmUNmYIKTdcxW9QQkbgqv0MnBNXHwE+YcCvmpOsGZgpz+24WUJs7Pzob2I90NuGN2IixWe9rYiavostjyMsRUhchz3OmTQEBsCIVmvf5GpZ4W3juisvYPZSxJz50wwBPCVa2R7CnBYWy3ZhPu3sSCkYyxbrJi6gs4KyuOA5N+Iu+zm2Gpfp7YkIRPIVGnhLbntuAAalyP/IUcMNiVXp4vjKxZH1rZTqMREhAX5viGX2cioiIyQJCIofRTBHtUQkxWcDq9ogd7OJ2HE2BLwxNNzCZLWGmoGLS4VFLCIHAERRUHZlCGQJH654Rs0W1Yd6CmVmgYyTjYnfg8R0rcpZSUrEO8V5/SOTqPKXbFNNT3JpMbHQeOfdB4MwJJULMjJdD497jU2L/NH8bTIVwYCxXd0wiMo82jqI/qWD/aBZrO6J2lKmq6fbkhsRTtIVF0//XMNARkzEyU0BvQsGRyTxUvXUTPVFFAAyjJbVQnLdn63eezk32UGKeT62UYpnwCuC5kVk8dcxbdG0V73j+KrzhohWLvh0Gg+FNfzKE771zG9781Yewt8GsIADsH8vi9f/xIP54ax8++JL16Ki8sFJKcNsbz8PGe2L451/tbnnqmkVJ1fHZX+/B7f97ALe+cjNecXZ34CjWmUIZ2ZKGbAk4kQG2D5Xww12PgxBgS28cL9nYiT86vw+9iflVHGUwGAzG0nBul4QSNMiJMASOICYLKGm6HVEnCxQbu2NVqbSAe1rxus4INF3HU8emoekGCAGSIRH9LlEkBswiXCTA2CmmCHXiZEw2C4HUFv1INvB183ukWmJUkLRKN4plvUoQ8HqiEkIgC7wtBAR58hZcUnA5Su39lSuV6nccm64uCoXqKLnuRAiUmsdJFjhkHEIbR2ldMRknPQnZjt7LlTTXVFon8xnCWl5+ThsFq1hPQxzd5ldp3KI3oeBV5/eh78A49o7MgiMEe4YzVcIrAHCEwoAGvlKle6bGtxMwC7K4CRprO6LYO+IvxFmCJSUEz41kQAmxxQbA9FdMhSVwtLpdtdeg6f0792/fc93lb7V6riJw1b6nDbrATcydL36TEZmitwBPCZCOSjg+nYdecxp3ePSRH16R74pgFmcbyRRQKOs4MZXHhYNJqLoOVdOh6obr5I0zUrfZo9Ws7mpNeF28KoVnjs/gRGVCKq4I2NQTR3tUwsp0GIcnctANM6L78ESuKtI4IvMoVMQ+WaDgaSWngJhZdH77YD5D5m7wVuR1fzJUZc8WVwR7UiWTL2MyV4KBessAQoELwm3oisvgOYLD47kqMas3EUKsUqgqKvOIyjwuXZ2ua5fXrWRstohi2dxX533RyfhsCeOzJXTGJPS11T/XvGxsnPQnFXTEJOyo0Yi8+lcWTIsKQgjKqulhHJedhaOs77sXKIuHBFy5vh2Zglk0q9E1YGdREII1nVG7XRwlUEQORiUiX690kg7z2rfuH9baOUrR1xbCkZroYwJgMB1CuHI+OO87PEddJ3AIIXjB+g7z3kzMNu4LGCkehBVJpZKtIruK4s3gfFZZIvTqjjCeOjoJQsiiZIwy4RXAOf0J/MvrzsW7vrV90cSTl2zsxIdfumFxVs5gMJqiMybju3++De/878fw0IEATvwAvvvoUfz0yRN4++Ur8aeXrTRn5QnBu16wBuetSOD933kSQzMLewj4MZUv4z3ffhzfuP8APnrtWbhgoLGXnVfUiWEATx2dxlNHp/GZX+/BtlUpvHXbAK7a2BVs0MRgMBiMJacrwqOjM2pW/jWAYllDSORgGGYkECHBHNMIITirO4YtvXGoug6OkIYiJhdgoJoKi5hwSTuWeGoWknIQEnl0RiUMZ4p2sSPiiDDJlX2iACs/xXkKr/MdTwX5XqNFOivHwW+4oQgEK9vDVdWga5dPhUVX2yQrHbRRe5wRq/OlIyrhQJPrkAVa57mYrVTkdmNjdwyAaZ+xIhnGeLYE3QA298Uh8tT0YTTmKnALGYKQyCEmmx6v49kyyroBWkmrrT0PLVIREV3xdjPKCcT26aSEYMexaQzNFDDseMc74YjWPjKRR0dM8kxTrRU6IyLFli4Z61e0uaavE5hiWNDzlBCCjqhknw+N7gIB6/EFIh4SbEuTWgS/Ik7E9A7tbwthJq9C1XRQakYju9ozVKAE6IjKde/bblXZLfaPzdr7XNJ0HK2IiZmCirJWL7wahjmhcHQyDwIzSlYWKIYqxzckcbZw6N5GAkUgyAQM9DurK2pH6F60MglVM91nncchHhKwJTQXPpyKiPj9nlGUKveIZFgERwkGkiEcqsno0w0ziMMrClPgTOsLU6ADohIPjhB0xmT7nFrXGUFUFmyfXgMIVIAoHZHQpoiYLpRBiCmQ+/WvEy/hy4p0DYLXuS4GKDAGoO6atuw83HC2l6NArqiirJqCq8gRhGXeLmxm3RI6YzIKZQ0Sz2F1RxgdURmZQhnDM0UYhoHthyddtmRiWiqEsao9jEcPTtpR8G0hsaqYpBfOw2vdv0YyplWQxFF0xWX7vFzXGQ08GbJtdQrDMwU8dGACmmH6vwOVZ1hlvw2YwnJMFlytC7zwsyhqFuf+WI8kgaOgAc+N+XDGC6+6bhqyr++K4vpzevDjJ463fBuXr03jC284jwkaDMYpRFtYxH/92cX42x8/je8+ejTQd/JlDV+4+zl85b4DeO3WPvzJ81ZiZTqMS1encdf7LsdNP3gad+0cWtR2bz88hVf/+wO4ZFUS779qfVW6Wy0z+cYvJoZh+h39Yd84BlMhvP35q/CaC/qqBm4MBoPBOPmsS0vYvHYuMqhQ1uyiQs1CKtGJHA12rxeCvMMSYHV7BIcn8rYgloqIWNcZrRN2ZYHisrVpPDcyWzeI9iseFZMFe/DWsvdqn9U4x5pBBKuGY1Oj5qfHOjhK4Oza2sAQWeDQE5cxlSujpOl2Cr0zjV6gFHmXUGVFoGiPiLbwOl8hOkjUWC3JsFhXSCgq85jKuU8UOwU1S/ynxExV1w1ThHEO6CklGMkUEZd5pCKm4APDjN6LSIJnimpI5FBUdeweMkVgzTCg6TpUzWgoDEzlSkiGhcD+gL1RDl1RAf3JEPqToapU6SC4BQl1x2UYBjCSKSyKl68XnMfJYxiGbyE6RTCjkq1Jl6DEFAHxkFAlvMoCRVzmoVeK5lhbtQQ+YlXkQXWkfSJk2lVYXsCWx3NnTMZIpmh70JZ18/rSdANDMwV0xuQ64XV1TS2GsEgRNCBvtqRiaHrODzdIJH9Y4vGCDR04MJZFpqAiU1DRXRHKaoVXAnP8cmwqD54SxBUBJVW3z2tCCEIiD44AIs+BUgLD4bG9uTdWNyZo1GNOb1eOIw0zHNzwiuhvZt7AK7pbmIeXZzIsYmU6DBhw9eO10HXdLPLl2HRRM1DOlZEICbb4CqDOxg4w7SWilfMrJHKehd1VTcfazggmsiVMZEuYLZYrkZqVcxmVaHiP+7R13VnNjIfMa8uNqMxj2+oUHtg37rnfALCmIwJZ4NAWFjGVLSFbUpEraeblV7knGAaQCItIhUWs74rafvPHpvIY9fG0BcznRU9CgTqP+im1VPuoL81d84wXXu948jje950nFm39z1uTwlfeunVeHlQMBmNxEXmKT776bGzoiuEff7ErcCGsfFnDNx84hP968BCev7Ydr7+wHy86qxP//ubz8b1Hj+ITP38m8GzsfHlw/wT++MsP4PwVCfzVVetw2Zp03YNjxiMFx4uD4zl89Ec78O/37MNfvXgdXnleL5swYjAYjNOUDV0xO4KHEIKdLr6vFnzAKBBKzYrticoArjMmQXQZ5FrPq86YjJlCve0PR82I1trq2SGJcwgrwZ5PazoiVQVHqvxwibd4VEsrihIF0F2RKxmYLZSrBBg3AUESOHTGvccXZ/fHMZUrQeQISpphFlbjiOvEajoiIV/WmoqC9Y1odCEVEdEVk+smhfvbQsgWZ+rewdZ1Rqt8KZ3iv2aYIltEro64NAxTELY0G8viIiRyaI+4iz8SzyEqC8hM5eedvqo7hN9GDCYWNvx284QlhKC3TUFnTMLWwWRVMbJ6gosWq9IR7B9zt+WKKe4V4a0teEUxA6Z4MpAyq1hZUZSFslYRmYy59PXKTwNAT1zGQKVKfToi4vHDUxAr1h1P1NRpSYRErG431+9MpHcWHSOEIKYIyJU089omBBGJq6/rUtmN9qiEMY+I/lWVbQGmoJNSOEzlCNQAh3omX8aOY9Oehci8kAUOZ1UiwgkBjk+5e2bX+sbylCAZl6FpOnRY93YD0/kyJisTIIZhXjubeupFV3N77v1uTT5kCipk3lv0C0Ku5H4vaiY72esUFChxLQLpRltIxGSuhLbKM63R46Kg6q7RwLoBFEo6IjINfAXW2kA4sYrHPXZoEntHMq4C7drOCGKcu5jajE9qOiKhIyrj2i3dGMkUMVMoYyavYipXQknTIfEcVrWHsSptXgfFso68qpmTKwCGa64pZ3FP6xzpjMsBhFeCiMQ3PVnlRpXVgONQ1HpPt5IzXngNeVQrbwVXbezEF15/HhNdGYxTGEII/vSyldg62IZ3f+vxQEW3LAwDuHfPKO7dM4qYzOPFGzvx0k1duPO9l+Nzv96LH2wPFkm7ELYfnsJbvvYw+pMKbrxsFV51fq89U9qowIUXRyfz+MD3nsSX7t2HD129Hldt7Fyy2UAGg8FgLA3ru+aKZZU13Vd4nciVgDGYET9N0CjtOaYIWN0exsHxnC3UhEQOEYnHtEvWhsLPCa9Bn0ubeuLY1DOXpjudKyMkjgRsf3MEfVSqDcqeHxjPYW3HXBTdfON7RJ6CoxSKh0YqchS9CQW9bSEUVQ17hmc9I82cEGKuuzsug+coBEp8o8AUgcNgRWirPagib/oTj2SKyBZVUEqQjki2qGThFICsaKWIxEPkqO1FSYjp46oZZsReKiKBEuD6c3sxNF2oE6EA08cQWEAEteNrYZH39T29oFcB1as/39gdswuHBaHWE9UJz1HEK4Kol/DZjHDVGZM8hdeOqFTnU2yRL2lzkcguh3UiW8ZATbBfUdVd31vDIgdF5CrRdDyu3tSJfFlDSDiCiVwJqm4gLHFIRyQcGMuipOrQnftOCKwrqLYphJCqYlxu2NYmPDWvSWNuLe0RCRt7YrYvqrU5Sgj6YzyyGkWjqYywuHA5xu/UlXhq95OV7g8AHEfhNCVJhESs7YwiERIg8RyuXN+OO55sLhO4Oy5jTXsEsyUVTxydQltIhCxQ9MyjloSXLtqMVcZEtoTehFI3+cdzFOWARZ+64hKmciV7EmhtRwQnpgvIlTS0KRzGstXrKbr4fFtY1hDOazBXUnFsMm/75eq2N6v/jnbGZByr+LJ6db/qo/wHvd3RijURYB63noSCHnj3Z1HV8OzQjP3sd3tOu0XDSzxFV6zeRsS6PgwYIPCf0GkG5/3eGf2qiDwK6sKFXTdOW+F1OlfGE0encG5/wrVSqYXfjXYhvO3SQfzdyzeyaDEGY5lwdl8CP3vPZfjEz54JbD3gZKag4ofbj+GH248hJJovLO+/ah0eOTCO+57zT81oBUcm8rj5jp34hzt34epNXXj1BX11hSeaZe/ILN7xX4/hopVJfPSas3BOf6I1jWUwGAzGgmnlfFgQn7V5eYIGaGMiJOIcRUCx4kGo6Qam9tc/vzqiEkBaUBxonsctyFYbCc2GUV05OfDG5rnLfu3piEoIS7wtikg8h43dMewZdo+eiisCMoWy7RnJUVIlqJCK8Oo29FFEd99Zq33WgN4Py/+zXCNaO6+DqMybgnBMRltYRFnTEZZ4bOqJY0UyhLufrRfc9w7PYt9IFqqfoukDgf852ajrOqJyU8IrIaYYoRsGdMPctub4ncD0TtQMw45mJ7D8KYldmTwIHTEZK9PhOi/auCJgQ1esrvCQhSUa6YBrVfBGolJtGwBUbAAk8BxFlKNYkQqhPVbt7ZqOiDg+VagSdpznG6VkQfVcQiKPdZ1Re1LEzRbAEnE4AqQUHsM+p1U6IoJS0oJ7ufcKYjKP0dk5ISkeEmwbBQuBmp6eL9vShZDI2+dNMiy6TiRY7XUWNTNQKQYockiERegGMJopehY+a0R/UqnyUp7bjn8H1k46uF2bYYkP7C0aEnlsHWxDRDatKaZypn1JX5uCsfH69lmRtHNy/xxz0epzn+RKmuf13x6VXCcjeGr2zWim0jceJ5Duc6ysTI9Gz9Ntq1NNWUUUVR0T2dJck1yaNp0vu/ok97Yp6G2rfw70tSnY3BsHV7FIemB/a8fVzibGFQGFslqXbdMKTgvh9Xe7R/CLp09gtqhiZKaIg+M5jFVClT/9mrPx2q39nt+VhdYa6CoCh1uu24jXXbiipetlMBiLT0wW8KnXnINXnteLj/5oh2vRgyDkShrufHoIdz49BJGjuHCwDapmYOfxaZRa4EvjR1HVcceTx3HHk8ft2cNiqYypgjbviJmHD0zg+n+9H684pwd/ffV618rXDAaDwVhagpXSCkZE5H2j5IDgXoxhibcHc80UUrEyxLxSTFv1zt6MyOGM8A3kcxsAgSMQOOJpbxSX6/dzap4TqX52DBJPzSJUVUVhCPrbQtg9nKlbvrdNgUjDKGm6a3tsr0ClfpBebe/gnuLZCEoJuuMyDk/kXMU8wBE9SEyxV3HE9EVlAX1tIRydrC0+ZDQlBLoR+Ns12ymqGnYPZ6BqBg5PZOcK5FUsQOKKUGW3AAAxhcfRSfe0ckIIQhKH569rb3YXPDm7L4GumIwjk3kYhoF0REJ/JeXfK8CIVgQSQzdMBdKH9qiE0UzR9W7mzEyNiALO7kvY/3bbtnV4nYfZ+bubGNYshPj7sNa2yu++agWHLVR49ft+SOLB58oV0Y8gGRIRkXgMTRcwmAojGREhchQXDLTZIrfFYCrsKrxquoEVSQVcjd3IKofX7YpkCB1RCbmShhNTZkSn2+RKR9TdYsGrQJSfUBgWefQkZOytspapPjhbB5PQdcPWioLQFpJw2do0SqqORw6O16XOO7EijLmKyK/VtNeoRLRagrRf18cVAQPJEE5MF0CI+TyNyTw29cbRGZNxYHQWmmoWf3NxwfA92YM8z7vjCtIR78J1bhgVvdJHd0VZMwJnZfKU1heUXuBFXFuYk9Y8k7piCmZLKgoe/rrz5bQQXvcOZzwj1H65c9hTeH3yyBQ+9pOdLWvH2pSIL79tW9VNh8FgLD8uXZ3GL957Of7rgUO47XfPzTtlHzDTSh45aPpXUQKsag9DoASHJ3KLMpvmpKjqdsoGR4AVCQGJSBgHx7O2j1Mz/PTJ4/jljiHccOkA3v2CtZ4m7AwGg8FYfFoZ8UopQVdMtlO23bfXeIPnr2hDIiRiagEebMRFUo7KvD3IPzqZR2esOT9EJyGBw2VrzCJljxyc8EyXlniKlGPQaaatE0+RbjAVxsGxLNZ1Riv7MddHVrQhz5FK6mYcTx2dcl1PVDQ9F/0YTJnP8kbwHIUicsi7DCAJIa5CiFuUGVAR0zgCheOQDIko6botKNlCO6WQhPrzpFWn6pbeOGaLKoZn6r1YE4pQFVnrzuJMflv773qJGK6/AjAFrBPTefAcgQGCyRqRS+AoEjVz3es7oxiZKdppy07SETHwZEczdMTkOlEOMP2T+9tC4DgCnprnNk8JpvJlhPeOBlp3ImT69Fo+0pSYUfARiUNMFhBTBMgCh22rk1Up4262EYbLZ5oxd5woaS5V3Y1GE16154CXSychptVKkHU2wk9Eo4SgKy5jNFO0RejBVBhXru9AROIh8RTxir1ALf3JEAplc3LAutZlgWIgGa8r4uWGLHCQBQ5TuRKOTOZd7zde3raywGF9VxS7h6ongQwDrinpgHlMg3Rvs9fIeEXVtKxb/BA5AkooKCEouIzzjEoBOKudjQTQK9Z3YDAVwnTeLJ7VFhKqnsW7TsygKyZjfLb+met7PySN7QbmM9dY+3z02r2gI+BGEc6NUAQOumFA000R3DCMuneZTLFmTFyx5JhvtLYXp4XwGnUJVba4b+8ociXV9l7RdAP37hnB1/73AO5vUfpvXKJ4/aYwrtnQxkRXBuM0QRY4vP35q/DHW/vx5d/vw389eKguNadZdAPYPzo3UBpMhbChK4b2qISIzCFf0lFUdSgCh3DlhbMnoeC5kQw+95u9C9q2ZgAHJsvA5BQAs3BJVBKajqIpaTq+ct8BfPfRo/jzK1bhrdsGW/5gYjAYDMbis2c4YwutZVVvGPXnFYnqxDBM38OFCK8cJVVKXVwR6qKfmqmEXgvPzQmqybDkKTTWCjQcJeiMya7LSzyHjT0xrOuM4tBEtk4scEIIcOW6duwemqkTfSMCQUSkqN2CWcRkrkEUwIg1sUpJlUBcy8pUGM8OzdTtT3+b4mq55iVEOwlJPM7tjGDn8RnMFMowDFMcb49IHgVSiMtv3liFl2rhOYrL1qRxZDKHg2NZZEsaEooEw0CVKOclri3UpcINQsi8pQFne6IS3/C6CYk8IrKAC1cm8eD+8apIyrDI4/wVbfNsSfPkSirGZ0vYfniy7rNsUcWzQxl0x+WGFhIxWUBvQjELv40SW9jqiErVGVYBrnm3aMiehCPK2eH3GpTadTZqRq2o05cMAQZwoGaiJBUWF3Qfq9pmg8+FipUHTwkuXpXE+q5YYPFxbWcUK1IhzORVZIsqZosaJnMlDDnug9YR2jPM2xNPThIhEW621r0JBYMp7yy69Z1RyDyH/WOzKJZ1hCQeb7p4ABGZxz3PjkDHXASpAVNQK5W9rUgA81hJLgUfg8Jz/vey7rhij62KaqnudNMq5sepSvp+o1Ng5/FprOmIuN7jexIKdp2YcY2o5ilp6B/cmwj5ngfzqe9h24xYk1EeZ2fQCkgLvWe/ZFNXzfqMuuPltNZxs7NpFafFaNlv0F9Uddy1YwhxRcBvnx3Br3YOYcxlRmA+SDzFDZcO4kVdZXB6ifm5MhinIfGQgL9+6Qa86wVr8L1Hj+D2+w82VYDLj4PjORwcN9eVCot44YYOvHhjJy5fm64y6p/Op6HqBr72vwdcfdfmg6bPP3XRbFMZn7prN/7j9/vxp89biRsuHfT10z4VUTUdx6cKODyRw7GpHKbzZUznzUqdumGAq0RvKCKHVFhEMiyiPSphMBVGT0Jh93wGYxnyy1/+Ev/2b/+GRx55BBMTE+jo6MDll1+O97znPbj44otbvr2Pfexj+Pu//3v73wcOHMDg4GBL1r3QO1CupPl6gXv5+zViXWcEw5lC3bq74wpUTbeFudmCitmiWjXwjMkCzuqKYcfxaXCEQBLcI4xadf/1W42bEH1ufwLZklq1b0LFUkjgKAQO2NAVw8hM0bPyMiFAOiphQ1cUJyoFnygh4MIcYrw52C1relVkTm2WyrRAUdYNuxBW7aA8FZkTqhWRw8aeOIamCyiqGjhK0R4RPb0+o7KAoot46jxW6aiIjpiM9kqBpaePToNSYqbvutRi4j0qSPMeHdDlE9FMCEFXTMHm3gQIMQvD5cuaHVUMUp9KajHqkyLcLJetSSMZNtO2rQjLBgGvvta9boF0tbrHRSvNlNt0RMJVGztxZCKHkmoWl+pvCzVVqXyhHJ3MY1cT3rR+dMVlbOiKQtNNES2m8FXvwUD99dibUOoi9K1FYo5zOxEScLSiDdMmzQbO7jOL8r1kY5cZNWcYTYt2lj/mcKZgv8MnFAH9bU5RualV1hFEH7PE7agsNB3xKfEc2qMcwhKP0dkiZgoqRJ6rywj0C1AZTIdwXn+b3WcdMcnTZsCCEILBdBiDNUUdDcNASOJdBbI64dVlvQspfM5TClmgKJR113XXOmtQVEd3mucosfd9IcWLIxKPvrYQdp2o91rujisNz6s/Oq8Hx6cLKJR1FMoa8mUNRVW3JxvmF/Fq/iw5CrotBLerNaYIHhN8jSGEVInngGkpdLxyXraFRIxk6qOpW8FpIbzKov/N4wPffbKliSW9CQVvumQFXn/hCiTDInbs2IHC4vQPg8E4RQhLPN72vJV4y7ZB3LN7BN955Ah+++xIy6orjmdL+N5jR/G9x45C5M2Ijhef1Ylrt3QjHhLwgZesxzuevwr/89Bh/Ps9+xZkf9BKpnJlfPbXe7CmI4JrtnSf7Ob4cmwqj0cPTuCRgxN49OAknhuZdRjdN4fIU6xMhbGxJ4Zz+uI4uz+Bjd2xBb3MMRiMxeW9730vvvCFL1T97ciRI/jWt76F73znO/inf/onfPCDH2zZ9p555hl88pOfbNn6alnIgA1oXB24IyphMleyxYwgBTYMGHZU4qHxLEZmigAB+hIh9LUpePjghL3sdKGMoenqF+iQWAalQCZfhiJwnmmdrRJeuxMKIjIPSggoMY8prfhsum1D5CmuXNduC6YCR9HXptQJGX7Rw1YE0OqOaJVX5NHyNMoV0UDiuar+5Smpfl4ZZgplySM6tbZwicRTDNRElnXHZZyYrh/ABNFkrPVb3rzHK9FvcY8sxNqq4hZeQqFX+rFzfS/dbEYyFcpa4Hcxt/R8J2f3JTAyU3BNY65F1U1hvOoybHBa1p4WzmhK6vLl2mgxZ7CRxHNY01EfXbhU+O3qfG5NEVnwtBAhLjnkHVFvaxRnNqzzWmy2XbuHMtB1QBFGoOo6BI7O+113MBWGppuT+i/e2GlHaQJzhY7mS6PI2YQi2NfUQqNsrW8rQr3w6v89grawiLYmCjV5rosQdMYkV6/j2tT02uckIeb98KKVSci8aYWgGwZ+s2s40LYNw0BnTMah8VzdRcC7+B7HFAHZomoWmiMAT82JIUv8W6gweW5/AplCGftGslV+stmiigNjqvlcg9mu2sJVlNIq32Rr/4qqjmJZd50MaoR1T2tU00QHzGt6HvvfSpslwBRbeUqh6jq64xKm8iX72drKIJtlK7z+bvcI3v0/21FQ9YYP24XKIiJPsaknhuetTuMlmzqxpTe+4JddBoOxPOEowYvO6sSLzurEaKaIu3YO4Zc7hvBATcrXQiipOu5+dgR3PzuCrYNttpdqVBbwzitW422XDuL7jx3FbXfvxWSuDI4AuUX2i/WjMyZhbLaIHzx2FG1hMyW0LSSiKy6fNCFS1w3sGcngkYOTpth6YALHXQaY86Wk6tg9nMHu4Qx+9PgxAOYL16beOC5dncKlq1PYOpAM4DfXemYqYkZbyIzQZTAYwGc/+1lbdL322mtx8803Y+XKldi5cyduuukmPPjgg/jQhz6EVatW4VWvetWCt6frOm688UaUSiWsWrUK+/fvX/A6a1nom2ijasZhiceqdBhHJ/MoqjqiTVRDFziKNR3ROmGoUZutQaLRYEC2UKHCojehAPBPha7FyxvVid+RtZqejog45OHTet6KRFX0WFTmq6JeZZFDmBLkS1qdmNgWEpH0KExjQQnBynTEVXj1Sg11CoNe++f1d6fwejKHUG7FtSxCIo+V6TBWpsP4yRPHGq7rwf3j6IjKeHYoA4FSdMSaf946jxcJEPF6KmXa+I2FG3mWuu1GV0zG1Zu6QAgqEyHmWrzE+f6kguFMwY5UA8xou6jMVwu4joOcDIuu57ws0EphM1JlqWLZbqi69TPYe/4VK8MoFDjIsozNm3sDfWch9CQU7Bs1Q81lnqJQMyHjfBeMLSA7bV1n1L5n1RbuC0vm+66bhyaA1hk9V9jSm8BUrlzn9UsJmZsIMwCZ50Dp3KQHJaRSqG/uHl4oB88m1A0z4lzVDIyOze2UzFOkIxIoNSeOeErAU6C/zYzWLapmkWOJN881K/p5oYeFowRrOiKYypWrbD8mXDIuaoVXN6zJtPmO37QaqwEvuEq2gtAggtztPSWoJ3LQwmAcJTh3RQKPHpwAz1Fs6IxiaKaImXwJ67tbN7m1bIVXjhBkW1xpzIIS4OpNXXjtBX3oaVOwuj2yKEblDAZjedMelfCWSwbwlksGMJUr4dfPDOOXO4fw+71jnlEozbAiGcLajnrfaFng8OZLBvD6C/uxfyyL3oSCX+wYwg+3H8UD+8cXxcPMj+GZomuhQkKA7piM1R0RfPNPL1rUCauiquGpo9N2NOujBycws0BP3mZRdQNPHpnCk0em8O/37IPAEZzX34Ztq1O4bG0aQpPCfK6kYiJbQl+bt/+VG7/eOYwPfO9JvOdFa/H+q9Y19V0G43RkbGwMt9xyCwDgBS94Ae644w7QSijHFVdcgbvvvhvnnXcedu/ejQ984AN4+ctfDlFcWFTOv/3bv+GBBx7Atm3bcNVVV+HWW29d6G7UsdBbapBbUiIkIq4ICIk8Ll6VwqMHJ1yL2lg0ev5UiSgeyxLSuPAG16BS+snGz8LBihLrTSjYfnjKdWDJUYKD41n0xBWIPEVUFmzhladzwkJ3QsZMXrVTq5NhyYxMblg0hSAVFl0LoXmdV86/6x4nj1f3e6ZnzzPiab6YUXLuwut8JipHMgVM5coV0UlyFQT8Lgln17fK73Op8As2kAUKjrqVyTPpd3mv4SgBR4OLPYQQbB1owzFH5LbEV1LAPQ5lykV47W8LVYnmh8dznmnMlj/kqSSAA2ZBp6HpAlTdrBbv1EjMSH7z96jMV9mClVTd9EYFqVh1mOchIe7C+opkyC6CxnMUIZG3heraKPta/O6J80HkKV6wvgM/fep41d9jimBbRADASzd3tdSCQ+IpwpVJmsKUBE1VwfM8OpMhwDCgGYBSud1RSu37m1QjZFrO0K247lXNmNf7wGKcxZ1RGS/d3IW1HRH8ZteIa9o+BRAPiVANA1GBayh814r5Qfd1RTL4+Kk3oUBek8a+0SyKqoaBdBhr2iMtidC2WLbC60JMkf24bE0af/vys7ChK7Yo62cwGKcniZCI127tx2u39mO2qOKe3SP4xY4h/O7ZkXn7sr74rE5fsZLnqG1i/5oL+nDNli48eXQazx6fxm+fHcWD+8fnnUrfCgwDpneQqmPvyCxWt0fAUYKHD0wgKvNY2xGpSrMMvl4DRyfz2Hl8Gk8encajByfw5NHplojdraSsGXj44AQePjiBz/92LxSe4Ky0gPN7w+DTM1jfGQUhBDOFMnYdn8HekVk8NzKLfaOz2Dcyi+PTBaztiODX77+iqe1as8fqIpnDMxjLjW9+85vIZMxiR5/85Cdt0dVCURTceuuteN3rXoeDBw/izjvvxCtf+cp5b+/o0aP4m7/5G/A8jy9/+cv4wQ9+sJDmLxpBszQUkccV69sr6e8L22a17uoSyVIZ/DcScFsV8boY/PqZYRydyGEyXwZBZXBbieSNKwIuXpUCYAob6zojroW4pnJlSBxnRw31JGRMZkvIFNWqKB5KCNZ0hD2LUbkRlXkkQiIoJbh4ZRLbD08G8j613ke2rUrVDUZTYcmu/O2G5bkq8RxWpSPIFSvRXi3oxmbW0ZtQcHQyj+EaKwFZ4NAdlzGRLTWMBHdtQ+VnTOaxxiq0XDmXz+qJYUUyBAKCo/snoNXoTwJHbV/5WgfSU/csh+nn6wEhBDGZd+0bQtBU9LwfhBD0tYXsCerthydxpKYOgzPyThI4pCNiVb2X2jY2EulUXW9KIAaATKGMPcOzAKxCUObkhQHzXre6I9zQ79SPo1N5iDzFsbEsCqpeZQGQjogYz5YQlQWsSlcHczxxZMqzuKDIUbysxlYhLPHY2BPDVL6EQlkHKudtMizaEZJecymLkYEVRFANcn9o5h6yuTeOzb2msJsojcDQyhAEEX39CQDAY4fqi825brNylFohvHKUICrzEDgC3Qj+bF+MxyilBBLl0JsIIRUWQQCUVQOqroPnCHhq+gyf1W1qbeevaMMf9o35rtMwqtsapN1tIbFhZkotqYjkW6hyoSxb4bXV6avrO6O46WUbcOX6dmYjwGAwFkRE4vHys3vw8rN7UChruG/vGH7zzDB+++xwU8X9Xryxo6ntPrR/An/yjUeQCAk4py+BP3neIDTdwLOHh/HceBEjuZMjxE1kS3jJ536PkMhhc08ce4YzmMqXIXAEg6kw1ndGsb4rirN6YlidDiOmCNAqs/aTuTLGZ4s4MpnDofEcDoxlsfP4zCnjcdsMedXA9qEStg+V8NXH7kM6IuGSVUnctWPIUyCv9T8MgliJBFusqpwMxnLjjjvuAACsXLkSF154oesy119/PWRZRqFQwE9+8pMFCa9/8Rd/gUwmg7/+67/Gli1bFk14Xej7alCBaWN3DBJvvnc3SvFrvMa577sVYrE+bTSePpX9tHMlFbLIoeQiZoYkrsq/NFv0npjtTshmymOmCAqC45N5hGUeimPfCYKnU1qcv6INiYoVgSxwuHR1GtmianscihxFSORM0ZhY4gDQGZNBiRlRVpsJ2JOQMZ4tup5TIZGzBZLV7abAtH/MpQLXPAmadgqY+3PhYBIHx7M4MpGDASAdljCQDuF3z44sqBWAOfEZrwkOSoZEW1Qb5kiV8BpXBNszdGy2WOXhOh8BeCmJK4Kv+LoiGcKsy/m9oi1UF/3XKtyOmSxw2NAVhQHg0tVpXLwqib3Ds2ZhMk1HW40tR6N7z3xsxUqq7hlpDViWJ/OnpOpIhkXwtBL5qukoaTrisoCQxEPXDXRE5TqfZ79zzOvx0hYSsbE7hnxZg8gRFFU90LOofREFLT+CtK2Ze0j19+b/udWuVshO/ckQ+pOhqmeqpht44sjUwlc+T2IKj7WdUZyYzqMtLGDv8Kz9fmA9A7tiMtIREYOpMA562O4A9e8VjfqrMybj3P7EKReZfsYLr1esa8efXbYSl69NM8GVwWC0HFngcNXGTly1sRO6buCJo1P4zTPD+M2u4crstztRmceFg8mmtvV45QE7lSvj3j2juHfP6Fw7OIJ/enEHlHQPPvebPTg45v0CuFjkSlpVYZWyZmDvyCz2jsziZ0+fWPL2nGzGZov42VP++50pqsgUylWFIhphDYjLDYztGa3HMAzoxqnlw8cAtm/fDgDYtm2b5zKSJOG8887DAw88gMcee2ze2/re976Hn/70pxgcHMTNN9887/UsBWGJR0nTm5vIanBqNxKLnJeGVzYIIcTXHzsVFrGqPXiE58kgHZEwW1QxXjPZ2hNXqkQWPzEGALrbFKyvRAZNFUo4Mp6z/RtFjqIvqSAsNTecc8sOca4jHZWQdolO27Y65bnOrriMZzwq3DsjiBZjqNXsOjlKsLo9gtXtc9F/C/Hot6OaF0itJ2LtuPRUsyLobwvZvqKunyfD6E0o9j3myEQO6Yi0qN73brcfjhKEJR4cJXbUZVdMga4bdqTx7/eO2ZYbtc/v2kjN+WSSNdIYGvlhNlx/5QyMKQJiioA1nVFMZIuYzpVBCMHajgguWZWsa4f/rvh4+BKCkMhjS1/CjOA1zGNZVHXXkNeIxKO/ibTvhZAvabYdjmHAPkfNQ2ygPxmyJxIXykIuyUbF4efDmo4Inhsx97f2PE5HWpcyHwTLCmTHcYrjU3kYBjCVLyGhSEhHRAykwljbGakvUBho3f6fb+mNn5KTs8tYeJ3fyUoIcF5/Atds6cbLtnQveIaJwWAwgkIpwfkr2nD+ijb89Us34NB4Fr/ZNYLfPDOMhw9OVL34v2B9R9Pe0n4zm6puYH27jHPP7sEnf/HsfHeBcRL47K/34Mr1HTirK4r2qNTwBd46bxpVb16uqJqObElDtqgiV9Kg6jpUzfRdU3Xrpz73b23u75phoKzqOHg4g3ypDNAS7hvbh5Kqo6yZ/xUrv5dUM2KkWK78VDWUVPPz6p8aimUdxcp3CAEO/OO1J/swMSocO3bMthlYtWqV77KrVq3CAw88gD179ngXCPFhamoK73nPewAAt912G0KhpRloeuEsHuLGOZXUyD/sG/NNNXeKciGB8/Xqa/TccopH/cmQS1qwOWYPCTw4DmY6aw2yQBsWjzpZOIXnwVQY6bBZIRkwLYnWdjZXqEN1TKDFZAGbeuLIlzUYMKAI7qncjdgzPIsOj+rx8yUk8rh4ZQr37qmOGu2Ky2ivGvCTlufPt2J1C16HzwqCSmqNPDK39MZ9P19qYorpF+o2cdOTUOqCB7wKybUKXTdwbMo9bR6oF9cpJXbBuM6YZAuvtQJ3vKYYlTaPSe1G59dCp8lDUrXIRIk5+WNFw69qj7g+z9zsXiyCeD1b/ybEPJY8R/GiDZ3YcXwaE1nzeHZEJWzqWTwhrDZacqag2hNaAkew49h01fIdMblOeJ2vgOr2NUIaW+UkwyKEiuVRKydUViRDODiWs4vB2W2Ce2bEfCN9g0Ipwdl9CWzpjUPTDU97uUbt0A0DnGOZxb6eFotlLLwGu3hlgeKs7hjO7o1j2+o0LlmVtNNrGAwG42QykArjzy5biT+7bCWmc2Xcs2cEv35mGPfuHsWLN3Y2tS7DMAs7edEbM71/DAO49frNeHD/OB48MI6dx2fqXhA+/ZqzsevEDG6//2CgF4jliMARbOmN4+y+BAZTIQykwvjLbz/uWTRmZTqMV5/fixPTBWw/NIljU3nMFtSGBWBawdfvP4iv338QgPmyZhgGwhIPiacQeQqemkUsXrC+A+998dq5iNdTwPPWMAzky2b0Qa5Y+VnSkC2ppnBq/03FbFFDrqQiWzRFVXuZkuN7RdWuMtw6gvlxBeV0vF6WM2Njc95hnZ3+99WODtPepVgsYnZ2FtFocyLZBz/4QQwNDeE1r3kNrr229eJ7sVjEjh07qv6WnyhgPOseORotStiRPe76mZOR8SKOzXgXzDpEJnDcsjApaDh6wtsCZQWZwPRx72HR4ckSjk6ZQk1JMzA5UaoaJM1yQKg0hcKsilSIw9BkuToqiwCrFQXPPFNf0PFUQDcMHD3iHsU6NQvsz4+Bn54bAOvTRRyvHPuyWrZ/Hj1yFED1sT96pDXC1VEAM8OHsSJRPR5qtP4dfON7Zbeh4blyFroBKDyBkcnimMPCVsqOYEzhcPSYt0AWdFsWmu59zJtZ33yPr5bXMDKtg2bdhdNOfRz5YfO5XCwW7Z+11zIATI3kMVt0ecYRoJ9MYHbo1Ip6jag6DgwXkSvNtTkuUwhUxo4d1feeVpxffpS1+Z8HumFgZrSAmYKO6aKG2awKQgg6whz4bAGFvCmQ8RR4bs84lAYBYLX9PFvUcPS4931Tzo0gOxQ8s6mWUoN97zYU7JiobrNhGNh7ouB+vgHgKLDDqPfefGbE+5kDAHvJBCIcQYSYx5XOEuzb0/g5NF8msyqOjsxNHI7nVUzMmu2LSRRHjeqo7Gf0cURqok3new8plUxx2XnPnpoowop7mM2pmNCq73UCB6Qg4tChKezQR6G26P5lEStq2DNeRKFsYGK8CJ4DOsM8JkeydW+7u7QxRKSTHxk6lCkjn9fs7AFSMUa3fn9m50RVBO/hqRKOTnpPAD+jjyPUwojizZs3t2Q9y1Z4DUs8XrqpC7JAIQscJN78GVMEdMdldMVkdMVlDKTCLOWPwWCc8sRDAq4/txfXn9s7ryJRB8ayvumigwnzdk8pwYs3dtrC7mxRxXMjs9g7nMFzI7PYP5bFy8/uweqOCG6//+BpIyJRAkRlAYmQgIQiICLzICDYM5zBmy9ZgTUdUfS1KXjWpcgJYB7ff/7VniVudT1WBIFV3drJ7qEM7tkzYhedefLoFG7/3wOIyjwUkYMimP/JImfPtNea1eu6GSlbckR9FlUduZIpfOZKGvLW72UN+YoYmi9r9Z9XBNbT5RxiLE+y2bnBviz7R/kpylyEaLPC6z333IPbb78dsVgMn//855tvaAAMw0ChUD1471F0jM6U66K54jKHKC2j4OKjWku5XEa57L1cvkChVcQ/wTBA9DJKLlFfcZmDVi7WFQ+qQlVRLpsLEADtioETs5otvho6IBGKlGSA6ipWRAmmCjrKugGeAgmZgwi17jgshKJa2Tqp+lGp8N2cdYhmGCiXvb3cSyUdhcLcsUsIOg7VLl9Zh8zTquPpt95mmc3rKMjV7xqN1l8oNB6gqyUdMq2IMgZQrjkXiiUDRUJbsi0LTfc/5kHXxxmqbeNQS0+Ux2RBt59nOswKSQaAMG8gX9JQLtdfEzxHwOscak9Xt2sZAPrCBnbmytBrrucVcQF6uYjCKWhvvzkJTBUBVQMkniAmEailImrvKK3sczcWeh6sTwCjOWC6AAxGBbSHKdpk5/KVPtFKKASsmWv1c7Gk+7atUDRQCLpSD8KchimXdURECurS5uMZFZOz3idUGe7Ha8gnqhgAprOkTthcTMLUQEzQMJ4zd1BVdaiaBp4CSYmvO+7FAgGv1wivDe7bgMe5Y90QHN9PCLr9PBuZ1aA6jjsF0BMTYGhlZPJAoUDnv20PFAKcnSLIloGZvHlNUmgol+vPjWKRgDeWrq+8aBPM/6qZuweWS0U4z9Ryae49wo18kYDqJ3+/alm2wmtE4vGlt1xwspvBYDAYLUfkm39YPH54yvfzwbj77T4i8Ti3P4FzKymnFhNNFAE7ldncG8MfnduHv//5M5jOlzGdL+NQzTLTeXN40JvwFl6XA/myVnUe7Bmexa0/e+bkNegMZj5p6ozFwZn6vVh9UigU8I53vAOGYeATn/gEenp6FmU7hBBIUnW6oCwDF4oSDk6VMVM0rS46Izz6YwIELtj+KhKF4BPBJUoSZMdz6dw+EU8NFeB0M5EFgrO7ZEgNnl9RTYUwO9eulADEFANTBVN8lXmCSwaj+P3BSqooAKUmQ1IUecjywgq1lDUDfzjc2Ou8J8ZjbSr4tlTdgCB4T57qlKuaAJAkA90FirGsZka8Vso3C7yADZ0SZEf1d0FYmDDjxO0YNlp/o4kLAFCJBkHwnm2TJRHRMO+7TJvCBdqWhWH4H/POSLDzpTtBcXTaZTBPgBVJGRt9IsMOTJZweKr+u2d1VPdhsVi0nw+11zJgXs8hWcLxjIrpgoaQQNER5tERObWH7EoA577+JMFQxn2Cpze28Gtaa3DtAY3P4YEWORDW9rNGdd9zXhRFyE14+btxTq+Ep4cLyDgiWMMixZZOyfW+HCqXIQj+zwi349XwPiFJkJc4ivLsHhlDsyqGZlVoRIUBDakQ7/oMlFzaN99zR81XJk8q92wA6HB2IxXQGeGhVd5DOMc7SCpk3uf0Bvcvr203QlGAtrABP9cxSZYXxWt2sZGK/ueuJJ2a+3Vq38UZDAaDEYhGlSsHPIRXL6zIyuXO1oEkOuONXubNF6Ie5vnNaBG6AQTUvBiLTCQyV0Ann/eP1HF+7vxeI2699Vbs3bsXW7duxbve9a7mGxkQSZI8U94uWcB622cKWDFTACUEHCWVn2ZqLSUEvW1KnXfrhZpuVwUPizx6E4pdud6PiWwJ03tHfZfZsqUXB/TjnoW6+tpC2DzQFnwHXRiZKaDPGG+43Mp0GJv7EoHXq+kGDuneabV9bQo2D1R7X27UDTw7NIP/feJZ5ItlxEMSXnrJ5jqP3n3qscDtaMSqdASb+6o9Qxutf/Pm3kDrvvh8wyy4U/m3YZhOkkal8CBHCaak4aoK3FXfX5myq14HZTY0jpGMexR00PWdpRv4w76xuvefzb3xqkJcbmwyDBwcz2H/6CzKmg5F5LGuM1LXhzt27EChUPC9lk9X+nIl3Ld3rK6QFEcJLl/bXuel2iy6buCgy7VnGGbKu2EYWLO+x/63XimGGZP5lk/K1fZzplDGMDdqp05TQqpSqtd1RrCqwTkWhPNgFm7NlzRIAkV7xLsuQNtUHllHwdtaYrKAzRs66v7e6D5x1roOxEML68v5cE7l5/7RWTxd4+vqZMO6dlfbyWFuCHmXqFAA2NQTw5qO+gyYx598GkAeAi+gr7+v7vO2ooqILLg+y7YOJtGbUGAYBg5o3s+MdETC5jVpz8/9kDtmsfO497HYuKGjobf0qUhodBZFnz4+WedgI5jwymAwGKcBb7x4BVamw3jiyBSePDqFQ+PVkTyDieYeQOOnifDaHpVQdCnO4sTK6GPCK6NVmC/ZTHk9FUin5wYsw8PDvsuOjJiFgSRJCiy87tu3D5/+9KfBcRy+/OUvg9JTL8qiEZ0xGZ1NFlsSODovoSBocVwCvwIZC/cvCSq0NFt8hKMEqbCE8ax7sbK+tvqCaxwl2NQThzERRqFQgCzLroXRNvfG6wrFzBe/ojoLpb5Kdf0xXN0ecZ0wjitCXRX5IGzsiWF8b7HOcqMrJqMzFmx9HCW4bE0ax6cLmMyWQIhZAC6IMEEIwcp0GCvT4abbfqaQCIm4YKANTx+bRqEicIVEHmf3xRcsugLeBZKOTeUxPGOK8m7FfV62uRsiv7jP66gs4LpzFicToha3IkpuCA0mytZ2LlwIPhnMV0Tviss4MFbvQ0wIQXvU/fnYaFNhice5fQk8fWzaLnhFiCm0WwXeCSFoj0gYnXV/ZgykTm6RzlORoWl/q6GpfIkJrwwGg8FYHM7qjuGs7pj970yhjGeHMth1Ygbb9xxGTGpODJjwGDQuN9IRESW/PBvMWTT1ti298JoKi3jLtgHc/9wYnjgyhfI8quUyTj1YL5469Pb2IhqNIpPJYP/+/b7LHjhwAACwbt26wIO3I0eOQFXNyL0LLmhsgbVy5UoAwMDAAA4ePBhoG6cTMu+fgmoJMMRHeW2Fb3RQ39b5CJQbuqP4w75SXZRTe1RCxzxERef3W8XJ9t4eSIVR1nTsHZ61n9EdURnn9MfnVZsjrgi4bE0azw5lMJUrgRKCFakQVntUc/eCEILehGKLIozW0pNQ0BWT7ZoEcUUIFCkfhPkKbrURuIvFdK4MA4Y5mUPmRDsCcyIraOHwVtHoOlOX6ftow4r3Hru1sTtmZmTU1MvY1BPznBjgKYHIE8+nxObeOFakQuiMSxiZKcIwgHRUREisluDWdkYxlq1/ZsQVwXUSLjj+fbhcwwPKuv9+napjKSa8MhgMxmlIVBZw4WASFw4mcX50tulCJKdLxGsqLOHopL+Pn/XS3Zto3kNpoXCU4H0vXof3vXgdCmUNO49PY/uhKWw/PInthycxPHN6CODLFZ4SSDyFyFNIPFf5SWt+Vv+dp83GyDEWm/PPPx/33nsvHnzwQc9lisUitm/fDiCYgMqYH5QSJEIipnLuz5iBlBkxSAmB5jFobMWQKqjWMz4Pv/N0RMIlK5PYVREBOUowmApjXWd0QSnNMVnAWd0x7DoxM+91WJwKw9I1HVEMpMLIlzXwlNSJEc2SCIm4ZFWqRa1jLBaUErSF61O9F217p8gD+YH9Yyh6FG/rism4eInPXb5BdobaQNyqomItYgBQdbM4K0dIy0T1ZuiKy4gr7SDEkbHgELrDHvcZnqN4/tp2HJvKY7IyedOfDDWMxk4pHMZchliUEDuTROI59Ce9I1fboxIuHGzDrhMztgVLb0LBpp75TURZnOwJtsWiNyF7vkMAQOIUjHYFmPDKYDAYDBcuGGiDqhmYyJYwni0hW1RRKGvIlzUUytopO5tYSzoqYd/orO8ylvC6piOKt24bwDcfqC2/tXg40yJlgcMFA0lc4PD/G5ouYNfQDJ49kcHuoRk8O5RZ1gXAghISOYREHhHJ/BmWOIQlHuHK7yHHT4mn4CgBTwk4Sis/CXiOuP+dEhw9fBC6WkZIkbBx/TqIHIXAk8pPav7k6IJeeBmnDtdddx3uvfde7N+/H48++ii2bt1at8wdd9xhT1Bdf/31gde9detWPP74477LfOlLX8KXv/xlAMDPf/5z9PT0QBSXTng41ViRDLkOmnhK7bRwvyuvtuL7fAgqgM43Gq4jJqOjSfuGIKzrjKItJOIP+8YWtJ7IEhe/8UKo3GsZjMWi0VToUkW8nmoiGN/AiL7WtqOWoqq7Wp8UyipCIo+zumNY11nvi7rYyAI37+hhSk2x1U8krWUwwaM8Vf03QgjO6UsgIgWX2rrjZjR4WTNAibstBsOkO65g53H3CUiBo0gt4cROMzDhlcFgMBh1vOniAbzp4gHPzw3DmCtYgEqhAt1My9QN84XNMAxougHNMFAs68iVNORKKvIlDbmShmxJRa6kYbagYraoIls0f1q/Z4saMvbvKjJFFSWPaAGOEoTFijhX+e+lmzqxpTeOXSdmsKYjgqKqoVjWYcCMgLCKG4iVl5u4IuCt2waxIhmyC4BYQh0llpBHwRECTTegiBQ8paCUmDP7xHxpM4vTzBWmsYrV7N/3HMqlEhRZwlkb1oES0nDA2RWX0RWX8YL1cwUOSqqO41N5HJ7I4fBEDkcqP49PFzA+W8TYbBGFBr62rYIS06NNETmERA6KwNmiaVjiEBZ5hKpEUx5hkUNImhNVIxKPkMiZPyUeisAtuuC5ozCEQgGQZRFrOpanjxkjOG9961txyy23IJPJ4KabbsKvfvWrKi/WQqGAm2++GQAwODiIa665JvC6I5EIzj33XN9lurq67N83btyIwcHBptp/urEyHUahrGHP8NwkEk8pLl6VtKMe/XTRVugXga0GTjGxBDCjo87tTzQsqulFXBFcC8WkIxLGPHwGW2lzwGAsJY3mWFowjxMIv820urhXEASOYmU6DJ7SqolqnjMnqpsRDd04Fe+diwFHCM7pkpBekcRUrlyJlFXmFcFPCFl0v+Ha7S1HwhKPgVQYh8brPXnXdy0ss2QxYcIrg8FgMJrGKp5BlzipuqzpdnQCAamkEpmDaK8H7RsuWoE3XLQi0PrXdEQWTYjTJ0QUCjpkWbDTaeeDyFMMpsMY9CnikSupGJ8tYSJbQq6k2dHK+ZL5U68I55aflPV+TACIldR5gTPT7AWOIiTyFUGVq4is5r8lnp6yLzgMhkU6ncYtt9yCD3zgA/jtb3+L66+/HjfffDMGBwfxzDPP4KabbsKuXbsAAJ/5zGfqolEPHjxoe7PecMMN+MY3vrHUu3DacVZ3DCuSIUxkSxA4ivaoVCOGet9XWjGgDzq3k4ycmpEziyFq+AmvzRZfYzBOFRqlzDeK7FwKTsZrlMhTnN2XmPf3G3qpnhKGJksDIQTdcWWBfqyt53TugbN74xA5ioPjWZQ1HbLAYU1HBKvnUfRzqWDCK4PBYDCWDSwlMRghkUcoyTeVLsVgnM68//3vx8GDB/HFL34RP/vZz/Czn/2s6nNKKT75yU/iVa961Ulq4ZmHlZ3gRlHVPL83kmnOs9wNkaM4r78NY9kijkx4+4AvpBjWYrIYA+o1HREcn85jpqa4TCosYeUCJgsZjJNJsex9LwGAfElr6OPZCk6XCND1XVHsHsp43oOkSgHF2YpXKePUZTmHTVBKsLEnhg1dUTuT8VQPBGEjWAaDwWAwGAzGac8XvvAF3HXXXbjuuuvQ1dUFURTR19eHN7zhDfjDH/6AD37wgye7iYwlgucoVqRC6G/zn5w6VcWS2urXzaB4+B9ylOB5q9PY0BVDIiQiERKxsTuGi1clT0qRHAajFfh5LVNClsxGwy8CdDldXV2V4+nmjRuWeDtz4dhUfknbxajnVH1+tRLL4u1UF10BFvHKYDAYDAaDwThDuPrqq3H11Vc39Z3BwcEFCV233HILbrnllnl//0wkKvN2dedaWpn23khPXKrCO82ykFat9rHTEXmK9V1RrO9a+qI4DMZiEJbMIpxu13JPQl6yIpp+t5JloBnZJEIiVqbD2F1T6JUSYEVyLtU+KjOZ6VRnOZ13pwPsimAwGAwGg8FgMBinDF0xBZlCxvWzVqb/izxFV0wGqRRItH5axREXWmBmsWikB0s852rXoAgc2kKnpm8tg7FQ+tpCODpZbR1CiTnZUKwpOpoKSwvyOG2WLb1xW/w1YF3Dpt9+ZJmJlJt74ojJAg5P5FAoa1BEDt1xuaqg1Pqu2ElsIQM4s3x2lwPL6ypnMBgMBoPBYDAYpzVrOyMYmsnXRb2mwhIGW+g3GpUFXLwq1bL1LR3+A+qtg2148sgUZotzx0/kKC5amVyyCD8GY6lZ0xHBiel8XcGsVFjCZWtSmMyVUdZ0hCUe6cjS+jf7FURdblBKMJgO45ot3dgzXD9BJgsc2pf4+DIYpzpMeGUwGAwGg8FgMBinDAJHcenqNPaPZjGcKYAA6EkoWJkOM79RBIl4pXjhhg4cm8ojV9IgcBR9bQorUMk4rYkrAi5ZlcLO4zOYypUAmNYkm3piUEQeisikj1ayoSuKXEmrijJWBA4XrUxC5Nm95mRzYtq/EKWqs4jYpYTdfRgMBoPBYDAYDMYphSxw2NgTw0awlNVaGg2XCTGLjfQ1KB7GYJxupCMSrljXjpKqgxCwyYZFhBCCCwbasLYzgkxBBUcIOqISmxw7RdjQFcXDByZcP5N4ipgsLHGLzmyY8MpgMBgMBoPBYDAYy4Tx2ZLv57Wp1gzGmQaLuFw6YrLARLxTkFRYgiJwyJfr/b7ZpNzSw+5IDAaDwWAwGAwGg7FMGMn4p5Ay4ZXBYDDObETe9PVWBK7q770JBRu7WSbJUsMiXhmMU4g3vOENJ7sJDAaDwWAwGIxTmIFUGIfGs56fh0TO8zMGg8FgnBkkQiJefFYnRjJFlDUdMVlAPMSik08GTHhlMBgMBoPBYDAYjGVCX5viKbxGZR6ywIRXBoPBYACUEnTF5ZPdjDMeZjXAYDAYDAaDwWAwGMuEVFhER9R9IL2hi6WQMhgMBoNxKsGEVwaDwWAwGAwGg8FYJljVxFemw6DErCAeFnmcv6INPQnlJLeOwWAwGAyGE2Y1wGAwGAwGg8FgMBjLCJGnOLsvgc09ceiGAY4SkIoIy2AwGAwG49SBCa8MBoPBYDAYDAaDsQyhlICCCa4MBoPBYJyqMKsBBoPBYDAYDAaDwWAwGAwGg8FoMUx4ZTAYDAaDwWAwGAwGg8FgMBiMFsOEVwaDwWAwGAwGg8FgMBgMBoPBaDFMeGUwGAwGg8FgMBgMBoPBYDAYjBbDhFcGg8FgMBgMBoPBYDAYDAaDwWgxTHhlMBgMBoPBYDAYDAaDwWAwGIwWw4RXBoPBYDAYDAaDwWAwGAwGg8FoMUx4ZTAYDAaDwWAwGAwGg8FgMBiMFkMMwzBOdiMYDAaDwWAwGAwGg8FgMBgMBuN0gkW8MhgMBoPBYDAYDAaDwWAwGAxGi2HCK4PBYDAYDAaDwWAwGAwGg8FgtBgmvDIYDAaDwWAwGAwGg8FgMBgMRothwiuDwWAwGAwGg8FgMBgMBoPBYLQYJrwyGAwGg8FgMBgMBoPBYDAYDEaLYcIrg8FgMBgMBoPBYDAYDAaDwWC0GCa8MhgMBoPBYDAYDAaDwWAwGAxGi2HCK4PBYDAYDAaDwWAwGAwGg8FgtBgmvDIYDAaDwWAwGAwGg8FgMBgMRothwiuDwWAwGAwGg8FgMBgMBoPBYLQYJrw6+OUvf4nrr78ePT09kGUZK1aswJve9CY89NBDi7K9j33sYyCE2P8dPHhwUbazHFmsvnjb295Wdcy9/nv5y1/eoj1Z3izFNZHJZPDZz34Wz3/+89HV1QVJktDb24vnPe95uOmmm7Bjx46WbWs5sxh98Y1vfCPQ9cDuU9Us9nVxxx134NWvfjVWrFgBWZahKApWrlyJ17/+9fjlL3/Zkm2cLixmXxiGgR/+8Ie47rrr0N3dDVEU0dnZiauuugrf/OY3YRhGC/aAwfBmqd9LGY1RVRW//vWv8cEPfhCXXXYZ2tvbIQgCEokELrjgAtx00004dOhQ4PW1oo/ZebJ0jI6OIp1O2+9Eb3vb2xp+h/Xx8uH+++/HjTfeiLVr1yIcDiMej2PDhg14/etfjy9/+cu+32X9fOpz4sQJ/N3f/R0uvPBCJBIJCIKAZDKJbdu24dZbb8Xo6GjDdbB+Zswbg2EYhmG85z3vMQC4/sdxnPHpT3+6pdvbuXOnIYpi1XYOHDjQ0m0sVxazL2644QbPdTv/u/baa1u4R8uTpbgmfvvb3xq9vb2+fXHzzTcvfGeWOYvVF1//+tcDXQ/Wf6lUyigWiy3eu+XFYl4XhULBeOUrX9mwH97whjcYpVKphXu1PFnMvshkMsbLX/5y33540YteZMzOzrZwjxiMOZb6vZQRjC1btjS8R4dCIeMb3/hGw3W1oo/ZebK0vPGNb6w6xjfccIPv8qyPlweFQiHQGNEL1s+nPnfddZcRj8d9+zeZTBr33nuv5zpYPzMWAhNeDcP4zGc+Y5/w1157rfHwww8bo6Ojxj333GNccskl9mc/+MEPWrI9TdOMbdu2GQCMVatW2etnwuvi94X1UL3sssuMTCbj+V8+n2/xni0vluKauPvuuw1Zlg0ARm9vr3HbbbcZu3fvNiYmJoz9+/cb3/3ud41XvvKVxj/8wz+0cM+WH4vZF+Vy2fc6yGQyxr333mtv493vfvci7OHyYbGvi7/8y7+013H55Zcbv/zlL42jR48aBw4cMH7wgx8Ymzdvtj//6Ec/2uK9W14sdl+8+tWvttfxute9znj44YeN8fFxY+fOncYHP/hBgxBiADCuu+66Fu8Zg7H076WM4AwMDBiUUuOqq64y/uM//sPYsWOHMT4+buzfv9/413/9VyOVShkADEKI8fOf/9xzPa3oY3aeLC2/+MUv6sZufsIr6+PlgaqqxjXXXGMfyze+8Y3G3XffbRw/ftwYHR01HnroIeOWW24xVq9e7fp91s+nPocOHTLC4bABwIhEIsb//b//13j66aeN0dFRY/v27cZf/dVfGTzPGwCMtrY2Y2RkpG4drJ8ZC+WMF15HR0eNaDRqADBe8IIXGJqmVX2ey+WM9evXGwCMwcHBlkR7ffGLXzQAGNu2bTM+9rGPMeG1wlL0hSW8XnHFFS1q9enHUvTD1NSU0dPTYwAwzjnnHGNiYqJVzT+tOBn3p1qcYuAjjzzS8vUvFxa7LzKZjD0Rcd5557l+f3x83I4QTyaTdW04U1jsvrj77rvtc/5P/uRPXJdxvjz7iSsMRrOcCvd9hjcf+tCHjN27d3t+vmvXLnuAv3HjRtdlWtHH7DxZWmZnZ43BwUEDgHHXXXc1FF5ZHy8fPvWpT9n9+dWvfrWp77J+Xh589KMftfv4u9/9rusy//RP/2Qv8y//8i9Vn7F+ZrSCM154dQ6eHn74YddlvvOd79jL/OhHP1rQ9o4cOWJEo1GD53njqaeeMm6++WYmvFZYir5gwmtjlqIf/uZv/sYAYPA8b+zYsWOBLT59Wer7Uy2lUslob283ABibNm1q6bqXG4vdF4888oj9Xb8o77e//e32ckNDQ01t43RhsfvixhtvNAAYlFLjxIkTrsuoqmqL4C95yUua3QUGw5OTfd9nLJx3v/vddv8cPHiw7vNW9DE7T5aW973vfQZgZkAYhtFQeGV9vDyYnJw0QqGQAZg2Ts3C+nl5cO211xoADEVRDFVVXZc5duyYfYzf+c53Vn3G+pnRCs744lp33HEHAGDlypW48MILXZe5/vrrIcsyAOAnP/nJgrb3F3/xF8hkMnj/+9+PLVu2LGhdpxtL3RcMdxa7H1RVxe233w4AuOaaa7Bp06YFtPb05mRfE3feeadtNH/DDTe0dN3LjcXuC0mS7N85jvNczvqM53kkk8mmtnG6sNh98cQTTwAANmzYgK6uLtdlOI7D5ZdfDgC4++67MTU11dQ2GAwvTvZ9n7FwNm/ebP9+/Pjxus9b0cfsPFk6HnnkEXzxi19EPB7H5z73uUDfYX28PPjv//5v5HI5AMCHPvShpr/P+nl5YL1jU0pBCHFdxvnu3dHRUfUZ62dGKzjjhdft27cDALZt2+a5jCRJOO+88wAAjz322Ly39b3vfQ8//elPMTg4iJtvvnne6zldWcq+sNB1HaqqLng9pxOL3Q/bt2/H0NAQAPMB46RcLje1rtOdk3FNOPnP//xPAObLyJvf/OaWrnu5sdh9sW7dOkSjUQDAj370I2iaVrdMJpPBXXfdBQB48YtfDEEQmtrG6cJi94Ulora1tfkul0qlAJiTSU8++WRT22AwvDjZ933GwhkeHrZ/j8fjdZ+3oo/ZebI0qKqKt7/97dA0Df/wD/+A7u7uQN9jfbw8uPPOOwEA/f399nEEAE3ToOt6w++zfl4eXHDBBQCAbDaLX/ziF67LfPe737V/f9nLXlb1GetnRis4o4XXY8eOIZPJAABWrVrlu6z1+Z49e2AYRtPbmpqawnve8x4AwG233YZQKNT0Ok5nlrIvAODpp5/GmjVrIAgCBEFAKpXCy172Mvz3f//3GS3ELkU/PPLII/bvF154IR5//HG89rWvRSKRgCiKCIVCeP7zn4+vfe1rrC+W8JqoZWJiAj//+c8BAFdddVXgwcbpyFL0hSRJ+MhHPgIAePDBB3HdddfhgQcewMzMDCYmJvCb3/wGV111FQ4ePIju7m58/vOfn+feLG+Woi9isRgAYHJy0ne5iYkJ+/ddu3YFXj+D4cXJvu8zWsMPf/hDAEAymcT69eurPmtFH7PzZOn49Kc/jSeffBIXX3wx3vnOdwb6Duvj5YM1JrnwwgtRLpfx6U9/Gps2bYIsyxAEAQMDA3jHO96BvXv31n2X9fPy4V3vepcdxfqWt7wFt912Gw4fPoxCoYB9+/bh1ltvtSOeP/CBD+CSSy6xv8v6mdEqzmjhdWxszP69s7PTd1nrYi0Wi5idnW16Wx/84AcxNDSE17zmNbj22mub/v7pzlL2BWAOmPft22fPZk5MTOCuu+7CW97yFlx66aU4evTovNa73FmKfjh8+LD9+//+7//i4osvxve//31MT08DAPL5PO677z7ceOONeMlLXmI/qM40lvqaqOXb3/42SqUSAOBtb3tbS9a5XFmqvvjIRz6Cj3/845AkCXfeeScuvfRSxONxpFIpXHXVVXj22Wfxrne9C48++ijWrVvX/I6cBixFX1j2J7t3766KXHOiaRruu+8+13YxGPPlZN/3GQvn61//uh0B/+d//ud11jGt6GN2niwNzz33HG699VZwHIcvfelLoDTYsJn18fIgn8/bxzmZTOLyyy/HX//1X+OZZ56BqqrQdR2HDx/GV77yFZx99tn4/ve/X/V91s/Lh3g8jvvuuw9nn302Jicn8Zd/+ZcYGBiAoihYs2YNbr75Zpx//vn49re/jX/+53+u+i7rZ0arOKOF12w2a/9u+Wl4oSiK/XuzF8E999yD22+/HbFY7IyNUmrEUvVFZ2cnPvShD+G3v/0tDhw4gEKhgPHxcdx555140YteBMCc/bz66qur2nSmsBT9YAmsAPDe974XPM/jX/7lX3DixAkUCgVs374d1113HQDgd7/7Hd7+9rcHXvfpxFJdE15YNgPxeLzOEuJMYyn74iMf+Qj+9V//1TUrIpvN4tixYzhx4kTT6z1dWIq+ePWrXw3AFFf/9m//1nWZ2267rWqC7kydIGK0lpN932csjGeeecbObhsYGMCHP/zhumVa0cfsPFka3vGOd6BQKOB973sfzj333MDfY328PHCOR775zW/ioYcewpVXXokHHngA+Xweo6Oj+MpXvoJEIoFCoYA3v/nNtgc8wPp5ubFu3Tr86Ec/ssf7tRw/fhz79++vy7Zk/cxoFWe08OoM3/YyWl4ohUIB73jHO2AYBj7xiU+gp6dnUbaz3FmKvgCAT37yk/jUpz6FF77whRgcHIQkSUgmk3jZy16GX//613j3u98NwHx5DmqgfzqxFP3g9Ewql8v4zne+g/e+973o6uqyvW1+/OMf25Hh3/nOd/D4448vSltOZZbqmnDj2WeftdOvXve61zV8STjdWaq+OHDgAM4//3zceOONeOELX4jf/e53GB0dxdDQEH72s5/hwgsvxI9//GNcfvnltkn/mcZS9MV1112Hyy67DADw1a9+FW984xvx2GOPYXJyErt27cKHP/xhvP/976+6LoJGQjEYfpzM+z5jYYyMjOC6667D7OwsRFHEt771LVd/11b0MTtPFp+vfe1r+N3vfocVK1bg4x//eFPfZX28PHCOR0qlEi6++GL86le/wiWXXAJZlpFOp3HjjTfizjvvBKUUxWKxqkYL6+flxac+9SmsXbsW27dvx+c//3ns3bsXExMT2LlzJz7+8Y9jaGgIH/3oR/Gyl73MLrgGsH5mtI4zeqQQiUTs3/P5vO+yzs+d32vErbfeir1792Lr1q1417ve1XwjzxCWoi8aQQjBZz7zGfT29gIwK12eaSxFPziXveiii/CKV7yibhlCCG699Vb73z/+8Y8Dr/904WReE1a0K8BsBoCl6Yvp6WlcccUV2LFjB97ylrfgpz/9Ka688kqk02l0dnbi2muvxb333ovnP//5yOfzePOb34zR0dHmd2aZsxR9QQjB97//fWzduhWAabuxdetWJJNJbNy4EZ/61KcQiUTw2c9+1v5OIpEIvH4Gw4tT4V2I0TzT09O4+uqrsW/fPnAch29961u49NJLXZdtRR+z82RxGR4etv0ev/jFLyIcDjf1fdbHy4PaY3XzzTe7Fi3dtm2bHQzyy1/+EoVCoe77rJ9PbT772c/iwx/+MERRxO9//3u85z3vwZo1a9DW1oaNGzfiYx/7GH7yk58AAH7zm9/g7//+7+3vsn5mtIozWnhNp9P2714+bhYjIyMAzAIoQS+Cffv24dOf/jQ4jsOXv/xlFhHjw2L3RVBEUbQrGe7evbtqxutMYCn6ob293f798ssv91zuvPPOs192d+7cGXj9pwsn65rQdd2edFi7dq1v9c0zhaXoi69+9as4cuQIAOATn/iE6zKCINgTEplMBt/5zncCr/90Yamui87OTtx///340pe+hCuuuALJZNIutPHOd74TTz/9NAYGBuzl+/v7m1o/g+HGqfIuxAhONpvFNddcgyeeeAKEEHzlK1+x7UrcaEUfs/NkcfnIRz6CyclJvPKVr7Str5qB9fHyIBqNQpIk+99+YxLrs2KxiOeeew4A6+flQrlctt+r3/jGN2Lz5s2uy1199dW48sorAZjv5FaUKutnRqs4o5XA3t5eRKNRAMD+/ft9lz1w4AAA0x8kaIj4kSNHoKoqNO3/t3evIVG0bxzHr80jpNGjlRUhWhlWEqkVRXSQighSKCsoIysoe6EQ9CZIKCSIijIkiCA6SL0IOlFZkpVGdCAliVKCIreCDuimZJHn63nx/++wPrnraWbddb8fGFh2Z+713t89OzOXOzOdkpqaKjab7a/J9fSV+Ph4sdlsEhcXN7AO+TGrs+gP50WtRUSamppMb9+XeSOH6dOnG4//+ecft/PZbDbjV2Q/f/7sc/vDxVCtEw8ePDCuXZmdnT2otoYLb2ThvFHTuHHjJDY21u18c+fONR7X1tb2uf3hwpvrRWhoqOTk5EhFRYU4HA5pa2sTu90up06dktjYWKmqqjLmnTdvXr/bB/7Ll/aF0LuWlhbJyMiQp0+fiohIUVGRbNu2zeMyZmTMOLGW8zO9ceNGj8durp/jhQsXjOfOnz8vImTsL2w2myQmJoqISHBwsMcil+vxivOYhJz9Q01NjTQ2NoqIGGcyuePcx25oaDDOKiNnmCWgC68iIikpKSIi8vz5c7fztLa2ysuXL0VEJDU11St/VyDylSy+fftmPPZUGByurM7BdaPncDjcztfV1WVsKAP1NN6hWCeKi4tF5H/XrNyyZcug2xsurM7CeWqR63WgesJ1onxnW+E8LW3atGkydepUS94DgcdXxjc8a29vl8zMTHn48KGIiBw6dMi4T0BvzMiYceLbyNg/OAttHR0dHn/k4Xq84npMQs6+z/XU/YHuY5MzzBDwhVfnKSQfPnzo9usVVzdv3jSu59Kfu3vPmTNHqqurPU45OTnG/CUlJVJdXS137twZRI/8l5VZ9FVLS4vcvXtXREQSExO73VkwUFidw6RJk4wdnYqKCrfzVVZWGpd6SE5O7td7DBfeXid+/fol165dExGRtLQ0Tp92YXUWzhsv1tfXy8ePH93O57zpmYh0O9U9kPjCtqK8vNzYOd65c6fp7SNw+cL4hmednZ2yadMmY389Pz9f9u7d2+flzciYcWKdM2fO9Hr85pSenm4853pZAjL2D2vWrDEeezomcb42cuRISUhIMJ4nZ9/nemNzd5+vk3MfOyIiQqKjo43nyRmm0ABXX1+vkZGRKiK6bNky7ezs7Pb6nz9/dPr06SoiGhcXp62traa+//79+1VEVES0rq7O1Lb9jdVZfP36VTs6Oty+3tnZqTt27DDyOHjw4ID64e+8sU5cvHjR+JwvX7781+sdHR26fPlyFRENCgrSd+/eDbg//szb309nz541cikuLh5UW8ON1VlcunTJ+Ow3b97c4zxtbW26aNEiY75Xr14NuD/+bKi3258/f9a4uDgVEZ02bZr++fPH1PYR2IZ6fMOzrq4uzc7ONr6Hd+/e3e82zMiYcTK0nPlnZ2f3+DoZ+4f29nZNTExUEdHk5OQet+cPHz5Um83WY97k7B8SEhJURDQ8PFxfv37d4zylpaXGer127dpur5EzzBDwhVdV1WPHjhkr2urVq7WyslLr6+v10aNHumDBAuO1q1ev/rVsXV1drxtfTyi8dmdlFoWFhRofH6/5+fl6//59/fTpkzY1NemnT5/0ypUrunDhQmP5pKQk/f37txd67JusXie6urp0yZIlKiIaGhqqBw8e1Pfv36vD4dDHjx/rihUrjDb27NljcW99mze/n5YuXaoiohEREQE9/t2xMov29nadOXOmMU96erqWl5drQ0ODfv/+XUtKSrq9x4YNG7zQY99l9XqRm5urW7du1Vu3bunbt2/V4XBoTU2NHjlyRKOjo1VEdNSoUVpVVWVxTxGIBjO+Ya3c3Fzj88/KytLm5maPU3t7e4/tmJEx42To9GXfioz9w7179zQoKEhFROfPn69lZWXa0NCgdrtdT5w4oRERESoiGhUVpXa7/a/lydn3uf64ISoqSouKivT9+/fa2NiotbW1WlBQoOHh4cZxaXV19V9tkDMGi8Lr/+Xl5RmD/b/TiBEj9OjRoz0uR+HVfFZlUVhY6LZd12nJkiX65csXi3vp+6xeJ378+KHz58/3mMX27dvdHrQEEm98P9ntduM/+tu2bbOgF8ODlVnY7XZNSkrq9Ttq5cqV2tzcbGEv/YOVWbj+oq2nacqUKfrixQsLe4dAN9DxDWv1ZT/SdTp37pzbtszImHEyNPq6b0XG/uHs2bMaFhbm9nOOiYnRZ8+euV2enH3f4cOHjQK7uykyMtJj0ZOcMRgUXl2UlpZqRkaGjh8/XkNDQ3XSpEm6ceNGff78udtlKLxaw4os7Ha7Hj9+XNevX68zZszQsWPHanBwsEZERGhCQoJmZWXp7du3taury8Ke+Rer14mOjg49ffq0Ll68WKOjozUkJEQnTpyo69at07KyMpN749+szqKgoMCYt6KiwuS/fnixMouWlhY9c+aMrlq1SidMmKChoaEaFhamsbGxmpmZqdevX+c7yoVVWTx58kRzc3N19uzZOmbMGA0JCdGYmBhNS0vTkydPcnkBeMVAxjesZWbhVdWcjBkn3tefYz8y9g+1tbW6a9cunTx5soaHh2tkZKSmpKTogQMH1OFw9Lo8Ofu+N2/eaF5ens6aNUsjIyM1KChIR48erXPnztV9+/bp58+fe22DnDFQNtVebu8GAAAAAAAAAOiXEUP9BwAAAAAAAADAcEPhFQAAAAAAAABMRuEVAAAAAAAAAExG4RUAAAAAAAAATEbhFQAAAAAAAABMRuEVAAAAAAAAAExG4RUAAAAAAAAATEbhFQAAAAAAAABMRuEVAAAAAAAAAExG4RUAAAAAAAAATEbhFQAAAAAAAABMRuEVAAAAAAAAAExG4RUAAAAAAAAATEbhFQAAAAAAAABMRuEVAAAAAAAAAExG4RUAAAAAAAAATEbhFQAAAAAAAABMRuEVAAAAAAAAAExG4RUAAAAAAAAATEbhFQAAAAAAAABMRuEVAAAAAAAAAExG4RUAAAAAAAAATEbhFQAAAAAAAABM9i+rFZC9K2JE4gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 211, + "width": 687 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "#| fig-cap: Trace plots for the inclusion parameter for the unknown $N$ version of the BBS model. The estimate from @royle2008 are shown by vertical and horizontal lines.\n", + "#| label: fig-trace_unknown.\n", + "omega_hat_royle = [0.55]\n", + "az.plot_trace(unknown_idata, var_names=['omega'], figsize=(8,2), \n", + " lines=[(\"omega\", {}, [omega_hat_royle])]);" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "fig-postN", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJYAAAL7CAYAAACvLQ/NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAB2HAAAdhwGP5fFlAAC9i0lEQVR4nOzdeXgUVd7+/7uyh7AEgQQIEgiDLAIiImscYBQEBFREdABxl/g4LojbKC7wEx5HEEERUJ4ZZ0CDgxlBGQEVFWIEWUIUEWQLGNaEJUAge1K/P/imTJNOb+l0A3m/riuXdSqnPnU6FmHm9pxThmmapgAAAAAAAAA3Bfh7AAAAAAAAALg4ESwBAAAAAADAIwRLAAAAAAAA8AjBEgAAAAAAADxCsAQAAAAAAACPECwBAAAAAADAIwRLAAAAAAAA8AjBEgAAAAAAADxCsAQAAAAAAACPECwBAAAAAADAIwRLAAAAAAAA8AjBEgAAAAAAADxCsAQAAAAAAACPECwBAAAAAADAIwRLAAAAAAAA8AjBEgAAAAAAADxCsAQAAAAAAACPECwBAAAAAADAI0H+HgBQVVlZWSoqKlJwcLCioqL8PRxc4Hhequ7I2SMqKi1y2i84IFiNIxr7YER2nDoglTgfowKDpXrNKv02zwvcxTMDd/C8wB08L3AHzwt8iWAJF72srCzl5+crLCyMX5pwiuel6vwWFrnDQVjkDp4XuItnBu7geYE7eF7gDp4X+BJL4QAAAAAAAOARgiUAAAAAAAB4hGAJAAAAAAAAHiFYAgAAAAAAgEcIlgAAAAAAAOARgiUAAAAAAAB4hGAJAAAAAAAAHiFYAgAAAAAAgEcIlgAAAAAAAOARgiUAAAAAAAB4hGAJAAAAAAAAHiFYAgAAAAAAgEcIlgAAAAAAAOARgiUAAAAAAAB4hGAJAAAAAAAAHgny9wAAABeXDYc3KLc412m/WkG11K1JNx+MyI69yVLhWef9QiKkln+s/vEAAAAAlyiCJQCAW6aun6o9p/Y47deqXistvWVp9Q/InuVPS0d/dd6vUVvpkfXVPx4AAADgEsVSOAAAAAAAAHiEYAkAAAAAAAAeIVgCAAAAAACARwiWAAAAAAAA4BGCJQAAAAAAAHiEYAkAAAAAAAAeIVgCAAAAAACARwiWAAAAAAAA4BGCJQAAAAAAAHiEYAkAAAAAAAAeIVgCgGpUXFrq7yHYuNDGI12YYwIAAADgmiB/DwAALmVBAQF6cMEm7Tt21t9DUa9WDTTp5g5VHs+xemdd+tvjt+Nn1X/GGod9WjSM0PyxXT0eCwAAAAD/IlgCgGq279hZ7co64+9hKLZBLUlVH0+t2qUKdOFvj4KS0gvicwMAAACoPgRLAGqU0NBQm38CAAAAADxHsATgklFcWqqgAMdbx7Vu3dpHowEAAACASx/BEoBLxoW0n5H0+55GAAAAAHCpIlgCcEm5UPYzkn7f0wgAAAAALlWO14wAAAAAAAAAlSBYAgAAAAAAgEcIlgAAAAAAAOARgiUAAAAAAAB4hGAJAAAAAAAAHiFYAgAAAAAAgEcIlgAAAAAAAOARgiUAAAAAAAB4JMjfA7iUFBYWau3atcrIyNCRI0cUEhKi6OhoNWnSRJ07d1ZkZKTbNUtKSpSSkqL09HRlZmaqfv36atasmfr06aPatWtXecw5OTlKTk7WgQMHlJ2drejoaMXFxSk+Pl6BgYFVrg8AAAAAAC5dBEtesGfPHk2aNEmffvqpTp8+bbePYRjq3Lmznn/+eY0YMcJpzcLCQk2dOlXz5s1TZmZmhe/XqlVLI0aM0LRp0xQVFeX2mDMzM/X0008rKSlJeXl5Fb4fHR2thIQEvfDCCwoODna7PgAAAAAAuPSxFK6KXnvtNXXo0EELFy6sNFSSJNM0lZaWptWrVzutefjwYfXo0UOTJk2yGypJUm5urhYsWKCOHTvqu+++c2vMycnJ6tixoxYuXGg3VJLOBU+TJk1S9+7ddfjwYbfqAwAAAACAmoEZS1XwxBNPaNasWVY7MDBQvXv3Vr9+/dSkSRMFBAQoKytLP/74o7799lsdP37cac3c3FwNHTpUaWlp1rmYmBiNGTNGrVq10vHjx7VixQolJydLkrKysnTzzTdr3bp1atOmjdP6O3bs0C233KLs7GzrXJcuXTR8+HBFR0crIyNDixYt0u7duyVJaWlpGjZsmNasWaNatWq5/LMBAAAAAACXPoIlD02ZMsUmVLruuuv07rvvql27dnb7l5SU6JtvvnEaLk2cOFGpqalWe8SIEfrggw8UGhpqnXvuueeUmJioe+65R0VFRcrOztaoUaO0adMmGYZRaW3TNDVq1CgrVDIMQ9OmTdOECRNs+r3yyisaP3683nrrLUnSpk2bNHHiRM2YMcPh2AEAAAAAQM3CUjgP/PLLL5o8ebLVHjRokFatWlVpqCSdm83Uv39/3XnnnZX2ycjI0Jw5c6x2p06dlJiYaBMqlRk1apTNGDZv3qykpCSH4168eLE2b95stceNG1chVJKkgIAAzZo1SwMHDrTOzZkzR/v373dYHwAAAAAA1CwESx74y1/+osLCQklSo0aN9MEHHygkJKTKdefOnauCggKr/frrrzvcOPupp55STEyM1Z45c6bD+uW/Hx4erqlTpzrs/+abb1rHBQUFmjdvnsP+AAAAAACgZiFYctMvv/xiswH3888/r8suu8wrtZcsWWIdx8bGasCAAQ77BwUF6d5777Xa69at05EjR+z2PXz4sNavX2+1R4wYofr16zus37ZtW8XHx9sdHwAAAAAAAMGSm+bPn28dh4SE6K677vJK3fT0dO3YscNq33DDDQ73SyrTv39/69g0Ta1YscJuvxUrVsg0TavtLLSyV3/79u3au3evS9cBAAAAAIBLH8GSm7766ivruFu3bmrQoIFX6m7ZssWm3bNnT5eu69atm4KCft+D/fw6Va3fq1cvh3UAAAAAAEDNRbDkhpycHP36669Wu0ePHpKk/Px8LViwQAMHDlTz5s0VGhqqRo0a6eqrr9b48eO1ceNGp7W3bdtm027VqpVLYwoLC1PTpk2t9vbt253WDwwMVIsWLVyqf/44KqsPAAAAAABqniDnXVBmy5YtKi0ttdpt2rRRamqq7rrrrgqBy7Fjx3Ts2DH9+OOPmjlzpm699Vb9/e9/r3Rfo/OXmMXGxro8rtjYWGVkZEg6t6TOWf2YmBgFBga6VLtZs2YKCAiwPndl9QEAAAAAQM3DjCU3HD161KadlZWlfv362YRK9evXV7NmzSq8zW3JkiXq0aOHMjMz7dY+ffq0TdvZxtrlRUZGWsc5OTlO67tTOzg4WBEREU7rAwAAAACAmocZS244efKkTfuVV15RUVGRJOmBBx7QM888o9atW0s6tzzus88+07PPPqt9+/ZJknbu3Kk77rhD33zzjQICbDO9M2fO2LTDwsJcHld4eHildeydd6d2Wf2yQKmy+o5kZWUpKyvL7etcVVBQYP1z69at1XYfXNhCQ0OtP3+oXnn7x8owSpz2M03XZkZK0q5du6w/y94Qcs0kGSWFTvuZgSEqdPB7g98vcBfPDNzB8wJ38LzAHTwvcEWHDh28UodgyQ3nhyplodKMGTM0fvx4m++FhYVp5MiR6tu3r+Lj47Vr1y5J0po1a/Txxx/rjjvusOmfn59v0w4JCXF5XKGhodZxXl6e3T7l67tT29X6jhQVFVX4fNXBNE2f3Aeo6cyihjKdd3NLQUGBV//85gc1dP1vOBfuy+8XuItnBu7geYE7eF7gDp4X+ALBkhvszfS5/vrrK4RK5UVFRen9999XfHy8dW7WrFkVgqXzaxcWFro8s6j8f+UvP3vp/Pq5ublWbXe4Ut+R4OBgt2dJuaOgoECmacowDJsQDDUL/+4vbhfqvz9+v8BdPDNwB88L3MHzAnfwvMCXCJbcUKdOnQrnHnvsMafX9e7dW127dtWmTZskSRs2bNDp06dVt25dq0/t2rVtrsnPz3c5jCk/i+j8OuXPlwVL7ibWrtR3JCoqSlFRUW5f56qtW7cqPz9foaGhXpvKB8C3LtRljPx+gbt4ZuAOnhe4g+cF7uB5gS+xebcbygdBkmQYhvr06ePStX379rWOS0pKtGXLFoe1s7OzXR5X+b2f7IVf59d3p3ZRUZHOnj3rtD4AAAAAAKh5CJbcEBcXZ9OuW7eu6tWr59K1zZs3t2mf/4a5li1b2rQzMjJcHtdvv/1W6Rjt1T948KBKSpxvvCtJBw4cUGlpqdP6AAAAAACg5iFYcsMf/vAHm/Wp7qxVPX9Z2/nL0dq3b2/T3r17t0t18/PzdejQIavdrl07u/3K1y8pKbHeVOfMnj17bNqV1QcAAAAAADUPwZIbAgMDbdannjp1Sqbp2ruRjh8/btNu0KCBTbtTp0427XXr1rlUd8OGDSouLrbaHTt2tNvP0/pr1661aVdWHwAAAAAA1DwES24aOnSodVxQUKDt27e7dN2PP/5o0z5/6VtcXJzatGljtVetWuVSaPXVV19Zx4ZhaPDgwXb7DRo0SIZhWO0vv/zSlWHb1G/bti1L4QAAAAAAgIVgyU0jRoywaS9evNjpNWfOnNHy5cutdrNmzey+AenWW2+1jn/77Ten4U9xcbHef/99q92jRw81btzYbt8mTZqoe/fuVjspKcnpJt6//vqrUlJS7I4PAAAAAACAYMlNV155pW688UarPWvWLB08eNDhNZMmTVJOTo7Vvvvuu+32S0hIUEhIiNV+5plnVFRUVGnd6dOn29z78ccfdziO8t/Py8vTCy+84LD/+PHjrePQ0FAlJCQ47A8AAAAAAGoWgiUPvP766woIOPejO3nypG688Ualp6dX6FdaWqpp06bpjTfesM5ddtllNoFNebGxsXr44Yet9pYtWzR69GgVFBRU6Lto0SK9/PLLVrtz584aOXKkw3Hfcccd6ty5s9WeN2+eZsyYYXfcTzzxhFauXGmdS0hIqPBmOwAAAAAAULMF+XsAF6NOnTpp5syZeuyxxyRJv/zyi6688krddttt6t69u2rVqqWMjAx98skn2rp1q3VdQECAPvroowobd5c3ZcoUJScnKy0tTZL08ccfa+3atbrrrrsUFxen7OxsLV++XGvWrLGuiYyMVGJios0eSvYYhqHExET17NnT2nh8woQJSkxM1PDhwxUdHa2MjAwtWrRIu3btsq7r0qWLpkyZ4tHPCgAAAAAAXLoIljz06KOPKicnRy+99JJKSkqUn5+vDz/8UB9++KHd/nXq1FFiYqL69+/vsG5ERISWLVumwYMHa8uWLZKkgwcP6rXXXrPbv2HDhkpKSlK7du1cGne7du20dOlS3X777Tp27JgkKTU1VampqXb7X3XVVVq2bJkiIiJcqg8AAAAAAGoOlsJVwfPPP69169bp+uuvt5bGnS8sLEz333+/fv75Zw0ZMsSlujExMdq4caNefPFFRUVF2e0THh6uMWPGaOvWrerTp49b4+7bt69+/vlnjRkzRuHh4Xb7REVF6cUXX9SGDRvUtGlTt+oDAAAAAICagRlLVXTttddq1apVOnLkiNauXatDhw4pJydHl112mVq1aqXevXtXGt44EhISosmTJ+ull15SSkqK0tPTlZmZqcjISF1++eXq06eP6tSp4/G4GzdurIULF+qdd95RcnKy9u/fr5MnTyo6OlpxcXGKj49XUBCPBwAAAAAAqBzJgZc0btxYw4cP93rdoKAg9e3bV3379vV6bUmqW7euyzOpAAAAAAAAyiNYAgC4JazpRzKCs532M4vqK//QnT4YkR3/eVA6meG8X2Rz6bb51T8eAAAA4BJFsAQAcEtA2CEFhmY57VdSkOeD0VTiyBbp6K/O++WfrPahAAAAAJcyNu8GAAAAAACARwiWAAAAAAAA4BGCJQAAAAAAAHiEYAkAAAAAAAAeIVgCAAAAAACARwiWAAAAAAAA4BGCJQAAAAAAAHiEYAkAAAAAAAAeIVgCAAAAAACARwiWAAAAAAAA4BGCJQAAAAAAAHiEYAkAAAAAAAAeIVgCAAAAAACARwiWAAAAAAAA4BGCJQAAAAAAAHiEYAkAAAAAAAAeIVgCAAAAAACARwiWAAAAAAAA4BGCJQAAAAAAAHiEYAkAAAAAAAAeIVgCAAAAAACARwiWAAAAAAAA4BGCJQAAAAAAAHiEYAkAAAAAAAAeIVgCAAAAAACARwiWAAAAAAAA4BGCJQAAAAAAAHiEYAkAAAAAAAAeIVgCAAAAAACARwiWAAAAAAAA4BGCJQAAAAAAAHiEYAkAAAAAAAAeIVgCAAAAAACARwiWAAAAAAAA4BGCJQAAAAAAAHiEYAkAAAAAAAAeIVgCAAAAAACAR4L8PQAAwMWl5GyczMLLnPYrLYqs/sFUpkW8VL+F8371mlX7UAAAAIBLGcESAMAtBZm3+HsIzt30hr9HAAAAANQIF02w9O233+qDDz7Qli1bdPbsWTVp0kT9+vXTfffdp6ZNm/p7eAAAAAAAADWOz4Ol3bt3a86cOVZ72LBh6tu3b6X9i4uL9cADD2jhwoWSJNM0JUk7duzQ6tWrNX36dL333nsaOXJktY4bAAAAAAAAtnweLP3zn//UzJkzZRiGDMPQX/7yF4f9n3nmGS1YsMBqG4ZhHZumqdOnT2v06NGqVauWhgwZUm3jBgAAAAAAgC2fvxXu888/l3QuFIqPj1dcXFylfbdt26ZZs2ZZIZRhGDJN0/oqO1dSUqIHHnhAOTk5vvoYAAAAAAAANZ5Pg6Xc3Fxt3brVCoRuuukmh/2nTZtmLX2TpNjYWM2ZM0crV67UjBkzFB0dbX3v6NGjevvtt6tt7AAAAAAAALDl06Vw27ZtU0lJiaRzS9p69epVad/8/Hx98skn1iylhg0b6ocfflBUVJQkacCAARo2bJiuueYanT59WqZp6sMPP9Tzzz/vk88CAAAAAABQ0/l0xtLevXtt2ldeeWWlfdesWWMtbTMMQ0888YQVKpWJi4vTo48+as1q+vXXX3Xo0CEvjxoAAAAAAAD2+DRYyszMtI5DQkIUGRlZad/Vq1dL+v0tcKNHj7bb77bbbrNp//TTT1UbJAAAAAAAAFzi02Dp7Nmz1nGdOnUc9v3++++t4yuuuEKxsbF2+7Vv316BgYHW2+L279/vhZECAAAAAADAGZ8GS2X7K0lScXFxpf2Ki4uVmppqbfIdHx9fad/g4GDVrVvXmtl0+vRp7w0YAAAAAAAAlfJpsFR+llJOTo5N0FReamqq8vLyrLajYKlM2YylwsLCKo4SAAAAAAAArvBpsNSoUSPruLS0VDt37rTb74svvpD0+/5K1113ncO65WcpRUREVHWYAAAAAAAAcIFPg6WOHTtK+n120fLly+32+/e//231adKkieLi4iqtmZWVZTPzqUGDBt4aLgAAAAAAABzwabDUtm1bK/gxTVMzZszQiRMnbPr85z//0fbt2yWdC6AGDBjgsGbZW+DKZje1bNnS28MGAAAAAACAHT4NlgIDAzVy5EiZpinDMHTkyBF1795d8+fP16pVq/Taa6/p3nvvlWEYVlA0evRohzXXr19v027btm21jR8AAAAAAAC/C/L1DZ977jn961//sjbn3rNnjxISEqzvl4VOhmHommuu0fXXX++w3qeffmodx8XFsRQOAKpZQNhBGUaR036mGazS/BgfjMiOQz9KRXlOuyk4XGraubpHAwAAAFyyfB4sXX755Zo9e7buv/9+SbKZnVS+HR4ervnz5zustW/fPqWmplr7Mbny9jgAQNWENf23AkOznPYrKYhSbvqTPhiRHUvGSUd/dd6vUVvpkfXO+wEAAACwy6dL4crcc889SkxMVIMGDWxCJencjKVmzZpp5cqVuuqqqxzWeeedd6xrJGnQoEHVM2AAAAAAAABU4PMZS2XuuOMODR06VJ9//rk2b96sEydOKDIyUt27d9eQIUMUEhLi8PqSkhJt2rTJCp8Mw9DAgQN9MXQAAAAAAADIj8GSJNWqVUu33367br/9drevDQwM1LffflsNowIAAAAAAIAr/LIUDgAAAAAAABc/giUAAAAAAAB4hGAJAAAAAAAAHvHrHkv2/Prrrzp8+LBOnDih3NxcmaapsWPH+ntYflVSUqKUlBSlp6crMzNT9evXV7NmzdSnTx/Vrl27yvVzcnKUnJysAwcOKDs7W9HR0YqLi1N8fLwCAwO98AkAAAAAAMCl6IIIllasWKF3331X3333nU6ePFnh+5UFS7Nnz1ZhYaEkKS4uTrfccks1jtKWYRgeXTd37lwlJCS41LewsFBTp07VvHnzlJmZWeH7tWrV0ogRIzRt2jRFRUW5PZbMzEw9/fTTSkpKUl5eXoXvR0dHKyEhQS+88IKCg4Pdrg8AAAAAAC5tfg2Wtm7dqrvuuktbtmyRJJmmWaGPowBn/fr1SkxMlCTVq1dPgwcPVkhISPUM1scOHz6sm266SWlpaZX2yc3N1YIFC7Ry5UolJSXpuuuuc7l+cnKyRowYoaNHj1baJzMzU5MmTdJnn32mzz//XE2aNHHrMwAAAAAAgEub34Klf//737rvvvuUn58v0zRlGIYMw7DCpfLHlXnsscf04YcfSpJOnTqlZcuW6bbbbqv2sZ8vKipKderUcalvvXr1nPbJzc3V0KFDbUKlmJgYjRkzRq1atdLx48e1YsUKJScnS5KysrJ08803a926dWrTpo3T+jt27NAtt9yi7Oxs61yXLl00fPhwRUdHKyMjQ4sWLdLu3bslSWlpaRo2bJjWrFmjWrVqufQ5AQAAAADApc8vwdKqVas0duxYFRUVWTOSTNNU48aNdfXVV+vYsWPauHGj0zrXXnut4uLilJ6eLkn6/PPP/RIs/e1vf9M999zjtXoTJ05Uamqq1R4xYoQ++OADhYaGWueee+45JSYm6p577lFRUZGys7M1atQobdq0yeEsL9M0NWrUKCtUMgxD06ZN04QJE2z6vfLKKxo/frzeeustSdKmTZs0ceJEzZgxw2ufEwAAAAAAXNx8/la4nJwcjRo1ygqVTNNUly5d9PXXX+vQoUP6/PPPdd9997lcr2xfJdM09fXXX1fTqH0nIyNDc+bMsdqdOnVSYmKiTahUZtSoUZo8ebLV3rx5s5KSkhzWX7x4sTZv3my1x40bVyFUkqSAgADNmjVLAwcOtM7NmTNH+/fvd+vzAAAAAACAS5fPg6Vp06bp2LFj1qyam2++Wd9//7369evnUb3evXtbxwcOHLC7yfXFZO7cuSooKLDar7/+usONs5966inFxMRY7ZkzZzqsX/774eHhmjp1qsP+b775pnVcUFCgefPmOewPAAAAAABqDp8HS++//741U6lFixaVzsZxVadOnWza27dvr+oQ/WrJkiXWcWxsrAYMGOCwf1BQkO69916rvW7dOh05csRu38OHD2v9+vVWe8SIEapfv77D+m3btlV8fLzd8QEAAAAAgJrNp8HS1q1bdfDgQUnn9vZ57rnnFB4eXqWaLVq0sOpJ0t69e6tUz5/S09O1Y8cOq33DDTc43C+pTP/+/a1j0zS1YsUKu/1WrFhhsyG6s9DKXv3t27df1D9jAAAAAADgPT4PliRZ4caQIUOqXDMwMFARERFW+9SpU1Wu6S9btmyxaffs2dOl67p166agoN/3YT+/TlXr9+rVy2EdAAAAAABQM/k0WDp69Kh1HBYWpiZNmnilblhYmBVW5ebmeqWmOz788ENdd911ioqKUkhIiC677DK1adNGo0eP1t///neXx7Rt2zabdqtWrVy6LiwsTE2bNrXalS0HLF8/MDDQmu3lzPnjuNiXGwIAAAAAAO/wabB09uxZ67iqS+DKO3XqlLVkrG7dul6r66pVq1YpJSVFR48eVVFRkbKzs7Vz504lJibqgQceUPPmzTV79myndc5fYhYbG+vyGMr3TU9Pd1o/JiZGgYGBLtVu1qyZAgJ+f1Qqqw8AAAAAAGoWnwZLDRs2tI69tWTt8OHDKi4uttoNGjTwSl13RURE6PLLL1fjxo0rvMXt+PHjevTRR3XnnXeqpKSk0hqnT5+2aTvbWLu8yMhI6zgnJ8dpfXdqBwcH2yw3rKw+AAAAAACoWYKcd/GeRo0aWcelpaXaunWrOnToUKWa33//vaRz+zYZhqHLL7+8SvVcFRISoltuuUW33nqrevfubXPfwsJCbdiwQe+++64+/PBDa5nev//9bzVq1Ehvv/223ZpnzpyxaYeFhbk8nvIzwM6vY++8O7XL6pcFSpXVr0xWVpaysrLcusYdBQUF1j/L9vFCzRMaGqrWrVv7exjw0K5du6w/y97wh4J8ufJbLr8gX7sd/N7g9wvcxTMDd/C8wB08L3AHzwtcUdU8poxPg6VrrrlG0u9vcFu5cmWVP8gHH3xgHYeGhqpbt25VqueqAwcO2ARl5YWEhCg+Pl7x8fEaPXq0brvtNmufpdmzZ2vUqFF2N87Oz8+vUMdVoaGh1nFeXp7dPuXru1Pb1fqVKSoqqvDZqoNpmj65DwDvKygo8OqfX7PUdN7p//Vz5b78foG7eGbgDp4XuIPnBe7geYEv+DRYatasmdq1a6dff/1Vpmlq9uzZ+stf/uL27JkyGzdu1H//+18rqOrZs6fbgYmnKguVzjdw4ED94x//0J133mmde/XVV/X5559X6Hv+z6GwsNDln035/9Jf2f5VYWFhVsBVWFjoUl136lcmODjY43/HrigoKLBmrJUPwFCz8O/+4ubtf39GgOFyP0e/n/j9AnfxzMAdPC9wB88L3MHzAl/yabAkSaNGjdKLL74owzC0f/9+Pfroo5o/f77bdY4cOaI///nPMk3T+gPz0EMPVcOIq+6OO+7QjBkztGHDBknSN998o7y8vAoBTe3atW3a+fn5Lgcy5WcRnV+n/PmyYMnd1NqV+pWJiopSVFSUW9e4Y+vWrcrPz1doaKjXpvIB8C2vL2Nc49rvzrDQMIe/N/j9AnfxzMAdPC9wB88L3MHzAl/y6ebdkvTEE09Ys31M09Q//vEP3XvvvW5tCJ2SkqKePXtabyczDEN/+MMfNHLkyGoZszcMHz7cOs7Pz9ePP/5Yoc/5b7TLzs52uf7Jkyet4zp16tjtU76+O7WLiops3uhXWX0AAAAAAFCz+DxYioiI0MyZM61ZRqZpasGCBWrdurWee+45ffvttzp+/LjNNaZpKj09Xe+//74GDhyoPn366LfffrOuDwwM1Pz5860lcReiNm3a2LTtbWbdsmVLm3ZGRobL9X/77TfrOC4uzm6f8vUPHjzo8A115R04cEClpaVO6wMAAAAAgJrF50vhJOnPf/6zduzYocmTJ1vhUFZWlqZNm6Zp06ZJknVeOrf3RvkQpCyUKvO3v/1Nf/zjH337Idx0/rK3siVp5bVv396mvXv3bvXp08dp7fz8fB06dMhqt2vXzm6/9u3b66uvvpIklZSUaN++fWrVqpXT+nv27LFpV1YfAAAAAADULD6fsVTmlVde0fTp0xUUFCTDMKwgqfyXdC5EKi4utjlXfqbSO++8o/Hjx/vrY7gsMzPTpt2wYcMKfTp16mTTXrdunUu1N2zYoOLiYqvdsWNHu/08rb927VqbdmX1AQAAAABAzeK3YEmSnnzySSUnJys+Pt4mNHL0VRYwdevWTd9++60efvhhf34El6WkpNi0z1/2Jp1bYlZ+ydyqVausn4sjZbOQpHM/v8GDB9vtN2jQIJuZXl9++aXT2ufXb9u2LUvhAAAAAACAJD8HS5LUvXt3rVmzRuvWrdOjjz5qzYY5f/aSaZq6/PLLdf/992vFihX64Ycf1Lt3bz+P3jXHjh3TRx99ZLVbtGihP/zhD3b73nrrrdbxb7/95jT8KS4u1vvvv2+1e/ToocaNG9vt26RJE3Xv3t1qJyUlOd3E+9dff7UJxcqPDwAAAAAA1Gx+2WPJnu7du1uhR25urrKysnTixAkVFhbqsssuU6NGjVS/fn0/j/LcG9IMw1BQkGs/uuLiYo0dO9bmrXdjx46ttH9CQoJmzJihwsJCSdIzzzyjP/3pTwoODrbbf/r06Tp48KDVfvzxxx2O5/HHH9cPP/wgScrLy9MLL7ygOXPmVNq//DLD0NBQJSQkOKwPAAAAAABqDr/PWLKnVq1aatGihbp06aIePXroiiuuuCBCJenc29Tatm2rd9991+lsn127dun666/XihUrrHONGzfWU089Vek1sbGxNsv7tmzZotGjR6ugoKBC30WLFunll1+22p07d9bIkSMdjumOO+5Q586drfa8efM0Y8aMCv1KS0v1xBNPaOXKlda5hIQENW/e3GF9AAAAAABQc1wwM5YuJnv27FFCQoIeffRR9ezZU507d1bLli1Vt25dFRcX6/Dhw0pJSdE333yj0tJS67patWrps88+U506dRzWnzJlipKTk5WWliZJ+vjjj7V27VrdddddiouLU3Z2tpYvX641a9ZY10RGRioxMdFmDyV7DMNQYmKievbsqVOnTsk0TU2YMEGJiYkaPny4oqOjlZGRoUWLFmnXrl3WdV26dNGUKVM8+XEBAAAAAIBLFMFSFRQVFSk5OVnJyclO+7Zu3Voffvihrr32Wqd9IyIitGzZMg0ePFhbtmyRdG6m1GuvvWa3f8OGDZWUlKR27dq5NO527dpp6dKluv3223Xs2DFJUmpqqlJTU+32v+qqq7Rs2TJFRES4VB8AAAAAANQMF+RSuAvZZZddpscff1zdunVTSEiI0/5XXnml3n77bf34448uhUplYmJitHHjRr344ouKioqy2yc8PFxjxozR1q1b1adPH5drS1Lfvn31888/a8yYMQoPD7fbJyoqSi+++KI2bNigpk2bulUfAAAAAABc+pix5Ka6detq5syZkqSCggL9+OOP2rt3r44cOaIzZ84oKChIkZGRatq0qbp3767o6GiP7xUSEqLJkyfrpZdeUkpKitLT05WZmanIyEhdfvnl6tOnj9NldY40btxYCxcu1DvvvKPk5GTt379fJ0+eVHR0tOLi4hQfH+/yJuUAAAAAAKDmITWogtDQUJu32VWXoKAg9e3bV3379q2W+nXr1tWQIUOqpTYAAAAAALh0eS1YCgwM9FYpjxmGoeLiYn8PAwAAAAAAoEbwWrBkmqa3SgEAAAAAAOAi4NWlcM5edV+dCLYAwDfyD90hwyhy2s80g30wmkrc+q5UlOe8X7D9lxcAAAAAcI1XgyXCHQC49JXmx/h7CM417ezvEQAAAAA1gteCpdLSUm+VAgAAAAAAwEUgwN8DAAAAAAAAwMWJYAkAAAAAAAAeIVgCAAAAAACARwiWAAAAAAAA4BGCJQAAAAAAAHjEa2+F86bs7GwdP35c2dnZkqT69eurQYMGql+/vp9HBgAAAAAAgDIXRLBUVFSkxYsX67PPPtO6det08OBBu/1iYmLUo0cPDRs2TCNHjlRISIiPRwoAAAAAAIAyfl0KZ5qm3njjDcXExGjs2LFKSkrSgQMHZJqm3a8DBw7oP//5j+6++27FxMRo+vTpMk3Tnx8BAAAAAACgxvJbsHTw4EH17t1bzzzzjI4dO2aFR4ZhOPwq63f8+HE9++yz6tmzp/bv3++vjwEAAAAAAFBj+SVYOnDggPr27av169fbhEmSKp2tVPYlySZk2rBhg/r160e4BAAAAAAA4GM+D5ZKS0t18803a8+ePZJkBUSGYah///6aO3eu1q9fr8zMTOXn5ys/P1+ZmZlav3695s6dqwEDBthcI0np6em65ZZbVFpa6uuPAwAAAAAAUGP5PFiaNWuW0tLSbGYo9evXT7/88ou++OILjRs3Ttdee60aNWqkkJAQhYSEqFGjRrr22ms1btw4rVy5Ulu3blXfvn1twqUff/xRb731lq8/DgAAAAAAQI3l82Bp9uzZ1owjSbrnnnv01VdfqU2bNi7XaNu2rVatWqW7777bCpdM09Tbb79dXcMGAAAAAADAeXwaLKWlpWnv3r1Wu2PHjpo/f74CAtwfRkBAgObPn6+OHTta5/bt26fNmzd7ZawAAAAAAABwLMiXN9u2bZskWbOM/vrXvyowMNDjekFBQfrrX/+qUaNGWee2b9+uLl26VHmsAAD7QqOXKiD4pNN+pUWRKsi8pdrHY9fnE6RTB5z3q9dMuumN6h8PAAAAcInyabB0+PBhm/bgwYOrXPOmm26SJGuvpfPvAQDwrsCIdAWGZjntV1IQ5YPRVGJfinT0V+f9GrWt/rEAAAAAlzCfLoUr/9a2OnXqqE6dOlWuWadOHdWtW9fuPQAAAAAAAFB9fBosRUdHW8dFRUVeq1tYWGj3HgAAAAAAAKg+Pg2WOnfubB3n5+fr4MGDVa556NAh5efnW2+ZK38PAAAAAAAAVB+fBktXXXWVmjdvbrX/85//VLnmxx9/LOncHkvNmzfXVVddVeWaAAAAAAAAcM6nwZIkTZgwwTqeMmWKTpw44XGt48ePa8qUKdbG3eVrAwAAAAAAoHr5PFh65JFH1Lt3b5mmqWPHjmngwIHKzs52u86JEyc0cOBAHTt2TKZpKj4+Xo888kg1jBgAAAAAAAD2+DxYCggI0GeffaZu3brJNE2lpqaqffv2+te//uXSht5FRUX617/+pQ4dOig1NVWS1KNHD3366afWzCUAAAAAAABUvyBf3zA5OVmSNGnSJE2aNEk//PCDMjMzdd999+nJJ5/UwIEDdc011yg2NlZ169aVYRg6deqUfvvtN6WmpmrlypU6efKkTNOUYRjq0aOHXn75ZW3ZssXlMfzxj3+sro8HAAAAAABQY/g8WOrbt6/NzKKyY9M0lZ2drY8++kgfffRRpdeXvf2t7LoffvhBgwYNcvn+hmGouLjYk6EDAAAAAACgHJ8HS2XOD4jKB0yOnL/czVl/AAAAAAAAVA+/BUtl3A2GCJIAAAAAAAAuDD4Plv74xz+yyTYAAAAAAMAlwOfB0urVq319SwAAAAAAAFSDAH8PAAAAAAAAABcngiUAAAAAAAB4hGAJAAAAAAAAHiFYAgAAAAAAgEcIlgAAAAAAAOARgiUAAAAAAAB4JMjfAyhz7Ngxbd++XSdPntTp06dVUlLiUZ2xY8d6eWQAAAAAAACwx6/B0q5du/Tee+9p8eLFOnDggFdqEiwBAAAAAAD4hl+CJdM0NXHiRE2fPl3FxcUyTdMrdQ3D8EodAAAAAAAAOOfzYMk0TY0ZM0YfffSRFSiVD4S8FTIBAAAAAACgevk8WHr33Xe1aNEiGYZhBUqmaSosLEzt27dX8+bNVbt2bQUGBvp6aAAAAAAAAHCDT4Ol0tJSvfLKKzaBUrNmzfTqq69qxIgRqlWrli+HAwAAAAAAgCrwabC0bt06ZWVlyTAMmaapli1b6vvvv1fjxo19OQwAAAAAAAB4QYAvb7Z9+3ZJ52YqGYah//3f/yVUAoAarEFEiIpLS/09DBsX2ngAAACAC5lPZywdPXrUOjYMQ0OHDvXl7QEAF5jaYUEKCgjQgws2ad+xs16rO//MWbVwod++42f14Iw1VrtFwwjNH9vVa+MAAAAALnU+DZbCwsKs48jISIWHh/vy9gCAC9S+Y2e1K+uM1+oVhpS6NCe3sLjUq/cFAAAAahqfLoVr0aKFdXz2rPf+yzQAAAAAAAB8z6fBUo8ePaw3whUWFiojI8OXtwcAAAAAAIAX+TRYatKkifr162e1ly5d6svbAwAAAAAAwIt8GixJ0qRJk6xZS6+99ppOnz7t6yEAAAAAAADAC3weLPXu3Vt//etfZZqmMjMzdcstt+jMGTZOBQAAAAAAuNj4PFiSpFdffVVPPPGETNPUmjVrdPXVV2vp0qUyTdMfwwEAAAAAAIAHgvx14xkzZqhr16564okntGfPHt12221q1KiRevXqpRYtWqhevXrWkjl3vPTSS9UwWgAAAAAAAJzPb8GSJMXExKhdu3b67rvvZJqmsrKy9Omnn1apJsESAAAAAACAb/glWCooKNBDDz2kDz74QJLszkxyZ1mcYRgyTdOjGU4APFdcWqqgAL+sqIUfleY3lVkS7rSfWVTfB6Ox7xezhU6VRjjtd8Bs5IPRAAAAAJcunwdLJSUlGjp0qL7++msrPCoLhDzdY4m9mQD/CAoI0IMLNmnfsbP+Hop6tWqgSTd38PcwaoT8Q3f6ewhOjS96xN9DAAAAAGoEnwdL06dP16pVq2QYhjXTyDRNNW/eXF27dlXz5s1Vu3ZtBQYG+npoADyw79hZ7cry/5sdYxvU8vcQAAAAAKDG8WmwVFhYqGnTptnMUOrcubNmzZql6667zpdDAQAAAAAAQBX5NFhKSUnRiRMnrJlKnTp1UnJysmrXru3LYQAAAAAAAMALfLrr7i+//CJJ1kbbU6dOJVQCAAAAAAC4SPl0xtLp06et44CAAPXv39+Xt79olZSUKCUlRenp6crMzFT9+vXVrFkz9enTxyvBXE5OjpKTk3XgwAFlZ2crOjpacXFxio+PZ68rAAAAAABQKZ8GSxERv7/6uV69egoODvbl7X3qp59+UteuXVVcXGyd69Onj1avXu1yjcLCQk2dOlXz5s1TZmZmhe/XqlVLI0aM0LRp0xQVFeX2GDMzM/X0008rKSlJeXl5Fb4fHR2thIQEvfDCC5f0vysAAAAAAOAZny6Fa9mypXV85oz/3yJVXUpKSvTAAw/YhEruOnz4sHr06KFJkybZDZUkKTc3VwsWLFDHjh313XffuVU/OTlZHTt21MKFC+2GStK54GnSpEnq3r27Dh8+7PZnAAAAAAAAlzafzljq1auXAgICVFpaqqKiIu3atUutW7f25RB84s0339SmTZs8vj43N1dDhw5VWlqadS4mJkZjxoxRq1atdPz4ca1YsULJycmSpKysLN18881at26d2rRp47T+jh07dMsttyg7O9s616VLFw0fPlzR0dHKyMjQokWLtHv3bklSWlqahg0bpjVr1qhWLV7pDgAAAAAAzvHpjKVGjRppwIABVnvx4sW+vL1PpKen6+WXX5Z07vM2aNDA7RoTJ05Uamqq1R4xYoT27Nmj1157TQ8++KCee+45rVmzRh9++KG1RC07O1ujRo2SaZoOa5umqVGjRlmhkmEYmj59ulJTU/XCCy/ogQce0OTJk7Vjxw499thj1nWbNm3SxIkT3f4sAAAAAADg0uXTYEmSXn31VWtD6OnTp+vgwYO+HkK1euihh5SbmytJmjFjhtuba2dkZGjOnDlWu1OnTkpMTFRoaGiFvqNGjdLkyZOt9ubNm5WUlOSw/uLFi7V582arPW7cOE2YMKFCv4CAAM2aNUsDBw60zs2ZM0f79+936/MAAAAAAIBLl8+DpS5duuiNN96QaZo6ffq0Bg4cqAMHDvh6GNXiH//4h77++mtJ0g033KAxY8a4XWPu3LkqKCiw2q+//rrDjbOfeuopxcTEWO2ZM2c6rF/+++Hh4Zo6darD/m+++aZ1XFBQoHnz5jnsDwAAAAAAag6fB0uS9Nhjj+mdd95RUFCQtm3bpk6dOmnGjBk6efKkP4bjFZmZmXrqqackSWFhYZo7d65HdZYsWWIdx8bG2iwdtCcoKEj33nuv1V63bp2OHDlit+/hw4e1fv16qz1ixAjVr1/fYf22bdsqPj7e7vgAAAAAAEDN5tPNuyXpvvvus447dOigtLQ0nTx5Uk8//bSeffZZdezYUS1atFC9evVkGIZbtQ3D0N///ndvD9klf/nLX6x9i1588UX94Q9/cLtGenq6duzYYbVvuOEGl34G/fv316uvvirp3B5KK1assAmbyqxYscJmDyZnoVX5+ikpKZKk7du3a+/evTZv+AMAAAAAADWTz4Olf/7znzZhSdmxaZoqKSnRjz/+qJ9++sntuqZp+i1Y+vTTT629ja688ko9/fTTHtXZsmWLTbtnz54uXdetWzcFBQWpuLjYbp2q1u/Vq1eFOgRLAAAAAADAL0vh7DEMw/q6mJw6dUr/8z//I+ncZ3j33Xcd7onkyLZt22zarVq1cum6sLAwNW3a1Gpv377daf3AwEC1aNHCpfrnj6Oy+gAAAAAAoGbx+YwlSTbLsS52zzzzjA4dOiRJevDBB9W7d2+Pa+3du9emHRsb6/K1sbGxysjIkHRuSZ2z+jExMdbb+Zxp1qyZAgICVFpa6rA+gJrBCD4mwyhx2s80A2UWNfTBiCqKNY4oRMVO+xUqSL+ZjX0wIgAAAODS5PNg6f333/f1LatNcnKy5s+fL0mKjo7W3/72tyrVO336tE3b2cba5UVGRlrHOTk5Tuu7Uzs4OFgRERFW3crqA6gZwi9foMDQLKf9SgqilJv+pA9GVNH84Dd0RcBBp/12lsZoQOE0H4wIAAAAuDT5PFi6++67fX3LapGfn68HH3zQmn01c+ZMm3DHE2fOnLFph4WFuXxteHh4pXXsnXendln9skCpsvqVycrKUlaW8/8T6qmCggLrn1u3bq22+8BWaGioWrdu7e9hANVi165dKigo4PcL3MYzA3fwvMAdPC9wB88LXNGhQwev1PHLUrhLwaRJk7Rz505J0o033qg777yzyjXz8/Nt2iEhIS5fGxoaah3n5eU5re9ObVfrV6aoqKjCZ6sOpmn65D4ALn0FBQU2v0/4/QJ38czAHTwvcAfPC9zB8wJfIFjywE8//aTp06dLOjeTZ+7cuV6pe/4sosLCQpdnFpUl0mVjqqx+bm6uVdsdrtSvTHBwsNszpNxRUFBgvRWwfACG6sXPGpeysueb3y9wF88M3MHzAnfwvMAdPC/wJYIlN5WUlOj+++9XcfG5TWFffvlltWzZ0iu1a9eubdPOz893OZApP4vo/Drlz5cFS+6m1q7Ur0xUVJSioqLcusYdW7duVX5+vkJDQ702lQ9AzVa2zJPfL3AXzwzcwfMCd/C8wB08L/ClAH8P4GLz5ptvKjU1VZLUsWNHTZgwwWu169ata9POzs52+dqTJ09ax3Xq1HFa353aRUVFOnv2rNP6AAAAAACgZiFYcsORI0f08ssvS5ICAgL03nvvKSjIe5O+zp/5lJGR4fK1v/32m3UcFxfntP7BgwdVUuL8deGSdODAAZWWljqtDwAAAAAAahaWwrnhyJEj1lKywMBAjRkzxuk1Bw/+/rrr9evX6w9/+IPV7t+/v83+TO3bt7e5dvfu3erTp4/Te+Tn5+vQoUNWu127dnb7tW/fXl999ZWkc0v69u3bp1atWjmtv2fPHpt2ZfUBAAAAAEDNckEFS3v37lVGRoZOnjypnJwcm1kyrho7dmw1jKyioqKiCoGLM/n5+TbXnL/WtVOnTjbtdevW6f7773dad8OGDdaeT9K5JXr22KvvSrC0du1am3Zl9QEAAAAAQM3i92Dp+++/1+zZs/XNN9/o2LFjVa7nq2CpOsTFxalNmzbasWOHJGnVqlXWTv6OlM1CkiTDMDR48GC7/QYNGiTDMGSapiTpyy+/dGnWVfn6bdu2ZSkcAAAAAACQ5Mc9lk6cOKGbbrpJf/zjH7V48WIdPXpUpmlW6au6de7c2e0xxcbGWtf36dPH5ntLly6tcI9bb73VOv7tt9/05ZdfOhxTcXGx3n//favdo0cPNW7c2G7fJk2aqHv37lY7KSnJ6Sbev/76q1JSUuyODwAAAAAA1Gx+CZaOHDmia665RitXrrQCofKzcgzDsL7KK3/e3vcvBQkJCQoJCbHazzzzjIqKiirtP336dJt9nB5//HGH9ct/Py8vTy+88ILD/uPHj7eOQ0NDlZCQ4LA/AAAAAACoOXweLJWWlmrEiBHWW8zKlmZFR0dr6NCh6tGjh80MpLvvvlu33XabrrvuOkVERFSYndSjRw/dfffduvvuuy/qZXBlYmNj9fDDD1vtLVu2aPTo0SooKKjQd9GiRdZb6qRzM6pGjhzpsP4dd9yhzp07W+158+ZpxowZFfqVlpbqiSee0MqVK61zCQkJat68uTsfBwAAAAAAXMJ8vsdSUlKS1q5dawVK4eHhmj17tu655x4ZhqF3331XP/zwg9W//DKv0tJSff3113r99df19ddfyzAM/fTTT3r44Yd11113+fqjVJspU6YoOTlZaWlpkqSPP/5Ya9eu1V133aW4uDhlZ2dr+fLlWrNmjXVNZGSkEhMTnc7iMgxDiYmJ6tmzp06dOiXTNDVhwgQlJiZq+PDhio6OVkZGhhYtWqRdu3ZZ13Xp0kVTpkypng8MAAAAAAAuSj4Plt58801Jsjal/ve//60hQ4a4dG1AQID69++v/v37a+7cuXrssceUl5ene+65R5IumXApIiJCy5Yt0+DBg7VlyxZJ0sGDB/Xaa6/Z7d+wYUMlJSWpXbt2LtVv166dli5dqttvv93aMD01NVWpqal2+1911VVatmyZIiIiPPg0AAAAAADgUuXTpXCnT5/Wxo0brf2RhgwZ4nKodL6HH35Ys2fPlnQupBo3bpz27NnjzeH6VUxMjDZu3KgXX3xRUVFRdvuEh4drzJgx2rp1q/r06eNW/b59++rnn3/WmDFjFB4ebrdPVFSUXnzxRW3YsEFNmzZ1+zMAAAAAAIBLm09nLK1fv16lpaWSzi3Juu+++6pUb9y4cfr3v/+t1atXq6CgQJMmTdKCBQu8MVSv2bdvn8fXhoSEaPLkyXrppZeUkpKi9PR0ZWZmKjIyUpdffrn69OmjOnXqeFy/cePGWrhwod555x0lJydr//79OnnypKKjoxUXF6f4+HgFBfl8UhsAAAAAALhI+DQ1OHDggE27V69eTq8pKipScHBwpd9/9NFHtXr1apmmqaSkJL333nsKCwur8lgvJEFBQerbt6/69u1bLfXr1q3r8cwxAAAAAABQc/l0KdyJEyes49DQUDVq1KhCn/NnyNh7G1p5N9xwg03f8ht/AwAAAAAAoPr4NFgqLCy0jmvXrm23z/lLu8o2l65MnTp1VLt2bettaDt27KjiKAEAAAAAAOAKnwZL5UOj3Nxcu33q1q1r0z5/+Zw95Wc5ZWdnezg6AAAAAAAAuMOnwVLjxo2t47y8PBUXF1foExcXJ0nWDKS0tDSHNU+fPq1Tp05Z7YAAn34kAAAAAACAGsunKUy7du1s2vaWrf3hD3+w2Xz7yy+/dFjziy++kGmaMk1TktSgQQMvjBQAAAAAAADO+DRYuuKKKxQeHm61f/7554oDCghQfHy8FRatXLlSW7ZssVuvoKBAkydPtmY3SdJVV13l/YEDAAAAAACgAp8GS8HBwerVq5fV/uqrr+z2u+OOOySdWw5XUlKioUOHas2aNTZ90tPTNWjQIP3yyy/WuUaNGqlLly7VMHIAAAAAAACcz+cbEg0YMMA6Xr58uUpLSyv0GT16tGJjYyWdC5f279+vP/3pT2revLni4+PVoUMHXXHFFVqzZo0Mw5BpmjIMQ4899hh7LAEAAAAAAPiIz1OY22+/XZJkmqaysrK0ZMmSCn3CwsL0zjvvWCFRWXh04MABrVu3Ttu2basQSF199dV6+umnq/8DAAAAAAAAQJIU5OsbtmjRQnPmzLHe5BYaGmq33+DBg/X+++/roYceUn5+vs0+SmXHZRt2d+3aVcuWLVNwcHA1jx4AAAAAAABlfB4sSVJCQoJL/caMGaNevXpp0qRJ+u9//6vs7Gyb77dv314JCQkaN24coRIAAAAAAICP+SVYckdcXJz+9a9/qaSkRPv371dWVpaCg4PVrFkzNWrUyN/DAwAAAAAAqLEu+GCpTGBgoFq0aKEWLVr4eygAAAAAAACQHzbvBgAAAAAAwKWBYAkAAAAAAAAeIVgCAAAAAACARy6aPZZ27dqljz76SFu2bNHZs2fVpEkT9evXT7fddpvCw8P9PTwAAAAAAIAax+fB0qFDh5SUlGS1e/Xqpa5duzq85pVXXtHUqVNVUlJic/6f//ynJk6cqIULF+q6666rlvECAAAAAADAPp8HS//85z/14osvWu20tDSH/f/2t79p8uTJVtswDOvYNE1lZGRo0KBB+vrrr9W9e3fvDxgAAAAAAAB2+XyPpWXLlsk0TZmmqWuuuUadOnWqtG9GRoZeeuklGYZhfZVda5qmdS43N1ejR49WYWGhDz8JAAAAAABAzebTYKmwsFBpaWlWIDRkyBCH/adPn66ioiKrXa9ePT3zzDOaN2+eHn/8cdWqVcv63t69e/Xee+9V29gBAAAAAABgy6dL4bZt22bNKjIMQ3/84x8r7VtSUqKPPvrImqUUERGhH374QVdccYXVZ/To0frjH/+ogoICmaapf/3rX/rLX/5S7Z8DAGqygiM3SwEFzjuWhlb/YCrxcvE9qqV8p/1yFeaD0QAAAACXLp8GS3v37rVpX3nllZX2TUlJ0bFjx6zZTY888ohNqCRJXbt21bhx4zRr1ixJ0ubNm3Xs2DE1bNjQ+4MHAEiSSnJb+XsITq0rrfzvFwAAAADe49OlcIcOHbKOg4KC1KhRo0r7rl69WtK5Dbol6e6777bb784777Rp//TTT1UcJQAAAAAAAFzh0xlLZ8+etY7r1q3rsG9KSop13Lx5c7Vr185uv6uuusrmTXHnz4oCAAAAAABA9fDpjKXyG3GXlpZW2s80TW3cuNFaBnfddddV2jcsLMwmpDp16pR3BgsAAAAAAACHfBos1alTxzo+c+aMtcztfFu2bNHp06etdnx8vMO6QUFBVq38fOebtQIAAAAAAKDqfBosXXbZZdZxcXFxpcvWvvzyS0m/76/kLFg6deqUtRyuVq1a3hgqAAAAAAAAnPBpsFT2FriyEOirr76y2y8pKck6btCggdq3b19pzezsbBUXF1vt+vXre2OoAAAAAAAAcMLnwVLt2rUlnZuNNGPGDOXl5dn0WbNmjc3+Sn/6058c1tyyZYtVT5JatmxZDSMHAAAAAADA+XwaLIWEhOjWW2+VaZoyDEO7d+9W//799dVXX2n37t366KOPdOedd8owDCso+vOf/+yw5saNG23aV1xxRbWNHwAAAAAAAL8L8vUNn332WS1atEglJSUyTVPr1q3TwIEDre+XhU6GYah169YaNmyYw3rLli2zjmNiYtSkSZNqGzsAAAAAAAB+59MZS5LUvn17vfLKK1aAJJ0Lk8q+ymYrBQQEaO7cuVYfezIzM/X9999bQVTv3r199TEAAAAAAABqPJ8HS5L0/PPP67XXXlNISIi15K2MaZqKiIjQBx98oH79+jms895776m0tNRq33jjjdUyXgAAAAAAAFTk86VwZZ555hn9+c9/1kcffaTNmzfrxIkTioyMVPfu3XXXXXepUaNGDq8vKSnRokWLVK9ePUnn3jR30003+WLoAAAAAAAAkB+DJUm6/PLL9fTTT3t0bWBgoLZt2+blEQEAAAAAAMBVflkKBwAAAAAAgIsfwRIAAAAAAAA84telcACAi09Io5UKCDrltF9pcT0VHh3ogxFV9EzQR4o2Tjjtl2lepteL7/TBiAAAAIBLE8ESAMAtQXW2KTA0y2m/koIovwVLNwSk6oqAg0777SyN0esiWAIAAAA8xVI4AAAAAAAAeIRgCQAAAAAAAB4hWAIAAAAAAIBHCJYAAAAAAADgEYIlAAAAAAAAeIRgCQAAAAAAAB4hWAIAAAAAAIBHCJYAAAAAAADgEYIlAAAAAAAAeIRgCQAAAAAAAB4hWAIAAAAAAIBHgnx5syNHjmjDhg1Wu2XLlurYsaMvhwAAAAAAAAAv8WmwtHTpUj3yyCNWOzExkWAJAAAAAADgIuXTpXAnTpyQaZoyTVOSNGjQIF/eHgAAAAAAAF7k02ApODjYOq5du7bq1q3ry9sDAAAAAADAi3waLEVFRVnHpaWlvrw1AAAAAAAAvMynwdKVV15pHefm5ur06dO+vD0AAAAAAAC8yKfBUpcuXdSgQQOr/c033/jy9gAAAAAAAPAinwZLAQEBuu+++6z2zJkzfXl7AAAAAAAAeJFPgyVJev7559W4cWNJ0nfffac33njD10MAAAAAAACAF/g8WKpXr56WLl2q2rVryzRNPfPMM3rqqaeUn5/v66EAAAAAAACgCnweLElSt27d9P333+vKK6+UaZp68803FRsbqwkTJujzzz/X/v37lZub64+hAQAAAAAAwEVBvr5hYGCgTdswDJmmqaNHj2rmzJlV2nfJMAwVFxdXcYQAAAAAAABwhc+DJdM0K5wzDKPS7wEAAAAAAODC5PNgSfo9SHL1vCv8FUqdPXtW27Zt0759+3T48GGdOXNGAQEBqlevnlq0aKFrrrlGUVFRVbpHSUmJUlJSlJ6erszMTNWvX1/NmjVTnz59VLt27Sp/hpycHCUnJ+vAgQPKzs5WdHS04uLiFB8fX2GGGQAAAAAAQBm/BEsX+8yk9PR0/e///q9SUlK0c+dOlZaWOuwfHx+vxx9/XCNGjHDrPoWFhZo6darmzZunzMzMCt+vVauWRowYoWnTpnkUXmVmZurpp59WUlKS8vLyKnw/OjpaCQkJeuGFFxQcHOx2fQAAAAAAcGnz+ebdpaWl1fZVUlLik8+wbds2/d///Z9+/fVXp6GSJKWkpOj222/XkCFDdObMGZfucfjwYfXo0UOTJk2yGypJUm5urhYsWKCOHTvqu+++c+szJCcnq2PHjlq4cKHdUEk6FzxNmjRJ3bt31+HDh92qDwAAAAAALn1+mbF0KWnYsKF69Oihtm3bqnnz5qpTp44KCgq0f/9+fffdd/ruu++sGVqff/65Bg8erG+//dbhErPc3FwNHTpUaWlp1rmYmBiNGTNGrVq10vHjx7VixQolJydLkrKysnTzzTdr3bp1atOmjdMx79ixQ7fccouys7Otc126dNHw4cMVHR2tjIwMLVq0SLt375YkpaWladiwYVqzZo1q1arl0c8JAAAAAABcegiWPNCkSRNNmTJFw4YNU4cOHRz2TU1N1R133KE9e/ZIkr777jvNmzdPjzzySKXXTJw4UampqVZ7xIgR+uCDDxQaGmqde+6555SYmKh77rlHRUVFys7O1qhRo7Rp0yaHe1WZpqlRo0ZZoZJhGJo2bZomTJhg0++VV17R+PHj9dZbb0mSNm3apIkTJ2rGjBkOPy8AAAAAAKg5fL4U7lJwzTXX6Pnnn3caKpX1XblypcLCwqxz8+fPr7R/RkaG5syZY7U7deqkxMREm1CpzKhRozR58mSrvXnzZiUlJTkcz+LFi7V582arPW7cuAqhkiQFBARo1qxZGjhwoHVuzpw52r9/v8P6AAAAAACg5iBY8oE//OEPGjRokNX+6aefVFBQYLfv3Llzbb73+uuvO9w4+6mnnlJMTIzVnjlzpsOxlP9+eHi4pk6d6rD/m2++aR0XFBRo3rx5DvsDAAAAAICag2DJR87f++j48eN2+y1ZssQ6jo2N1YABAxzWDQoK0r333mu1161bpyNHjtjte/jwYa1fv95qjxgxQvXr13dYv23btoqPj7c7PgAAAAAAULNdcMFSfn6+0tLS9PXXX+vjjz9WUlKSvv76a6WlpSk/P9/fw/NYTk6OdRwQEKDIyMgKfdLT07Vjxw6rfcMNNzjcL6lM//79rWPTNLVixQq7/VasWGFtJC7JaWhlr/727du1d+9el64DAAAAAACXtgti8+6srCzNmzdPy5cvV1pamoqLi+32Cw4OVufOnTVkyBCNGzdOjRo18vFIPVNSUqIvv/zSanfp0sXu29W2bNli0+7Zs6dL9bt166agoCDr53Z+narW79WrV4U6LVu2dOlaAAAAAABw6fLrjKWCggI98cQTio2N1aRJk7RhwwYVFRXJNE27X4WFhdq4caNefvllNW/eXOPHj690r6ILyfPPP69du3ZZ7aeeespuv23bttm0W7Vq5VL9sLAwNW3a1Gpv377daf3AwEC1aNHCpfrnj6Oy+gAAAAAAoGbxW7CUnp6url276u2331ZBQYFM05RhGE6/pHPLvQoKCvTWW2/p2muvVXp6ur8+hl0FBQXat2+fFi1apOuuu06vv/669b1x48bpjjvusHvd+UvMYmNjXb5n+b6V/TzK14+JiVFgYKBLtZs1a6aAgN8flQvt5w0AAAAAAPzDL0vhsrKy1L9/fyvoKB8YlQkLC1O9evUkSadOnbLZX6l8/61bt+rGG2/U2rVr/bY0bvbs2Xr00Ucd9mnUqJFeeeUV/c///E+lfU6fPm3Tdraxdnnl92wqv59TZfXdqR0cHKyIiAirbmX1AeBSExoaavNPAAAAALb8Eizdeeed2rt3r01AFB4erttuu00jR45U165d1bhxY5trjhw5ok2bNikpKUlJSUnKzc2VYRgyTVN79uzRn//8Z61atcofH8ep7t27a86cOerSpYvDfmfOnLFph4WFuXyP8PDwSuvYO+9O7bL6ZYFSZfUrk5WVpaysLLeucUfZcsiCggJt3bq12u4DW6GhoWrdurW/hwE/MAsbqMTFfv7ymxktlbrYr5wGESEqLi1V0P+bpXmhPONFxSXas3tXpXsQ4sLB30lwB88L3MHzAnfwvMAVHTp08EodnwdL//3vf7V69WorFJKkYcOG6Z133lFMTEyl1zVu3FhDhgzRkCFDNHXqVD3yyCP69NNPrTrffvutPv/8c910002++iiWyMhIm32IcnJydPz4cZWUnPu/XuvXr9c111yjW2+9VXPmzKkQmpU5/613ISEhLo+h/H9Nz8vLc1rfndqu1q9MUVGRT97oZ5rmRf3mQOBikXfgbn8PwakHi+zvZedM7bAgBQUE6MEFm7Tv2Fkvj8ozLRpGaP7YriouLuZ33EWEv5PgDp4XuIPnBe7geYEv+DxYmj59uiRZeyqNGzdOc+bMcatG06ZNtWTJEj3yyCOaO3euNfPpjTfe8EuwNGbMGI0ZM8bmXF5entatW6d33nlHn3zyiSRpyZIl2rx5s7777jtdfvnlFeqcP4uosLDQ5ZlF5TcxLz976fz6ubm5Vm13uFK/MsHBwW7PkHJH+T26WK7iO/yscSnbd+ysdmW5NzuzuvFn7uLA30lwB88L3MHzAnfwvMCXfBos5eTkaO3atdYso86dO2v27Nke13vrrbf0ww8/6Mcff5Rpmvr++++Vk5OjOnXqeHHUngkPD9ef/vQn/elPf9KCBQt07733qrS0VL/99ptGjx6t5OTkCtfUrl3bpp2fn+9yIFN+FtH5dcqfLwuW3E2tXalfmaioKEVFRbl1jTu2bt2q/Px8hYaGem0qHwBcaC6UZXlwjL+T4A6eF7iD5wXu4HmBL/n0rXBr165VcXGxlZw+++yzNm8bc1dgYKCeffZZa0ldcXGx1q5d663hes3YsWM1fvx4q/3dd9/p66+/rtCvbt26Nu3s7GyX73Hy5EnruLJgrXx9d2oXFRXp7Nnfl4RcCMEdAAAAAADwP58GS4cOHbJpDxo0qMo1y2qULYc7/x4XivPfGvff//63Qp+WLVvatDMyMlyu/9tvv1nHcXFxdvuUr3/w4EFrDyhnDhw4oNLS33fBraw+AAAAAACoWXwaLB09etQ6rlOnjldmvtSpU8dmJk75e1xIYmNjFRkZabV3795doU/79u1t2vb62JOfn28TqLVr185uv/L1S0pKtG/fPpfq79mzx6ZdWX0AAAAAAFCz+DRYCg4Oto6Lioq8Vrf8RtTl73GhKb9pmr3ZQp06dbJpr1u3zqW6GzZssHkFdceOHe3287T++csLK6sPAAAAAABqFp8GS40aNbKOz59l46nDhw/bbERd/h4XkjNnzujYsWNWOzo6ukKfuLg4tWnTxmqvWrXK2j/Kka+++so6NgxDgwcPtttv0KBB1pJBSfryyy9dGnv5+m3btmUpHAAAAAAAkOTjYKlFixaSft8P6ZNPPqlyzbIaZQFM2T0uNEuWLLGZpdS1a1e7/W699Vbr+LfffnMa/hQXF+v999+32j169FDjxo3t9m3SpIm6d+9utZOSkpxu4v3rr78qJSXF7vgAAAAAAEDN5tNgqXv37tar6k3T1NSpU3Xq1CmP6506dUpTpkyxgqratWurR48eXhlrZYqKimyW3rni8OHDeuGFF6x2UFCQbr75Zrt9ExISFBISYrWfeeYZh8sGp0+froMHD1rtxx9/3OFYyn8/Ly/PZlz2lH+bXWhoqBISEhz2BwAAAAAANYfP91i68cYbZZqmDMNQZmamhg0bpjNnzrhd6+zZs7rlllt05MgRq96NN96ooKCgahj57w4ePKjWrVvr7bffdmmj8C+++EK9e/fW/v37rXOPPvqomjVrZrd/bGysHn74Yau9ZcsWjR49WgUFBRX6Llq0SC+//LLV7ty5s0aOHOlwPHfccYc6d+5stefNm6cZM2ZU6FdaWqonnnhCK1eutM4lJCSoefPmDusDAAAAAICao3pTGDsmTpyoJUuWyDRNmaaplJQUXX311Xr77bc1cOBAl2p88cUXeuyxx7R7924ZhmEFSy+++GI1j/6cjIwMPfbYYxo/fryuvfZaXX311WrVqpUiIyNlGIZOnTqlX3/9Vd98802FN7v16dNHr776qsP6U6ZMUXJystLS0iRJH3/8sdauXau77rpLcXFxys7O1vLly7VmzRrrmsjISCUmJtrsoWSPYRhKTExUz549derUKZmmqQkTJigxMVHDhw9XdHS0MjIytGjRIu3atcu6rkuXLpoyZYq7PyoAAAAAAHAJ83mwdNVVV+mBBx7Qe++9Z4VCe/bs0U033aRWrVpp+PDh6tq1q1q2bKm6detaQc3evXu1adMmLVmyRLt377bZ1NowDD344IM+f1tZSUmJfvjhB/3www9O+xqGoXvvvVdvvfWWatWq5bBvRESEli1bpsGDB2vLli2Szs2Ueu211+z2b9iwoZKSktSuXTuXxt2uXTstXbpUt99+u7WheGpqqlJTU+32v+qqq7Rs2TJFRES4VB8AAAAAANQMPg+WJGn27Nnas2ePvv76a2uGjWma2r17t6ZNm+bw2rJAqfx1N9xwg2bPnl29g/5/GjdurJkzZ2rlypVau3atTp8+7bB/RESEbrvtNj388MNu7f8UExOjjRs36tVXX9W7776rrKysCn3Cw8N12223afr06XbfMudI37599fPPP+vpp5/Wf/7zH+Xl5VXoExUVpXHjxmnixIk2+z4BAAAAAABIfgqWgoKCtHTpUiUkJOjDDz+UYRg2QZEj5/cbM2aM5s6dq8DAwOod9P8TFhamxx9/XI8//rhKS0u1c+dO7dy5U/v379fp06dlmqbq1q2rBg0aqEOHDmrfvr3HYwsJCdHkyZP10ksvKSUlRenp6crMzFRkZKQuv/xy9enTR3Xq1PH4szRu3FgLFy7UO++8o+TkZO3fv18nT55UdHS04uLiFB8fX+17VgEAAAAAgIuX31KDiIgILVy4UEOHDtWrr76qrVu3Wt+rbJ+gsn2ZJKlDhw566aWXNGLECJ+M156AgAC1bdtWbdu2rdb7BAUFqW/fvurbt2+11K9bt66GDBlSLbUBAAAAAMCly+/TUUaOHKmRI0fq22+/1fLly/X999/r559/1tmzZ236RUREqGPHjurdu7duuummagtZAACOGYFnJKPUeUczQGZJ7eofkB0NdEqBcj7GEgXouOr5YEQAAADApcnvwVKZfv36qV+/fla7sLBQ2dnZkqT69euzxw8AXCDCY99TYGjFfd/OV1IQpdz0J30woooWhbyqKwIOOu23szRGAwod7+0HAAAAoHIXTLB0vpCQELc3pAYAAAAAAIDvBPh7AAAAAAAAALg4ESwBAAAAAADAIwRLAAAAAAAA8AjBEgAAAAAAADzitc27MzIyKpxr3ry5S/28yd49AQAAAAAA4H1eC5ZatGghwzCstmEYKi4udtrPmyq7JwAAAAAAALzPa8GSJJmm6dV+AAAAAAAAuHB5NVgqm4nkLDiqjhlLhFUAAAAAAAC+5bVgqXnz5i4FRq72AwAAAAAAwIXNa8HSvn37vNoPAAAAAAAAF7YAfw8AAAAAAAAAFyeCJQAAAAAAAHiEYAkAAAAAAAAe8WmwtHz5cnXp0sX6eu+993x5ewAAAAAAAHiR1zbvdsW2bdv0448/SpIMw1B8fLwvbw8AAAAAAAAv8umMpcLCwt9vHBCgtm3b+vL2AAAAAAAA8CKfBkt16tSxjuvVq6eAALZ4AgAAAAAAuFj5NNlp2bKldXzq1Clf3hoAAAAAAABe5tNgqXv37jIMQ5JUWlqqX375xZe3BwAAAAAAgBf5NFhq1KiRzYbdSUlJvrw9AAAAAAAAvMjnmxw9//zz1vGMGTN08OBBXw8BAAAAAAAAXuDzYOnGG2/UQw89JNM0debMGQ0YMECHDh3y9TAAAAAAAABQRX55Lds777yje++9V6Zpavv27bryyis1Y8YMnThxwh/DAQAAAAAAgAeCfH3DyZMnS5JiY2N15ZVX6pdfftGpU6f09NNP6/nnn1fHjh3VqVMnNWjQQLVr13a7/ksvveTtIQMAAAAAAMAOnwdLr7zyivVmOEnWsWmaKiwsVGpqqjZv3uxxfYIlAAAAAAAA3/B5sFTGNE27AdP5fVxhGEaFegAAAAAAAKhefgmWygIjV4MjV+sBAAAAAADAd3weLL388su+viUAAAAAAACqAcESAAAAAAAAPBLg7wEAAAAAAADg4kSwBAAAAAAAAI8QLAEAAAAAAMAjBEsAAAAAAADwCMESAAAAAAAAPOLzt8LZU1JSomXLlmnNmjVat26dDh8+rBMnTig3N1eGYai4uNjudSdOnLCOw8LCVKtWLV8NGQAAAAAAoMbza7BkmqZmzpypGTNm6NChQ9Y5V/Xv318//vijJKl9+/b6+eefq2OYAAAAAAAAsMNvS+EOHz6sfv366amnntLBgwetQMkwDOvLmSeeeEKmaco0TW3btk2bN2+u7mEDAAAAAADg//HLjKXs7Gz169dPu3btkmmaMgzDCojKuBIs3XHHHXrkkUd09uxZSdInn3yiLl26VNu4AQBSYdaNUmC+844lYdU/mEpMK75DdZTrtF+OWEINAAAAVIVfgqURI0Zo586d1sykgIAAjRo1Sn/+8591zTXX6OOPP9Zf/vIXp3VCQkI0aNAgffzxxzIMQ6tWrdKrr77qg08AADVX8Zkr/T0Ep74q7ervIQAAAAA1gs+DpU8//VTffvutNUspOjpaS5YsUY8ePaw+gYGBLtcbMGCAPv74Y5mmqc2bNysvL0/h4eHVMXQAAAAAAACU4/M9lv72t79JOrdJd1hYmD7//HObUMldV111lXVcUlKiX3/9tcpjBAAAAAAAgHM+DZaOHz+uDRs2WEvgHnrooSrvidS+fXtJv+/JtHPnziqPEwAAAAAAAM75NFhau3atSktLrU26x44dW+WatWrVUkhIiNU+duxYlWsCAAAAAADAOZ8GS0eOHLGOAwMDvfYGtzp16lhhVU5OjldqAgAAAAAAwDGfL4UrU69ePa/VzcvLs5bCBQX55UV3AABUiwYRISouLfX3MGxcaOMBAACA//g0haldu7Z1fPbsWa/UzMvLU25urhUsNWzY0Ct1AQC4ENQOC1JQQIAeXLBJ+4555+/OqmjRMELzx3b19zAAAABwgfBpsNSoUSPruKCgQFlZWYqKiqpSzU2bNkk695Y5wzBs7gEAwKVi37Gz2pV1xt/DAAAAAGz4dClcXFycTTs5ObnKNZcvX27T7tqV/4oKAAAAAADgCz4Nlrp27ar69etby9bmz59fpXpnzpzR/PnzrXpXXHGFoqOjqzxOAAAAAAAAOOfTYMkwDA0aNEimaco0Ta1atUqffPKJx/USEhJ04sQJaxnciBEjvDhaAAAAAAAAOOLTYEmSnn/+eQUEBMgwDJmmqXvuuUfffPONWzVKS0uVkJCgxMREa7ZSeHi4Hn/88eoYMgAAAAAAAOzwebDUvn173X333dYsozNnzujGG2/U//zP/2j79u0Or83Ly9NHH32kDh06WMvoyuo89dRTvBEOAAAAAADAh3z6Vrgy77zzjrZu3aqNGzfKMAyVlJTo3Xff1bvvvqtmzZopPDzcpv99992n3bt3KzU1Vfn5+TJNU5KsWU/XX3+9Xn75ZX98FAAAAAAAgBrLL8FSWFiYli1bpiFDhmjTpk3WcjbTNLV//36rXXbuX//6l3UsyaZ/fHy8/v3vf9tcAwAAAAAAgOrnl2BJkqKiovT9999rwoQJmjNnjkpLS23CIXtBUflAKSAgQOPGjdOsWbMUHBzss3EDQE0X0uBbGUE5TvuZxXVUeLyfD0ZU0f8EfqpGxkmn/Y6akZpTcnP1DwgAAAC4RPktWJKk4OBgvfXWW3r88cc1bdo0LV68WCdPnnR4Ta1atTR06FC9+OKLat++vW8GCgCwBNVLU2BoltN+JQVRfguWbglM0RUBB53221kaQ7AEAAAAVIFfg6UyrVq10rx58zR37lz99NNP+uGHH3TkyBGdOHFChYWFuuyyy9SoUSNdffXV6t27NzOUAAAAAAAALgAXRLBUxjAMde7cWZ07d/b3UAAAAAAAAOBEgL8HAAAAAAAAgIsTwRIAAAAAAAA84vOlcH/605+s4yeffFJDhgypUr1ly5bpzTfflHRuKd3XX39dpXoAAAAAAABwjc+DpdWrV8swDEnSnXfeWeV6hw4d0urVqyXJqutLpmlq165d+uWXX7R//37l5OQoIiJCDRo0UJcuXdSuXTsFBFRtYlhJSYlSUlKUnp6uzMxM1a9fX82aNVOfPn1Uu3btKn+GnJwcJScn68CBA8rOzlZ0dLTi4uIUHx+vwMDAKtcHAAAAAACXpgtq8+6LRU5Ojj777DN99tln+uabb3Ts2LFK+0ZHR+vBBx/UhAkTFBkZ6dZ9CgsLNXXqVM2bN0+ZmZkVvl+rVi2NGDFC06ZNU1RUlLsfQ5mZmXr66aeVlJSkvLw8u2NPSEjQCy+8wJv4AAAAAABABeyx5KacnBxFRUVpzJgxWrx4scNQSToX3rz66qvq0KGDkpOTXb7P4cOH1aNHD02aNMluqCRJubm5WrBggTp27KjvvvvOrc+RnJysjh07auHChXZDpbKxT5o0Sd27d9fhw4fdqg8AAAAAAC59F/2MpdLSUuu4qkvOXFFSUqL8/Hybc1dccYX++Mc/qnXr1mrYsKHOnj2rtLQ0/ec//9Hp06clSQcPHtSgQYP01VdfqVevXg7vkZubq6FDhyotLc06FxMTozFjxqhVq1Y6fvy4VqxYYQVVWVlZuvnmm7Vu3Tq1adPG6WfYsWOHbrnlFmVnZ1vnunTpouHDhys6OloZGRlatGiRdu/eLUlKS0vTsGHDtGbNGtWqVcu1HxQAAAAAALjkXfTBUllwI8mnoUe9evV0//336/7771f79u3t9nnjjTd0//33a8mSJZLOBUZjx47VL7/8otDQ0EprT5w4UampqVZ7xIgR+uCDD2yuee6555SYmKh77rlHRUVFys7O1qhRo7Rp0yaHe02ZpqlRo0ZZoZJhGJo2bZomTJhg0++VV17R+PHj9dZbb0mSNm3apIkTJ2rGjBlOfjIAAAAAAKCmuOiXwv3888/W8WWXXVbt9wsKCtJf//pX7d27V2+88UaloZIk1a9fX4sXL1afPn2sc3v27NFHH31U6TUZGRmaM2eO1e7UqZMSExPtBlGjRo3S5MmTrfbmzZuVlJTkcPyLFy/W5s2brfa4ceMqhErSudlfs2bN0sCBA61zc+bM0f79+x3WBwAAAAAANcdFHSz98ssvWrp0qQzDkGEYateuXbXfs3bt2po6darq16/vUv+goCC99tprNuc+//zzSvvPnTtXBQUFVvv11193uHH2U089pZiYGKs9c+ZMh+Mp//3w8HBNnTrVYf8333zTOi4oKNC8efMc9gcAAAAAADWH15fCrVmzRmvWrHGp73//+18dOXLErfolJSU6deqUtm/frjVr1qioqEimacowDPXu3duTIVe77t27KyIiQmfPnpV0btZSZcqWzUlSbGysBgwY4LB2UFCQ7r33Xr366quSpHXr1unIkSNq3Lhxhb6HDx/W+vXrrfaIESOcBmRt27ZVfHy8UlJSrPFNmTLF4TUAAAAAAKBm8HqwtHr1ak2aNMnpPj/SuZk7jmbvOFMWKEnnApbRo0d7XKs6GYZhEyyV/fN86enp2rFjh9W+4YYbHP4cy/Tv398KlkzT1IoVK3TvvfdW6LdixQrrZy/JaWhVvn5ZsLR9+3bt3btXLVu2dOlaAAAAAABw6arWpXCmaVb4cvZ9V77KGIZhtV955RW1aNGiOj+Ox86ePaujR49abXuziSRpy5YtNu2ePXu6VL9bt24KCvo9Izy/TlXrn/8Wu8rqAwAAAACAmqXagqXzQyRv1y77atu2rRYuXKi//vWv1Xa/qlqyZInNz6OyQGfbtm027VatWrlUPywsTE2bNrXa27dvd1o/MDDQ5SDu/HFUVh8AAAAAANQsXl8K17dvX4ffL79MbvDgweratatb9YOCglSnTh01btxYV199tVq3bu3pUH2itLRUM2bMsDk3cuRIu3337t1r046NjXX5PrGxscrIyJB0bkmds/oxMTEKDAx0qXazZs0UEBCg0tJSh/VRvYpLSxUUcFHvtw8AAAAAuMR4PVjq06eP+vTpU+n3J02aZB0PHTpUDz30kLeHcEF54403lJaWZrWHDh2qq6++2m7f06dP27RdffOcJEVGRlrHOTk5Tuu7Uzs4OFgRERFW3crqo3oFBQTowQWbtO+Y/T26fK1XqwaadHMHfw8DAAAAAOBHXg+WXFF+0+1LWUpKil544QWrXbduXb399tuV9j9z5oxNOywszOV7hYeHV1rH3nl3apfVLwuUKqtfmaysLGVlZbl1jTsKCgqsf27durXa7uNPoaGhat26tfYdO6tdWe79/KtLbINa/h4CAD/atWuX9fsXv6sJfyfBe3he4A6eF7iD5wWu6NDBOxMFfB4svfzyy9axu8vgLibp6ekaPny4ioqKrHPvvfeew+Vt+fn5Nu2QkBCX7xcaGmod5+XlOa3vTm1X61emqKiowmerDqZp+uQ+AIBz/0OV37mV4+8kuIPnBe7geYE7eF7gC34Nli5Vhw8f1oABA2zeBDdp0iTdcccdDq87fxZRYWGhyzOLyv9X4/Kzl86vn5uba9V2hyv1KxMcHOz2DCl3FBQUWLPgygdgl5JL9XMBuHjxe8m+mvB3EryH5wXu4HmBO3he4Et+WQp3KTt+/Lj69++vPXv2WOeefPJJvfTSS06vrV27tk07Pz/f5UCm/Cyi8+uUP18WLLmbWrtSvzJRUVGKiopy6xp3bN26Vfn5+QoNDfXaVD4AgGMX+ssz/IW/k+AOnhe4g+cF7uB5gS/xiikvOnXqlAYMGKBffvnFOvfwww/rjTfecOn6unXr2rSzs7NdvvfJkyet4zp16jit707toqIinT37+4bRldUHAAAAAAA1y0URLJmmqffff1/XX3+9GjVqpFq1aqlVq1Z68MEHbd645k85OTkaOHCgNm/ebJ2799579c4777hco2XLljbtjIwMl6/97bffrOO4uDin9Q8ePKiSkhKXah84cEClpaVO6wMAAAAAgJrF58FSWlqahg8fbn0tX77cYf8zZ86of//+euCBB7R69WodP35c+fn52rt3r/7xj3+oe/fumj59uo9Gb9/Zs2d100036YcffrDOjRo1Sv/3f//n1tvv2rdvb9PevXu3S9fl5+fr0KFDVrtdu3ZO65eUlGjfvn0u1S+/rM9RfQAAAAAAULP4PFhasGCBli5dqqVLl+rzzz9Xly5dHPZPSEjQN998I9M0JUmGYVhfpmmquLhYzz77rP7+97/7YvgV5OXladiwYfruu++scyNGjNCCBQsUEODej7dTp0427XXr1rl03YYNG1RcXGy1O3bs6NX6a9eutWlXVh8AAAAAANQsPg+WvvjiC0nnAqLrr79ejRs3rrTvDz/8oMTERJsgqfxX+fNPPvmksrKyfPUxJJ3baf/WW2/VN998Y50bNmyYEhMTFRgY6Ha9uLg4tWnTxmqvWrXKCtQc+eqrr6xjwzA0ePBgu/0GDRpkM4Pqyy+/dGlc5eu3bduWpXAAAAAAAECSj4OlU6dOaceOHVa4UVkAUub8JW5du3bV8uXL9euvv+qTTz5Ru3btrODlzJkzmjlzZrWM256ioiLdfvvtVlAmnQtuPv74YwUHB3tc99Zbb7WOf/vtN6fhT3Fxsd5//32r3aNHj0rDuiZNmqh79+5WOykpyekm3r/++qtSUlLsjg8AAAAAANRsPg2Wtm3bZs02kqRu3bpV2jcnJ0fLly+3ZiQ1b95cq1ev1sCBA3XFFVfolltu0erVq9WkSROrz6JFi3zyOUpKSjR69GgtW7bMOte/f3998sknCgkJqVLthIQEmxrPPPOMioqKKu0/ffp0HTx40Go//vjjDuuX/35eXp5eeOEFh/3Hjx9vHYeGhiohIcFhfwAAAAAAUHP4NFg6f7PoK6+8stK+33zzjfLz8yWdW9715JNPqlatWjZ9GjZsqCeeeMIKqjIyMlzekNpTpmnqvvvu08cff2yd69evnz799FOFhYVVuX5sbKwefvhhq71lyxaNHj1aBQUFFfouWrRIL7/8stXu3LmzRo4c6bD+HXfcoc6dO1vtefPmacaMGRX6lZaW6oknntDKlSutcwkJCWrevLk7HwcAAAAAAFzCgnx5s6NHj1rHoaGhioiIqLTvmjVrJJ0LcgICAioNTIYOHapnn33Wam/ZskUtWrTwzoDtSElJ0YIFC2zO7dy50+0NrR298W3KlClKTk5WWlqaJOnjjz/W2rVrdddddykuLk7Z2dlavny59TOSpMjISGs/KkcMw1BiYqJ69uypU6dOyTRNTZgwQYmJiRo+fLiio6OVkZGhRYsWadeuXdZ1Xbp00ZQpU9z6jAAAAAAA4NLm02ApNzfXOq5Tp47Dvt9//72kc0FIx44dFR0dbbffFVdcoaCgIJWUlEiSzbKw6lB2n/K8fc+IiAgtW7ZMgwcP1pYtW6x7vPbaa3b7N2zYUElJSWrXrp1L9du1a6elS5fq9ttv17FjxyRJqampSk1Ntdv/qquu0rJlyxwGgQAAAAAAoObx6VK48m84KywsrLRffn6+fvzxR2v2TXx8fKV9AwICVLduXat2Tk6Ol0brXzExMdq4caNefPFFRUVF2e0THh6uMWPGaOvWrerTp49b9fv27auff/5ZY8aMUXh4uN0+UVFRevHFF7VhwwY1bdrU7c8AAAAAAAAubT6dsVS3bl3rOCcnR4WFhXY3u16/fr21YbVhGA6DJencfkBlIZS9GUXe1LdvX5uArDqFhIRo8uTJeumll5SSkqL09HRlZmYqMjJSl19+ufr06eN05pcjjRs31sKFC/XOO+8oOTlZ+/fv18mTJxUdHa24uDjFx8crKMinjwgAAAAAALiI+DQ1aNy4sXVsmqa2bdtms5F0mRUrVti0HQVLpmnq1KlTVvtSXK4VFBSkvn37qm/fvtVSv27duhoyZEi11AYAAAAAAJcuny6F69SpkyRZs4uWLl1aoY9pmvroo4+sPi1atFBMTEylNQ8dOmQzg6iyZWMAAAAAAADwLp8GS61bt7ZCItM09dZbbyk9Pd2mz7x585SRkSHpXAA1aNAghzV//PFHq54ktWzZ0sujBgAAAAAAgD0+30Bn9OjRev3112UYhk6ePKlu3bpp3LhxatmypTZt2qR//OMfMgxDpmnKMAyNHTvWYb1169ZZx4ZhuPxmNACAZ8ziCJUGON/fzSz239LkE6qrTPOsS/0AAAAAeM7nwdIzzzyj//u//1N2drYMw9CJEyf02muvWd8vC5QMw9D111+vbt26Oay3ZMkSK4hq27atzQbhAADvy8sY5+8hOHVn4Yv+HgIAAABQI/h0KZwkXXbZZfrggw8UHBws6ff9lsqWspWFRJdddpnmz5/vsNbWrVu1fft267rrrruuGkcOAAAAAACA8nweLEnSwIEDtWrVKrVp00amaVqhUtnxtddeq5SUFMXGxjqs8/bbb1vXSdLgwYOrd+AAAAAAAACw+HwpXJn4+Hht27ZNGzdu1ObNm3XixAlFRkaqe/fu6tKli9PrS0pKdObMGd18882Szs1Y6t+/f3UPGwAAAAAAAP+P34KlMtdee62uvfZat68LDAzUhx9+WA0jAgAAAAAAgCv8shQOAAAAAAAAFz+CJQAAAAAAAHiEYAkAAAAAAAAe8fseS+fLz8/X9u3bdeLECZ04cUKGYah+/fq67LLL1K5dO4WFhfl7iAAAAAAAANAFEixlZWVp3rx5Wr58udLS0lRcXGy3X3BwsDp37qwhQ4Zo3LhxatSokY9HCgAAAAAAgDJ+XQpXUFCgJ554QrGxsZo0aZI2bNigoqIimaZp96uwsFAbN27Uyy+/rObNm2v8+PEqKCjw50cAAAAAAACosfwWLKWnp6tr1656++23VVBQINM0ZRiG0y9JMk1TBQUFeuutt3TttdcqPT3dXx8DAAAAAACgxvJLsJSVlaX+/fvrl19+sQmUys9OCg0NVVRUlKKiohQaGmrzvfL9t27dqhtvvFFHjx71x0cBAAAAAACosfwSLN15553au3evTUAUFhamMWPG6LPPPtOhQ4eUm5urw4cP6/Dhw8rNzdWhQ4f02WefaezYsQoPD7cCJknas2eP/vznP/vjowAAAAAAANRYPg+W/vvf/2r16tU2M5SGDRumnTt3asGCBRoyZIgaN25c4brGjRtryJAh+uc//6mdO3fq5ptvtgmXvv32W33++ee+/jgAAAAAAAA1ls+DpenTp0uSFQolJCRo6dKliomJcblG06ZNtWTJEj388MM24dIbb7xRLWMGAAAAAABART4NlnJycrR27VorCOrcubNmz57tcb233npLV199taRzQdX333+vnJwcr4wVAFAJo8j1Lz8JVaHLXwAAAAA8F+TLm61du1bFxcWSJMMw9OyzzyogwPNsKzAwUM8++6zuvPNOSVJxcbHWrl2rG2+80SvjBQBUVKvl2woMzXLar6QgSrnpT/pgRBUtC3lBVwQcdNpvZ2mMBhRO88GIAAAAgEuTT2csHTp0yKY9aNCgKtcsq1E2C+r8ewAAAAAAAKB6+DRYOnr0qHVcp04d1alTp8o169Spo7p169q9BwAAAAAAAKqPT4Ol4OBg67ioyHt7bxQW/r5HRvl7AAAAAAAAoPr4NFhq1KiRdZyfn++VZWuHDx9Wfn6+3XsAAAAAAACg+vg0WGrRooWk3/dD+uSTT6pcs6yGaZo29wAAAAAAAED18mmw1L17d9WuXVvSuSBo6tSpOnXqlMf1Tp06pSlTplhBVe3atdWjRw+vjBUAAAAAAACO+XyPpRtvvFGmacowDGVmZmrYsGE6c+aM27XOnj2rW265RUeOHLHq3XjjjQoKCqqGkQMAAAAAAOB8Pg2WJGnixIkKCDh3W9M0lZKSoquvvlorV650ucYXX3yhLl26KDk52ZqtZBiGXnzxxWoZMwAAAAAAACry+fSeq666Sg888IDee+89GYYh0zS1Z88e3XTTTWrVqpWGDx+url27qmXLlqpbt64Mw9CpU6e0d+9ebdq0SUuWLNHu3butPZWkc6HSgw8+qI4dO/r64wAAAAAAANRYflk3Nnv2bO3Zs0dff/21NePINE3t3r1b06ZNc3htWaBU/robbrhBs2fPrt5BAwAAAAAAwIbPl8JJUlBQkJYuXarRo0fbBEVlM5gcfZ3fb8yYMfrkk08UGBjoj48CAAAAAABQY/klWJKkiIgILVy4UB999JGuvPJKKyiSfg+Zzv+SZPXr0KGDFi9erAULFigiIsJfHwMAAAAAAKDG8vsr1EaOHKmRI0fq22+/1fLly/X999/r559/1tmzZ236RUREqGPHjurdu7duuukm9e3b1z8DBgAAAAAAgKQLIFgq069fP/Xr189qFxYWKjs7W5JUv359hYSE+GtoAAAAAAAAsOOCCZbOFxISoujoaH8PAwAAAAAAAJXwSbCUn5+vtWvXKiMjQ8eOHZNhGGrYsKGaN2+uXr16KTQ01BfDAAAAAAAAgBdVa7D0448/atKkSVq5cqUKCwvt9gkNDdWgQYP00ksv6aqrrqrO4QAAAAAAAMCLqu2tcC+//LKuueYaffbZZyooKLDe5nb+V35+vpYuXaprrrlGr7zySnUNBwAAAAAAAF5WLTOWnnzySc2aNUumaUqSDMNw2L8sZPr//r//Tzk5OXrjjTeqY1gAAAAAAADwIq/PWFq+fLlmzpwp6VygVBYqVTZjqXw/0zQ1c+ZMrVy50tvDAgAAAAAAgJd5fcbS888/b9M2TVMtW7bU/fffr169eqlx48YyTVNHjhzR2rVr9Y9//EN79+61CZf++te/auDAgd4eGgAAAAAAALzIqzOW1q5dqy1btlgBkSQ9/fTT2rlzp55//nn17dtXbdu2Vbt27dSvXz+98MIL2rlzp55++mmrvyRt2bJF69at8+bQAAAAAAAA4GVeDZbKL2EzDEMPPfSQ/va3vykwMLDSawIDA/W3v/1NDz30kE24xHI4AAAuPA0iQlRcWurvYdi40MYDAABQk3h1KdyGDRsknVv+VqdOHf3v//6vy9e+9tprSkxM1NmzZ21qAQCAC0ftsCAFBQTowQWbtO/YWX8PRy0aRmj+2K7+HgYAAECN5dVgadeuXZLOzVa64YYbFBkZ6fK1kZGR6t+/v5YsWWJTCwAAXHj2HTurXVln/D0MAAAA+JlXl8KdPHnSegvc1Vdf7fb15a85efKkt4YFAAAAAACAauDVYOn06dPW8WWXXeb29eWvKV8LAAAAAAAAFx6vBkslJSXWcVCQ+6vsym/yXb4WAAAAAAAALjxeDZYAAAAAAABQcxAsAQAAAAAAwCMESwAAAAAAAPAIwRIAAAAAAAA84v4O2y6aMWOGPvroI7euOXTokE37T3/6k1vXG4ahr7/+2q1rAAAAvCU0NFSSZy8xAQAAuBhVy//qMU1Tu3bt0q5du6pUY82aNW71NwzD4/sBAICLT4OIEBWXlioo4MKYhN26dWtJUlExb7cFAAA1Q7UES1UJeAiHAACAq2qHBSkoIEAPLtikfcfO+ns4kqQWDSM0f2xXfw8DAADAJ7weLJmm6e2SAAAADu07dla7ss74exgAAAA1jleDpbvvvtub5QAAAAAAAHAB82qw9P7773uzHAAAAAAAAC5gvLIEAOCWwmN9ZQTmOu1nltTywWjsm1s8TJGG82VRJ83aPhgNAAAAcOkiWAIAuKX4dBd/D8GpJaXX+XsIAAAAQI1wYbybFwAAAAAAABcdgiUAAAAAAAB4hGAJAAAAAAAAHmGPpQtcSUmJUlJSlJ6erszMTNWvX1/NmjVTnz59VLt21TedzcnJUXJysg4cOKDs7GxFR0crLi5O8fHxCgwM9MInAAAAAAAAlyqCJQ+VlpZq+/bt2rRpk/X1008/KS8vz+rz7bffqm/fvh7VLyws1NSpUzVv3jxlZmZW+H6tWrU0YsQITZs2TVFRUW7Xz8zM1NNPP62kpCSbMZeJjo5WQkKCXnjhBQUHB3v0GQAAAAAAwKWNYMkDt912m7744gudPXu2WuofPnxYN910k9LS0irtk5ubqwULFmjlypVKSkrSdde5/gak5ORkjRgxQkePHq20T2ZmpiZNmqTPPvtMn3/+uZo0aeLWZwAAAAAAAJc+giUPpKamVluolJubq6FDh9qESjExMRozZoxatWql48ePa8WKFUpOTpYkZWVl6eabb9a6devUpk0bp/V37NihW265RdnZ2da5Ll26aPjw4YqOjlZGRoYWLVqk3bt3S5LS0tI0bNgwrVmzRrVq1fLypwUAAAAAABczgqUqCg0NVadOnXTNNdfozJkz+uCDD6pUb+LEiUpNTbXaI0aM0AcffKDQ0FDr3HPPPafExETdc889KioqUnZ2tkaNGqVNmzbJMIxKa5umqVGjRlmhkmEYmjZtmiZMmGDT75VXXtH48eP11ltvSZI2bdqkiRMnasaMGVX6bAAAAAAA4NLCW+E8MHbsWL333ntKTU1VTk6ONmzYoLlz5+r666+vUt2MjAzNmTPHanfq1EmJiYk2oVKZUaNGafLkyVZ78+bNSkpKclh/8eLF2rx5s9UeN25chVBJkgICAjRr1iwNHDjQOjdnzhzt37/frc8DAAAAAAAubQRLHpg8ebIefPBBdenSxasbW8+dO1cFBQVW+/XXX3dY/6mnnlJMTIzVnjlzpsP65b8fHh6uqVOnOuz/5ptvWscFBQWaN2+ew/4AAAAAAKBmIVi6gCxZssQ6jo2N1YABAxz2DwoK0r333mu1161bpyNHjtjte/jwYa1fv95qjxgxQvXr13dYv23btoqPj7c7PgAAAAAAAIKlC0R6erp27NhhtW+44QaH+yWV6d+/v3VsmqZWrFhht9+KFStkmqbVdhZa2au/fft27d2716XrAAAAAADApY9g6QKxZcsWm3bPnj1duq5bt24KCvp9D/bz61S1fq9evRzWAQAAAAAANRfB0gVi27ZtNu1WrVq5dF1YWJiaNm1qtbdv3+60fmBgoFq0aOFS/fPHUVl9AAAAAABQ8xAsXSDOX2IWGxvr8rXl+6anpzutHxMTo8DAQJdqN2vWTAEBvz8mldUHAAAAAAA1T5DzLvCF06dP27SdbaxdXmRkpHWck5PjtL47tYODgxUREWHVraw+gJojuP46GYFnnPYzS2qrKNu1Zbfedlfgl2pgnHba77hZVwtLXNtzDgAAAEBFBEsXiDNnbP9PWlhYmMvXhoeHV1rH3nl3apfVLwuUKqvvSFZWlrKysty+zlUFBQXWP7du3Vpt9/Gn0NBQtW7d2t/DACSdC5YCQ53/mS4piPJjsPSVrgg46LTfztIYgiVUm127dll/RwH21IT/DQPv4XmBO3he4IoOHTp4pQ7B0gUiPz/fph0SEuLytaGhodZxXl6e0/ru1Ha1viNFRUUVPl91ME3TJ/cBAMAVBQUF/L0El/C/YeAOnhe4g+cFvkCwdIE4fxZRYWGhyzOLyv/X0PKzl86vn5uba9V2hyv1HQkODnZ7lpQ7CgoKZJqm/v/27jw8qvLu//hnkpCdECALEDEQ9h1BBSwSREGhLoCiVbGtxQWsglqXuiD2obTi2p+iVrBiVRYVcXsUBSoCAgqmCISgQiDsSQgkZCfLnN8fXsyTk8wkM5PMZDLzfl1XLnKf3NtMvhPOfOfc97FYLKYkmD/x18cFAP6Mv91oSCCcw6DpEC9wBfECbyKx5COio6NN5fLycqeTMTWvIqrdT83jZxNLrmasnem/PgkJCUpISHC5nbPS09NVXl6usLCwJruUDwCAxmIJMxrCOQxcQbzAFcQLvIm7wvmImJgYUzk/P9/ptgUFBbbvW7du3WD/rvRdWVmpkpKSBvsHAAAAAACBh8SSj+jataupfOjQIafbHjx40PZ9SkpKg/0fPXpU1dXVTvV95MgRWa3WBvsHAAAAAACBh8SSj+jbt6+pvG/fPqfalZeX69ixY7Zynz59Guy/urpaWVlZTvWfmZlpKjvqHwAAAAAABB4SSz5i4MCBpvKWLVucard161ZVVVXZygMGDGjS/jdv3mwqO+ofAAAAAAAEHhJLPiIlJUW9evWyldeuXSvDMBpst2bNGtv3FotFEyZMsFtv/PjxslgstvLq1audmlfN/nv37s1SOAAAAAAAYENiyYdMmjTJ9v3BgwcbTP5UVVVp8eLFtvLw4cPVoUMHu3U7duyoYcOG2corVqxocBPvH3/8Ud98843d+QEAAAAAAJBY8iHTp09XaGiorfzQQw+psrLSYf1nn31WR48etZVnzZpVb/81f15WVqbHHnus3vr33Xef7fuwsDBNnz693voAAAAAACCwkFjyIcnJyZoxY4atvHPnTt188806c+ZMnbrLli3TnDlzbOXBgwfr+uuvr7f/G264QYMHD7aV//nPf+r555+vU89qteree+/VF198YTs2ffp0nXvuua48HAAAAAAA4OdCmnsCLdHKlSv10EMP1TleVFRkKt98882KiIioU2/JkiWmZWk1zZs3Txs2bND27dslSe+//742b96sW265RSkpKcrPz9fnn3+u9evX29rExsZq6dKlpj2U7LFYLFq6dKlGjBih06dPyzAM/elPf9LSpUs1efJkJSYm6tChQ1q2bJn27t1razdkyBDNmzev3r4BAAAAAEDgIbHkhsLCQmVmZjZY79ixY3aPl5WVOWwTFRWlTz/9VBMmTNDOnTslSUePHtVTTz1lt35cXJxWrFihPn36ODFzqU+fPvroo480ZcoU5eXlSZLS0tKUlpZmt/6gQYP06aefKioqyqn+AQAAAABA4GApnA9KSkrStm3bNHv2bCUkJNitExERoalTpyo9PV2pqaku9T969Gjt2rVLU6dOtXtFlSQlJCRo9uzZ2rp1qzp16uTyYwAAAAAAAP6PK5bc8Pvf/16///3vPTpGaGio/ud//kdPPPGEvvnmG+3fv185OTmKjY1V586dlZqaqtatW7vdf4cOHfT222/r5Zdf1oYNG3T48GEVFBQoMTFRKSkpGjlypEJCCA8AAAAAAOAYmQMfFxISotGjR2v06NEe6T8mJkZXXnmlR/oGAAAAAAD+jaVwAAAAAAAAcAuJJQAAAAAAALiFxBIAAAAAAADcQmIJAAAAAAAAbiGxBAAAAAAAALeQWAIAAAAAAIBbSCwBAAAAAADALSSWAAAAAAAA4BYSSwAAAAAAAHALiSUAAAAAAAC4hcQSAAAAAAAA3EJiCQAAAAAAAG4hsQQAAAAAAAC3kFgCAAAAAACAW0gsAQAAAAAAwC0klgAAAAAAAOAWEksAAAAAAABwC4klAAAAAAAAuIXEEgAAAAAAANxCYgkAAMDPVVmtzT2FOnxxTgAAwHUhzT0BAAAAeFZIUJBuf+t7ZeWVNPdUJEld4qK06LfnN/c0AABAEyCxBABwjREiw+rEfx9G8/0XU6FWKjdaOVUPCBRZeSXam1vc3NMAAAB+hsQSAMAlpQdmNvcUGnRlxd+aewoAAABAQGCPJQAAAAAAALiFxBIAAEATah8VysbUAAAgYLAUDgAAoAlFh4f41GbZF3Vrr79c07+5pwEAAPwUiSUAAAAP8JXNspPbRzb3FAAAgB9jKRwAAAAAAADcQmIJAAAAAAAAbiGxBAAAAAAAALeQWAIAAAAAAIBbSCwBAAAAAADALSSWAAeqrNbmngIAAAAAAD4tpLknAPiqkKAg3f7W98rKK2nuqeiibu31l2v6N/c0AAAAAAAwIbEE1CMrr0R7c4ubexpKbh/Z3FMAAAAAAKAOlsIBAAAAAADALSSWAAAAAAAA4BYSSwAAAAAAAHALiSUAAAAAAAC4hc27AQAuiez6ooJCcxusZ61IUOmBmV6YUV3/G/qouluONlhvn5GkKyv+5oUZAQAAAP6JxBIAwDWWKlmCqpyq11xCValwS2XD9YyG6wAAAABwjKVwAAAAAAAAcAuJJQAAAAAAALiFxBIAAAAAAADcQmIJAAAAAAAAbiGxBAAAAAAAALeQWAIAAAAAAIBbSCwBAAAAAADALSSWAAAAAAAA4BYSSwAAAAAAAHALiSUAAAAAAAC4hcQSAAAAAAAA3EJiCQAAAAAAAG4hsQQAAAAAAAC3kFgCAAAAAACAW0gsAQAAAAAAwC0hzT0BAAAAIBCFhYWZ/gUAoCUisQQAAICAV2W1KiTIuxfz9+jRo96fN8ecAABwFYklAAAABLyQoCDd/tb3ysorae6pSJK6xEVp0W/Pb+5pAADQIBJLAAAA8Kr2UaE+eTVOVl6J9uYWN/c0AABoUUgsAQAAwKuiw0N86gqhi7q111+u6d/c0wAAoEUisQQAAIBm4StXCCW3j2zuKQAA0GL51vXHAAAAAAAAaDFILAEAAAAAAMAtLIWDJGnnzp1KT0/X0aNHFRYWpqSkJA0bNkznnHNOc08NAAAAAAD4KBJLAW7ZsmX661//qoyMjDo/CwoK0ujRo/XMM89oyJAhzTA7AAAAAADgy1gKF6Cqqqo0depU3XTTTXaTSpJktVr11Vdfafjw4VqwYIGXZwgAAAAAAHwdVywFqJkzZ2rJkiW2cmRkpG6++WYNHjxYFRUV+u677/TBBx+osrJSlZWVmjlzpuLj43XDDTc046wBAAACQ/uoUFVZrQoJ8p3PgX1tPgAA30BiKQB98sknevXVV23lvn376osvvlDnzp1N9Xbs2KEJEybo2LFjMgxDf/jDH5SamqoOHTp4e8oAAAABJTo8RCFBQbr9re+VlVfS3NNRl7goLfrt+c09DQCADyKxFGCsVqsee+wxWzkyMlKffvppnaSSJA0aNEjvv/++Lr74YlmtVpWWlmru3Ll6+eWXvTllAACAgJWVV6K9ucXNPQ0AABziWtYAs2bNGqWnp9vKM2fOVEpKisP6F110kaZMmWIr/+tf/1JRUZFH5wgAAAA4o8pqbe4pmPjafADAG7hiKcB8+OGHpvJtt93WYJvbb79d7777riTpzJkzWrVqla6//nqPzA8AAABwFssFAaD5kVgKMJ9//rnt+27duqlbt24Ntrn44osVHh6u8vJySdJnn31GYgkAAAA+IVCWC4aFhZn+bal8bRN4X5sP0BKRWAogBQUFOnz4sK08YsQIp9qFhoZq6NCh2rRpkyRp586dHpkfAAAAfJMv3qXO13j6OerRo4fLbXzxd8ZVZoD/IbEUQDIyMkxlZ65Wqln3bGLpp59+ktVqVZCP/ScFAAAAz/C1u9RJ0kXd2usv1/Rv7mnY+NpzNKhzrJ66dkBzT8OuQLnKDAgUJJYCyIEDB0zl5ORkp9vWrFtWVqbs7Gx16tSpyeYGAAAA3+dLCYHk9pHNPQW7fOU5Sm4f6VOJLsn3koEAmgaJpQBSWFhoKrdt29bptrGxsaYyd4YDAAAAfJ+vJLok30sG+uoSz6aYk7/syeWIr/3efG0+3kZiKYAUF5v/QwkPD3e6bURERL191Sc3N1e5ublO13fVmTNnbP+mp6c3SZ9hYWHq0aOHusRFNUl/jZUU+8vz7yvzkXxvTr42H8n35tRU88kLDlKVE/XCgoOUlBDtlTnVFlocJDlxx+fQkCD1iP2/Ofra70zyvTkxn4b52px8bT6S783J1+Yj+d6cfG0+ku/Nifk0zNfm1KtDa4UEBemvn2XoeEF5c09HktQjMVp3j+ne+H7c2JPLkapqq0KCfStp4ku/t46x4Xr81321d+9e23vTlqJ//6a5gtBiGIbRJD3B582dO1dPPPGErfyf//xHY8aMcartG2+8oWnTptnKGzdu1MiRI5t8jgAAAAAAoOXwrbQjPKr2FUoVFRVOt62dea19BRMAAAAAAAg8JJYCSHS0eUlKebnzlw2WlZXV2xcAAAAAAAg8JJYCSExMjKmcn5/vdNuCggJTuXXr1k0xJQAAAAAA0IKRWAogXbt2NZUPHTrkdNuDBw/avo+IiFCHDh2abF4AAAAAAKBlIrEUQPr27Wsq79u3z+m2mZmZtu979eqloAC+lSIAAAAAAPgF2YEAEhsbq86dO9vKW7ZscapdRUWF0tLSbOUBAwY0+dwAAAAAAEDLQ2IpwEyYMMH2fWZmpvbv399gm40bN5o2+v71r3/tkbkBAAAAAICWhcRSgJk0aZKpvGjRogbb1KwTGhpqSk4BAAAAAIDAZTEMw2juScB7rFarBgwYoIyMDElSVFSUdu3aVWdj77O2bNmikSNHymq1SpKmT5+uV1991Wvztae6ulrffPON9u/fr5ycHLVt21bnnHOOUlNTFR0d3ej+i4qKtGHDBh05ckT5+flKTExUSkqKRo4cqeDg4CZ4BPCWM2fOKCMjQxkZGcrJyVFZWZnatGmjjh076sILLzQtDW0MYgauIF78U35+vjZv3qzjx4/rxIkTatOmjRITE9W5c2cNGjRIYWFhbvVLvPiXzMxMpaWlKTs7W0VFRYqMjFR8fLwGDx6svn37NnoPS+LFuwzD0N69e7V7924dPnxYRUVFioqKUvv27TVkyBD16dOn0b9Tznv9hyfjhXNeNDsDAefDDz80JNm++vXrZxw6dKhOvR07dhhJSUm2ehEREcbRo0cd9ltdXW2kp6cbb775pnH33Xcbw4cPNyIiIkxjrVu3zu15nzlzxpgzZ46RmJho6vPsV2RkpPHb3/7WyMnJcav/7Oxs45Zbbqkz57NfiYmJxpw5c4yKigq3HwPMPBEzR44cMV544QVj7NixDn+XZ7/69+9vLFy40KiqqnJr/sSMd3n6b4wjCxYsqPO7nTNnjsv9EC/e5a14Wbt2rTFu3DgjJCTE4d+a0NBQ47LLLjN27drldL/Ei3d5Ml6qqqqMl156yejVq1e9/yd16tTJeOKJJ4zi4mKXxyBevKewsNB45513jOuvv96Ii4ur93eamJhoPP7440Z+fr7L43De6x88GS+c88KXkFgKULfffrvpj0FUVJRxxx13GK+88orx//7f/zNuvPFGo1WrVqY6S5Yscdjf5MmTjaioqHr/oDXmpOzYsWPGeeed12D/koyEhARjw4YNLvW/fv16Iz4+3qn+zzvvPOPYsWNuPQ78H0/EzJdffmlYLBanfo81v0aMGGEcPnzYpfkTM97l6b8xjhw+fNho3bp1nXFcTSwRL97ljXgpKioybr75Zpf+1rz//vtO9U28eJcn4yUnJ8e44IILXIqTLl26GLt373Z6DOLFewoLC43w8HCXzzOSkpKM9evXOz0O573+wZPxwjkvfE2IEJBeeeUVFRUVafny5ZKkkpISLVy40G7dkJAQPfvss7rpppsc9peWlqaSkhKPzLW0tFRXXXWVtm/fbjuWlJSkqVOnqlu3bjp58qRWrVqlDRs2SJJyc3N1zTXXaMuWLerVq1eD/f/000+aOHGi8vPzbceGDBmiyZMnKzExUYcOHdKyZcu0b98+SdL27dt19dVXa/369YqMjGziRxs4PBEzpaWlMmqs7g0ODtaQIUM0cuRInXvuuWrTpo3y8vK0ceNGff7556qurpb0y5LPMWPGaNOmTYqPj29wHGLG+zz5N6Y+M2bMUFFRUaP6IF68z9PxUlxcrCuuuEKbNm2yHYuKitLll1+u888/XwkJCaqoqNCRI0f0/fffa8OGDaabYNSHePE+T8VLRUWFxo4dq507d9qOhYeHa+LEibrwwgvVtm1bFRYW6r///a9Wrlxp+1uTlZWlMWPGaOfOnUpISKh3DOLFu6qrq+u8lnv27KlRo0apR48eiouLU0lJibZv364PPvhAhYWFkqSjR49q/PjxWrNmjS666KJ6x+C81394Ml4454XPae7MFprXO++8Y/Tp08duxtlisRijR482tm3b1mA/ycnJtnZhYWHGBRdcYEyfPt2YOnVqoz/tu++++0x9XHfddUZ5eXmdekuWLDFdZTVkyBDDarXW27fVajWGDBlieszPPvtsnXrV1dXGzJkzTfO47777XH4s+D+eiJmzyzy7detmPP3000Z2drbDurt37zb69u1rGuvmm29ucAxipnl48m+MI8uWLbP1W/vvpLNXLBEvzcOT8WK1Wo1x48aZ+rnjjjuMU6dOOWxTUlJiLF682Pjuu+8a7Jt48T5Pxcv8+fNN7QcPHmxkZWXZrZubm2uMGTPGVH/atGn19k+8eF9+fr4hyWjTpo1x//3313tl2alTp4xJkyaZnvdu3brZPYetifNe/+HJeOGcF76GxBIMwzCM7du3G2+//bbx9NNPGy+88ILx3nvvuXSZ5OzZs42FCxcaaWlpprW1ixcvbtRJ2cGDB42wsDBb+4EDB9a7dvfvf/+7abz33nuv3v6XL19uqj99+vR6619xxRWmk097e1PBOZ6ImU2bNhkLFy40Kisrnap/7NixOpf2OjrpP4uYaR6e+hvjSF5enpGQkGBIMsLDw401a9a4lVgiXpqHJ+PltddeM/Uxd+7cJps38dI8PBUvNd/IRUZGGkeOHKm3fmFhodGxY0dbm9atW9ebhCBevK+oqMh45JFH6k0k11RZWWmkpqaafk9vvvmmw/qc9/oXT8YL57zwNSSW4FGNPSn785//bGr/xRdf1Fu/srLStOH4RRddVG/94cOH2+pGREQ0+Id/z549pvk8+uijLj0eNMxTiQJHap+Uvfzyy/XWJ2Z8i6fi5ZZbbrH1+de//tU4cOCAW4kl4sW3NDZeTp8+bbRp08bW/tJLL23S+REvvqUx8VJWVmZqO2XKFKfaPfDAA6Z2GRkZDusSLy3Dli1bnI4FznvhSry4inNeeFLj7n8JeNiHH35o+z45OVnjxo2rt35ISIhuvfVWW3nLli3Kzs62W/f48eP67rvvbOXrrrtObdu2rbf/3r17a+TIkXbnh5bp0ksvNZUzMzMd1iVmAsPq1av19ttvS5L69u2rhx56yK1+iBf/8/bbb+v06dO28jPPPNNkfRMv/uXkyZOmcvfu3Z1qV7tezX1NaiJeWo5hw4YpKirKVq7vPIPzXrgSL67inBeeRGIJPmv//v366aefbOXLLrtMFoulwXZjx461fW8YhlatWmW33qpVq0yb3jX0n7e9/vfs2aMDBw441Q6+KTo62lSubwNXYsb/lZSU6M4775QkWSwWvfbaa2rVqpVbfREv/mfRokW274cMGaLzzjuvyfomXvxLbGys6ZzF2c3Ba9dztHk38dJyWCwWU6LAUSxw3gvJ+XhxB+e88CQSS/BZNe+iIkkjRoxwqt2FF16okJD/u+Fh7X4a23/tuzM46h8tQ+3/8Dp06OCwLjHj/x5//HFlZWVJkm677TbTJ2+uIl78S15ennbs2GErT5gwoUn7J178S1RUlAYOHGgrr1u3zql2X331le37Tp06qVu3bnbrES8tR0lJiU6cOGErOzrP4LwXkvPx4g7OeeFJJJbgszIyMkxlRydXtYWHh6tTp0628p49exrsPzg4WF26dHGq/9rzcNQ/WoaVK1eayvX9x0nM+LetW7fqxRdflCQlJiZq/vz5jeqPePEvNZcESNLw4cMl/XKr76efflrDhw9XYmKi7f+g1NRUzZ07V0eOHHGqf+LF//zxj3+0fb9r1y699tpr9db/7LPP9Nlnn9nKDzzwgMMrVoiXluPDDz80Xfnh6DyD815IzseLOzjnhSeRWILPqp1VT05Odrptzbr79+9vsP+kpCQFBwc71fc555yjoKD/e+k46h++7+jRo1q2bJmtHBcXp0suucRhfWLGf1VWVmratGmyWq2SpBdeeKHBvQQaQrz4lx9++MFU7tWrl5YuXapevXrp4Ycf1nfffafc3FydOXNGx48f14YNG/TEE0+oe/fuevzxx22x5Qjx4n9uu+02XXnllbbyXXfdpXvuuUd79+411Tt06JAef/xxTZo0yXbsqquu0qxZsxz2Tby0DFarVc8//7zp2PXXX2+3Lue9cCVeXMU5LzyNxBJ8VmFhoansypu82NhY2/dFRUUN9u9K361atTKtfXbUP3zfnXfeqdLSUlv5kUceUWhoqMP6xIz/euqpp5Seni7pl30Ebrzxxkb3Sbz4l5pLE6Rf9p+4+eabVVBQIEkKCgpSYmKiEhMTTSfVZ86c0bx583TttdfWm1wiXvyPxWLRihUrdM899yg4OFhWq1ULFixQz5491bZtW3Xt2lXt27dXcnKy5s2bp8rKSkVGRurxxx/XBx98YIqj2oiXluG5557T9u3bbeWrrrrK4d5snPfClXhxFee88DQSS/BZxcXFpnJ4eLjTbSMiIhz2Y++4K3072z982/z5801LDoYOHaqZM2fW24aY8U979uzRvHnzJP3ye3r11VebpF/ixb+cTSBJvyQM7r//fkm/7KUzf/585eTkKDs7W9nZ2crJydHTTz9tOrn+6KOP9OSTTzrsn3jxT2FhYXrxxReVnp6uUaNG2Y4XFBQoKytLp06dsh3r27ev1q5dq7lz5zZ40wDixfd98803euyxx2zlmJgYvfTSSw7rc94b2FyNF1dwzgtvILEEn1VeXm4q15dVry0sLMz2fVlZWYP9u9K3s/3Dd3388cd69NFHbeWYmBgtW7bMtPmlPcSM/zEMQ7fffrvOnDkjSXriiSeUkpLSJH0TL/6l5smxYRiqqqpSeHi41qxZo4ceekhxcXG2n8fFxenBBx/UmjVrTCfkTz31lA4fPmy3f+LFP1mtVr3wwgsaNWqUNmzYUG/djIwM/epXv9KUKVOUm5tbb13ixbft379fkydPVmVlpe3YwoUL613exnlv4HInXpzFOS+8hcQSfFbt7HhFRYXTbc++SZTMWXNH/bvSt7P9wzdt2LBBN954o21JSmhoqFasWKEePXo02JaY8T+vvPKKNm3aJEkaMGCA/vSnPzVZ38SLf7H3ie1jjz1W7+anI0aMMH0CXVlZ6fCKOOLF/5SXl+vKK6/U/fffb1tKedlll+mjjz7S8ePHVVFRofz8fK1fv1633367goODZRiGVqxYoQsuuEAHDx502Dfx4ruOHz+ucePGmZbP/uUvf9ENN9xQbzvOewOTu/HiDM554U0kluCzoqOjTeXan+TUp2Z2vHY/9o670rez/cP3bNu2TVdeeaXt9xcSEqLly5dr7NixTrUnZvzL4cOH9cgjj0j6ZWnTa6+91uDyE1cQL/6ldevWpnJISIjuuuuuBtv98Y9/NMXV2rVr7dYjXvzPrFmztGrVKlv5b3/7m9asWaNrrrlGHTp0UKtWrRQbG6tRo0Zp4cKFWr16te3N3KFDh3T99derurrabt/Ei286efKkxo4dq8zMTNux+++/X0888USDbTnvDTyNiZeGcM4LbyOxBJ8VExNjKufn5zvdtuZeGLXfDNjr35W+KysrVVJS0mD/8C07duzQ5ZdfbttEMCgoSG+99ZbpLjwNIWb8y4wZM2zxMH369Ca9pa9EvPib2v8nDRgwQO3atWuwXdu2bTVo0CBbefv27aZbSdvrn3hp+fbs2aNFixbZyldffbUtke3ImDFj9Le//c1W3rp1qz766CO7dYkX33P69GmNGzdOu3fvth2bMWOGnnvuOafac94bWBobL/XhnBfNgcQSfFbXrl1N5UOHDjndtubl4472S6nZ/9GjRx1+KljbkSNHTHf2aar9WOA5GRkZGjt2rO0/RovFotdff93lO38RM/7jk08+sW1k2aFDB/39739v8jGIF/9S+/dw7rnnOt22Zt2qqirTm8CziBf/snz5clMC8Z577nGq3R133GHaz2TlypV26xEvvqWoqEhXXHGF/vvf/9qO3XrrrXr55Zed7oPz3sDRFPHiCOe8aC4kluCz+vbtayrv27fPqXbl5eU6duyYrdynT58G+6+urlZWVpZT/de8XLW+/uEbfv75Z1166aWmtesvv/yybr31Vpf7Imb8x/79+23fl5aWaujQoerevbvDr9GjR5vav/jii6afv/nmm3XGIF78S79+/UzlmpuTNqT23in2lhUQL/5l586dpvLQoUOdahcVFaXevXvbyjWvZqiJePEdJSUl+vWvf61vv/3Wduymm27S66+/LovF4nQ/nPcGhqaKF3s450VzIrEEnzVw4EBTecuWLU6127p1q6qqqmzlAQMGNGn/mzdvNpUd9Y/mt3//fo0ZM0bZ2dm2Y//4xz80Y8YMt/ojZvxTYWGhMjMz6/2qvYlufn6+6ef2rkAhXvzLgAEDFBwcbCu7sjTg5MmTpnL79u3r1CFe/EvNpSCSa/uMREVF2b53dEcl4sU3lJWV6eqrr9bGjRttx6677jq99dZbCgpy7W0W573+rynjpTbOedHcSCzBZ6WkpKhXr1628tq1a+3uS1HbmjVrbN9bLBZNmDDBbr3x48ebPhlYvXq1U/Oq2X/v3r25xNNHHTp0SGPGjNHRo0dtx+bPn69Zs2a53ScxA1cQL/6lTZs2uvjii23lHTt2ON22Zt1OnTrZvXUz8eJf2rZtayofP37c6bY169pLQkrEiy84c+aMJk2apK+++sp27Oqrr9bSpUtNSWhncd7r35o6XmrinBe+gMQSfFrNTeYOHjzY4B+1qqoqLV682FYePny4OnToYLdux44dNWzYMFt5xYoVDX4C/eOPP+qbb76xOz/4jmPHjmnMmDGmq0zmzp2rhx56qFH9EjP+495775VhGE5/HThwwNR+zpw5pp/fe++9dcYgXvzPddddZ/s+NzdXX3/9dYNt1q9fb/oEecyYMXbrES/+pXv37qays2/Kfv75Z9OSk549e9qtR7w0r8rKSk2ZMkVffvml7dj48eP1/vvvN+ruopz3+idPxYvEOS98iAF40OLFiw1Jtq9169a51D4rK8sIDQ21tR84cKBRUVHhsP7f//5303jLly+vt/9ly5aZ6s+YMaPe+ldccYWtblhYmHHw4EGXHg8a1tiYycnJMXr37m3qY/bs2U02P2LGtzQ2Xpx14MAB0zhz5sxxqh3x4lsaGy+FhYVGfHy8rf2wYcOMqqoqh/WrqqqMYcOGmcZcs2aNw/rEi29pTLysX7/e1DYlJcU4ffp0g+0mTpxoardkyRKHdYmX5lFVVWVMmTLF9NyPHTvWKCsra3TfnPf6H0/GC+e88CUkluBRTfGmb9asWaY+pkyZYpSXl9ept3TpUtN/xoMHDzasVmu9fVutVmPw4MG2NhaLxXjuuefq1Kuurq4zj1mzZrn8WNCwxsTMqVOnjIEDB5raP/zww006P2LGt/h6Yol48S1NES8LFiyo839SYWFhnXpFRUV13kykpqbW2zfx4lsaEy9Wq9U4//zzTe1HjBhhHDp0yG79kpISY9q0aab6ycnJxpkzZ+odg3jxLqvVavz2t781PZeXXHKJUVpa2mRjcN7rPzwZL5zzwtdYDMOJxbtAA1auXGn3ksuioiLl5ubayp06dVJERESdekuWLDFdbllTSUmJLr74Ym3fvt12LCkpSbfccotSUlKUn5+vzz//XOvXr7f9PDY2Vps3b3bqTgR79uzRiBEjdPr0aduxoUOHavLkyUpMTNShQ4e0bNky7d271/bzIUOGaMOGDaYNNuEaT8TM3Llz9cQTT9jKFovF5bXdw4YN05IlS+qtQ8x4nyf/xjgjKyvLdOvdOXPm6Mknn3SqLfHifZ6MF6vVqhtuuEErVqywHUtMTNQNN9xgu4tORkaG3n33XeXk5JjqpKWlKSkpqd65Ey/e56l4SUtLU2pqqmkj79DQUF199dUaPny42rdvr5KSEu3cuVMffPCBaZP3kJAQffbZZxo3bly9cydevGvjxo0aNWqU6VhSUlKdOz82pL47vnHe6z88GS+c88LnNHdmC/6h9qd6rn419CngkSNH6mTlHX3FxcUZX3/9tUvzX7dunREXF+dU/4MGDTKOHj3aiGcLhuGZmJkzZ06j+pQTVxScRcx4l6f/xjTE3SuWziJevMvT8VJeXm5MmjTJ6f569epl/PTTT07Pn3jxLk/Gy1dffWUkJia61F9MTIyxYsUKp+dPvHjPunXrGn2eITX89ovzXv/gyXjhnBe+hs270SIkJSVp27Ztmj17thISEuzWiYiI0NSpU5Wenq7U1FSX+h89erR27dqlqVOn2v00UpISEhI0e/Zsbd26VZ06dXL5McC/EDNwBfHiX8LCwrRy5Uq988476t+/v8N68fHxmjt3rr7//nuHmzDbQ7z4j0suuUTp6el6+OGHHZ6/nBUTE6M//vGP2rVrl6699lqnxyBe/A/nvfAlxAucwVI4tDhVVVX65ptvtH//fuXk5Cg2NladO3dWamqqWrdu3ej+CwsLtWHDBh0+fFgFBQVKTExUSkqKRo4cqZCQkCZ4BPA3xAxcQbz4n4yMDO3YsUPHjh1TdXW14uLiNGDAAA0dOlRBQY37DI948R9Wq1UZGRn64YcflJeXp+LiYkVGRqpdu3YaOHCgBg4c2OjfKfHifzjvhS8hXuAIiSUAAAAAAAC4haVwAAAAAAAAcAuJJQAAAAAAALiFxBIAAAAAAADcQmIJAAAAAAAAbiGxBAAAAAAAALeQWAIAAAAAAIBbSCwBAAAAAADALSSWAAAAAAAA4BYSSwAAAAAAAHALiSUAAAAAAAC4hcQSAAAAAAAA3EJiCQAAAAAAAG4hsQQAAAAAAAC3kFgCAAAAAACAW0gsAQAAAAAAwC0klgAAAAAAAOAWEksAAAAAAABwC4klAAAAAAAAuIXEEgAAAAAAANwS0twTAADA1xQXFystLU0HDhxQQUGBiouLFR4erqioKHXs2FFdunRRjx49FBUV1dxTDTijR4/W+vXrbeV169Zp9OjRzTehAOOLz3+XLl108OBBW/nAgQPq0qVL800IAIAAQ2IJAABJJSUlWrZsmRYtWqTvv/9eVqu13vpBQUHq3bu3LrzwQo0dO1bjxo1TXFycl2YLAPCEhx9+WE8//XSd49dee61WrFjhcn/Z2dnq2LGj6VhaWpqGDBni9hwBwNeQWAIABLwvvvhCd9xxhw4fPux0G6vVqoyMDGVkZOjNN99UUFCQSktLFRYW5sGZAgA8afv27XaPf/HFFyorK1NERIRL/f33v/81lVu1aqV+/fq5PT8A8EXssQQACGgLFizQ+PHjHSaVgoODFRsbq5iYmHr7sVqtMgzDE1MEAHiJo8RSSUmJVq9e7XJ/tRNLffv25QMIAH6HxBIAIGCtWLFCM2fOrHN8zJgx+ve//619+/apsrJS+fn5On36tCorK5WZmanly5frnnvuUVJSUjPMGgDgCYcPH1ZeXp7Dn69cudLlPmsnqlgCB8AfWQw+XgUABKDi4mL16tVLx44dsx2LjIzU22+/rcmTJzvVh2EY2rRpkxYsWKAPPvhARUVFCg8P99SUAdjB5t1oKp988omuueYaWzksLEyGYaiiokKS1LZtW+Xm5iokxPndRLp27aqsrCxb+cUXX9Q999zTZHMGAF/AFUsAgIC0dOlSU1JJkv797387nVSSJIvFopEjR2r58uU6cOCAQkNDm3qaAAAvqb1sbcCAAbr00ktt5fz8fH399ddO91dQUGBKKknSeeed15gpAoBPIrEEAAhIn3zyiancv39/XXfddW73d8455ygoiP9WAaClqr1s7bzzztOkSZNMxz788EOn+6udqLJYLBo8eLDb8wMAX8UZMAAgIO3evdtUHjVqVDPNBADgC+wllq655hrThwYfffSR0zdqqN1fjx49FB0d3fiJAoCPcX6BMAAAfiQnJ8dUjo2NbZ6J1FBdXa1t27YpPT1deXl5atWqlZKSkjRo0CD16dOnScfauXOnfvzxR504cUKnT59W27ZtlZCQoOHDh3tkU/L9+/drx44dysvL08mTJxUUFKTY2Fh169ZNAwcOVHx8fJOP2RBvPAdZWVnasWOHjh49qsLCQlmtVkVGRqpdu3bq0qWLevfurYSEhCYZy12GYWjXrl3auXOnjh8/rjNnzig2NlaXX365evTo4bFxvRkT6enpSktLU3Z2tiwWi+Lj49W/f38NHTrUI1caemu8lh7DvvT6yMvLq3N30PPOO08JCQm66KKL9M0330iSjh07pm+//VYjRoxosM/aVyyxDA6A3zIAAAhAkZGRhiTb1+9+9zuPj5mcnGwa88CBA4ZhGEZpaanx5JNPGvHx8aaf1/zq16+f8eabbzZq/KysLGP69OlGhw4dHI4jyRgwYIDxxhtvGFVVVY0a7+jRo8Z9991ndOnSpd7xzo45e/ZsIysrq94+U1NTTe3WrVvn0py88RyUlJQY8+bNM3r06NHg45ZkdO3a1bj99tuNr7/+2uWxnOEo7srKyox58+YZSUlJduf1wgsv1Omrsc+/J2LC0eOzWq3GG2+8YfTs2dPhGPHx8cbTTz9tlJeXO/0YvD1ebS09hn3t9XHW6tWrTeMGBQUZJSUlhmEYxrPPPmv62YMPPuhUn3369DG1mz9/vicfAgA0GxJLAICA1LVrV9MJf0JCgu1NhKfYe0OalZVl9O3b16k3WJKMyy67zMjPz3dp3KqqKuPPf/6zERoa6vQ4koxBgwbZ3jS7Ot6jjz5qhIWFuTSeJKNLly719u1uYsNbz0FaWprRuXNnlx/32bE8wV7c7d271+jdu3e982nKxJInY8Le4zt16pQxbtw4p8cYMWKEcerUKbefT0+OV/M5bOkx7Iuvj7Pmz59vGq9Pnz62n2VmZpp+1r179wb7KykpMYKCgkztVq9e7cmHAADNhj2WAAABadiwYaZybm6u/vCHP6i8vNxrczh58qQuvfRSZWRkmI5HRkYqKirKbpu1a9dq3LhxKigocGqM4uJiXXPNNXrqqadst8yuqVWrVmrXrp3d22fv2LFDI0aMUHp6ulNjSb/cBWnChAn629/+pjNnztit07p1a8XExMhisdT5meHk3iWu8NZzsHfvXl1yySV1ltOc1bp1a8XFxSk8PNz1B9GEjh49qksuuUQ//vij6Xh4eLhiYmKafDxvx0RRUZHGjRun1atXm45HRESoTZs2dtts2bJFU6ZMcSv+vDGeP8Swr78+ai9bGzJkiO37lJQUDRw40Fbet2+fdu3aVW9/O3bskNVqNR1jKRwAf0ViCQAQkK699to6x9599131799fL730krKzsz0+h7vvvluZmZmSpOTkZC1atEi5ubkqKSlRcXGxcnNztWjRIp177rmmdtu2bdNtt93m1BhTp07VZ599Zjp2wQUXaPHixcrKylJFRYVOnjypiooKpaen6/HHH1fr1q1tdbOzs3XttdequLi4wbGsVqtuuOGGOm+wo6Oj9eCDD2rjxo0qKytTYWGhTp8+rYqKCu3atUuvv/66JkyYoFatWjn1mFzlredg5syZKiwstJXDwsI0a9Ysbdq0ScXFxSosLNSJEydUVlam0tJSpaWlaeHChZo4caIiIiKa9kHX484779SRI0ck/XI79bfeeks5OTkqKyvT6dOnVVxcrE8++aRJ7l7VHDExffp0ff/995J+eSO/ZMkS5ebmqrS0VAUFBSosLNTy5cvr7B/1n//8R2+99ZZPjucPMezrrw97G3fXVPvucCtXrqy3v9qJqs6dOysuLq4RMwQAH9a8F0wBANA8qqurjcGDBztcdmGxWIz+/fsb06ZNMxYuXGj88MMPjd5zqPYSmrNf48ePN4qLix22KyoqsrvM5r333qt3vOeee85UPzg42HjppZcanOfevXvr7BNz9913N9hu9uzZdeY4evRoIycnp8G2hmEYR44cMZ599tl667i6FMtbz8Hx48dNy15CQ0ONzZs3NzjOWadOnTLef/99p+u7wlHc3X333S7HtKvPvzdiwtHje/TRRw2r1eqwXX5+vjFo0CBTm6FDhzY4J2+P5w8x7MuvD8P45W9s7WVr//nPf0x1tm/f7tLSvGnTppnqX3311R6bPwA0NxJLAICAlZmZWe+G2bW/oqOjjcsvv9x46qmn3Np7yN4b0n79+hmlpaUNti0pKamzJ07//v0d1i8oKDBiYmJM9V9//XWn57pv3z5T+4iICOPEiRMO62dnZxvh4eGm8VJTU40zZ844PaYzXElsePM5WLVqlWmc3/zmN64+NI+xF3cTJ050qy9Xnn9vxYS9x3fnnXc61Xbbtm112mZmZvrMeP4Sw778+jAMw9i4cWOd38vJkyfr1Ku9N199v7vzzjvPVHfOnDkefAQA0LxYCgcACFgpKSn6/vvvNXz4cKfqFxcX68svv9Sf//xnpaSkaOzYsfruu+8aNYcXX3zRqWUekZGRevHFF03H0tPTtXHjRrv1X331VdOyk3HjxmnatGlOz6tbt26aNWuWrVxWVlbvsp0XXnjBtD9VdHS03nnnHYWGhjo9ZlPz5nNw6tQpU7lr164uztZ7QkJC9PLLL3t8nOaKibZt2+rZZ591qu75559v2ktHkm1Zmy+M5y8x7Ouvj9rL4JKTk9WuXbs69SZOnGgqO1oOV1lZqd27d5uO1f69A4A/IbEEAAho5557rjZv3qz33ntPF1xwgdPtDMPQ2rVrNWLECN11112qrKx0eezevXtrzJgxTtcfO3asevbsaTr2ySef2K27dOlSU3nmzJkuz+/GG280ldevX++w7ooVK0zlW2+9Veecc47LYzYlbz4HsbGxprKryQlvuvLKK9WpUyePj9NcMXHLLbcoOjra6fq/+tWvTOU9e/b4zHj+EsO+/vpoaH+ls2rvs/Thhx/arZeenl5nk3U27gbgz0gsAQACnsVi0ZQpU7R161b9+OOPeuqppzR+/HiHd3SqyTAMvfrqq7ryyitVVVXl0ri1P/12Ru03Nlu2bKlT59SpU6Y7QAUHB+uyyy5zeaw+ffqYrqayN5YkHTlyxLYJ+VlTp051ebym5O3n4IILLjDd0WzNmjWaPXu2w7ugNSdXkpnuas6YGD16tEv1U1JSTGVn77jo6fH8KYZ9/fVR3x3havrVr36lhIQEW3nLli06fvx4nXq1E1VxcXHq3LlzE8wUAHxT3XuSAgAQwHr16qWHH35YDz/8sAzD0N69e5WWlqZvv/1W69atc3iL6dWrV+uxxx7T/PnznR5r6NChLs+v9hueHTt21Knz3XffmW5j3qZNGy1evNjlsSQpNDRUZWVlkqQTJ06oqqqqzi3N09LSTOXw8PBm/3Te289BfHy8rr32WtNVOn/961/12muv6YYbbtCECRM0cuRI0526mkvN26Z7SnPGRJcuXVyqX/t3UnPpWXOO508x7Muvj4qKCmVkZJiOOYrVoKAgXXXVVfrXv/4l6ZcPFj7++GNNnz7dVK92oqq5/x4CgKeRWAIAwAGLxaKePXuqZ8+etuUkP/30k55//nm98cYbda5Q+sc//qG7777b6U+mk5OTXZ5T7TexxcXFqqioMO1bk52dbapz6tQpzZgxw+Wx7MnPz1d8fLzp2IkTJ0zl5ORkt24T35S8/RxI0oIFC5SWlqYDBw7Yjp04cUILFizQggULFBwcrH79+umiiy5SamqqLr30Urv9eFr79u09PkZzxkTtZVcNCQ4ONpWrq6t9Yjx/i2FffX2kp6fXWcpcXyJo0qRJtsSS9Ms+S7UTS84urQMAf8FSOAAAXNCrVy+99tpr+uqrrxQTE2P6WUVFhd544w2n+6rd3hn2lufl5+ebyrU3ym1KpaWldY6dPHnSVHb1jbYnePs5kKTExERt3bpVU6ZMMS37Oau6ulo7d+7UP//5T914443q1KmTrrjiCq1atcpjc7XHlf2A3NWcMWHvuW+J4/lbDPvq66P21UXx8fFKSkpyWP+yyy4zXVn19ddfm5YzWq3WOleSklgC4O9ILAEA4IaLL75Y//znP+sc/+qrr5zuw503pDWXxjhSe9PYpuTM+N5+Y29Pcz0HcXFxeu+997Rz50498MAD6t27t8O6VVVV+vLLLzVhwgSNGzdOOTk5npiuT/CFmGhp/DGGffH14erVRWFhYRo/frytXFlZqU8//dRW/vnnn1VSUmJqwx3hAPg7EksAALjpN7/5TZ27a+3du9fp9qdPn3Z5THv7sbRt29ZUrn2b7NTUVBmG0SRf9vaTiYuLM5VrX0HVHLz9HNTWv39/PfPMM9qzZ49yc3P1wQcf6L777tOFF15YZymU9MtmxpdeeqmKioqa6iloVr4YEy2NP8ewL70+aieWnEkC1Xd3uNr9RUdHq3v37o2YIQD4PhJLAAC4yWKx6Pzzzzcdq70EqD4HDx50ecysrCxTOTo62rS/kqQ6+5Ls27fP5XFcUXu8gwcP1tmzxNu8/RzUJz4+XpMnT9bzzz+v7777Trm5uXr99dfVt29fU73du3fr6aefbqZZNi1fjImWJlBiuDlfH1arVTt37jQdc2bZ2oQJE0x/d7/88kvb8sLaS+sGDRqkoCDecgHwb/yVAwCgESIjI03lqKgop9vWvnOWM+y9aamt9hujo0eP1rn1e1OqnVwrLy+vM09v8/Zz4Ip27dpp2rRp+uGHH3TVVVeZfvbOO+8006yali/GREsTqDHszdfHTz/9VGfZmjOJpZiYGI0ZM8ZWLi0t1RdffCHJvSugAKClI7EEAEAjHDlyxFROSEhwuu3HH3/s8ngfffSRqTx8+PA6dbp27apu3bqZjr377rsuj+WsTp061Vnq0dwJEm8/B+5o1aqV5s+fbzqWlZXlF8vhfDEmWppAj2FvvD5qJ4Fat27t9LI1R8vhuCMcgEBEYgkAADfl5eXp22+/NR1z5dPpPXv2aN26dU7XX7NmjX766SfTsauvvtpu3euuu85Ufu6550x3Lmpq119/van85ptv1km6eZu3nwN3pKSk1DlW+wqKlsoXY6KlCfQY9vTrw94VoM5uNH/NNdeYlrj97//+r/bu3Vvnbn4klgAEAhJLAICANGXKFLeuGKrpT3/6k6qqqkzHai/daMg999yjsrKyBuuVlpZq5syZpmP9+vXTqFGjHM6t5rK8U6dO6aabblJ1dbVL86upvjtJzZo1SxEREbZycXGxpk6d6tE7WzXEm89B7Thw1p49e0zl4ODgOnvrtFS+GBMtjb/EsK++PhpzdVFiYqJGjBhhKxcUFOj555831QkNDVW/fv0aN0kAaAFILAEAAtL27ds1ceJEDRkyRIsWLbJ7tzVHSkpKNH36dL311lum4926ddPkyZNdmsfu3bt17bXX1vspfElJiSZNmqQff/zRdHz27NkO28THx9f5+apVqzR+/HhlZ2c7Pb+qqip9/PHHGj16dL175CQkJOjhhx82HVu/fr0uv/xy5ebmOjXWsWPH9Nxzzzk9t4Z48zl45JFH9Jvf/EZbtmxxut/S0lLdf//9pmOjRo2ye1eslsgXY6Kl8ZcY9tXXxw8//GAqu7of0sSJE03lf/3rX6Zy//791apVK3emBgAtiwEAQADq1q2bIcn2FRERYUyePNn4xz/+YWzbts0oKCgw1S8qKjK2bNlizJ492+jUqZOprSQjKCjIWLVqVb1jJicnm9oMHz7c9n2XLl2M119/3Thx4oSt/okTJ4xFixbVaSfJmDhxolOP8/rrr6/TNjIy0rjrrruM1atXG6dPnzbVLysrM3744QfjrbfeMn73u98Z7dq1s7Xbtm1bvWNVV1cb48aNqzNedHS08eCDDxqbNm0yysvLbfWrqqqM9PR04/XXXzd+/etfG61atTKSk5PrHSM1NdXU97p163ziOZg1a5atTnJysnHvvfcaH3zwgbF//36jqqrKVs9qtRqZmZnGK6+8YnTv3r3OvD766KMGH4+rasfPgQMH3O7L1effGzHR2Me3ePFiU/vf/e53PjWeYbT8GPbF18eBAwfq9P/DDz+41Me+ffvq9FHza9q0aU02XwDwZSSWAAABqXZiyd5Xq1atjLi4OCMyMrLeesHBwcbbb7/d4Ji135Bu27bN7jyio6ONqKgoh+MNGTLEOHXqlFOPs7S01LjxxhvrnX94eLgRFxdnhIeH11uvocSSYRhGfn6+cdlll9XbT0xMjNGmTRvDYrHU+ZknEkveeA5qvnGu/WWxWIyYmBijffv2RmhoqMN6M2bMaPCxuKM5E0uG4fmYCITEUkuPYV98faxcudLUf2hoqFFRUeFyPwMGDHA455dffrlJ5wwAvoqlcACAgDRhwgS1adOm3jqVlZXKy8tTaWmpwzqDBg3Shg0bNHXqVJfnEBcXp7Vr16pPnz6m48XFxQ6Xxl1yySVau3at2rZt69QYERERWrp0qV566SXFxsbarVNeXq68vDyVl5c77Cc5OVnt2rVrcLzY2FitWrVKDzzwgMMlIIWFhTp9+rTdvV5qbobbVLzxHNS34a9hGCosLNTJkyft7i8UGhqqJ598Uq+88kr9D6SF8sWYaGlaegz74uuj9v5K7i5bq313uJrYuBtAoOB/agBAQHrxxRd14sQJrV69Wg8++KBGjBih0NBQp9q2bt3atvl3WlqaLrroIrfn0aVLF6WlpenJJ59UXFycw3p9+vTRG2+8oa+++srppFJNd999tw4dOqT58+dr4MCBTt35qH///rr33nv19ddf68CBA3bv0GRPSEiInnnmGf3888+aPn26OnbsWG99i8WiIUOGaN68edq8ebNTY7jDk8/B/PnztXr1as2aNUuDBw92ah+Y+Ph43XXXXdq9e7fmzJnj8uNpSXw1JlqalhrDvvj6aMzG3TU5SiwFBQVp4MCBbvUJAC2NxbD30RAAAAGosrJS+/fv1969e3Xs2DEVFRWptLRUkZGRiomJUXx8vPr3769u3bo5fUvqmrp06aKDBw/aygcOHFCXLl1s5erqam3btk27du1SXl6eQkND1bFjRw0ePFh9+/Ztiodoc/LkSW3dulU5OTk6efKkysvL1bp1a7Vt21Y9evRQnz59GryiyxW7du3Snj17dOLECRUUFCgsLEyxsbHq3r27BgwYoPbt2zfZWM7y5HNQUlKiPXv2KDMzU7m5uSoqKpLFYlHr1q2VmJioAQMGqGfPngF9NY4vxkRL01JjmNcHAPgXEksAAHhJQ4klAAAAoKXhYwAAAAAAAAC4hcQSAAAAAAAA3EJiCQAAAAAAAG4hsQQAAAAAAAC3kFgCAAAAAACAW0gsAQAAAAAAwC0klgAAAAAAAOAWi2EYRnNPAgAAAAAAAC0PVywBAAAAAADALSSWAAAAAAAA4BYSSwAAAAAAAHALiSUAAAAAAAC4hcQSAAAAAAAA3EJiCQAAAAAAAG4hsQQAAAAAAAC3kFgCAAAAAACAW0gsAQAAAAAAwC0klgAAAAAAAOAWEksAAAAAAABwC4klAAAAAAAAuIXEEgAAAAAAANxCYgkAAAAAAABuIbEEAAAAAAAAt5BYAgAAAAAAgFtILAEAAAAAAMAtJJYAAAAAAADgFhJLAAAAAAAAcAuJJQAAAAAAALjl/wOS0r4EYLeS/QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 381, + "width": 587 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "#| fig-cap: Posterior distribution of species richness from the BBS model.\n", + "#| label: fig-postN\n", + "\n", + "# relevant posterior samples\n", + "post = az.extract(unknown_idata)\n", + "o_samps = post.omega.to_numpy()\n", + "psi_samps = post.psi.to_numpy()[n:, :]\n", + "p_samps = post.p.to_numpy()[n:, :]\n", + "\n", + "# probability that the animal was never detected during the survey if present\n", + "p_not_detected = (1 - p_samps) ** K\n", + "\n", + "# probability of a zero detection history \n", + "p_zero_hist = psi_samps * p_not_detected + (1 - psi_samps)\n", + "\n", + "# probability that the species was included in the given the all-zero history\n", + "p_included = (o_samps * p_zero_hist ** J) / (o_samps * p_zero_hist ** J + (1 - o_samps))\n", + "\n", + "# posterior samples of N\n", + "number_undetected = RNG.binomial(1, p_included).sum(axis=0)\n", + "N_samps = n + number_undetected\n", + "\n", + "# posterior distribution \n", + "N_hat_royle = 138\n", + "fig, ax = plt.subplots(figsize=(6, 4))\n", + "ax.hist(N_samps, edgecolor='white', bins=25)\n", + "ax.set_xlabel('Species richness $N$')\n", + "ax.set_ylabel('Posterior samples')\n", + "ax.axvline(N_hat_royle, linestyle='--', color='C1')\n", + "ax.axvline(N_samps.mean(), linestyle='--', color='C2')\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "PyMC", + "language": "python", + "name": "pymc" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "82570e951a47467199d306bc732c6089": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9351aad5e068430687cb0feeb90304f8": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_82570e951a47467199d306bc732c6089", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Sampling 4 chains, 0 divergences ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00 / 0:00:47\n
\n", + "text/plain": "Sampling 4 chains, 0 divergences \u001b[32m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m / \u001b[33m0:00:47\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "tabbable": null, + "tooltip": null + } + }, + "a24e886341c24198950e9367a3b1ce41": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a6a5a2e27fb747929160ed8d5fba1db4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "abdb80a2d75c4bd7b842f6f0d95f94c4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad07c1ca6a0c43bbb60676ce9f9a6105": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_a6a5a2e27fb747929160ed8d5fba1db4", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Sampling 4 chains, 0 divergences ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00 / 0:03:06\n
\n", + "text/plain": "Sampling 4 chains, 0 divergences \u001b[32m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m / \u001b[33m0:03:06\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "tabbable": null, + "tooltip": null + } + }, + "d73c1b49cd23437b86d6ab7648db7670": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_abdb80a2d75c4bd7b842f6f0d95f94c4", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Sampling 4 chains, 0 divergences ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00 / 0:00:43\n
\n", + "text/plain": "Sampling 4 chains, 0 divergences \u001b[32m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m / \u001b[33m0:00:43\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "tabbable": null, + "tooltip": null + } + }, + "fd2f818e66f34cc4bd88b0aa8e582719": { + "model_module": "@jupyter-widgets/output", + "model_module_version": "1.0.0", + "model_name": "OutputModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/output", + "_model_module_version": "1.0.0", + "_model_name": "OutputModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/output", + "_view_module_version": "1.0.0", + "_view_name": "OutputView", + "layout": "IPY_MODEL_a24e886341c24198950e9367a3b1ce41", + "msg_id": "", + "outputs": [ + { + "data": { + "text/html": "
Sampling 4 chains, 0 divergences ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00 / 0:02:55\n
\n", + "text/plain": "Sampling 4 chains, 0 divergences \u001b[32m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m / \u001b[33m0:02:55\u001b[0m\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "tabbable": null, + "tooltip": null + } + } + }, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file diff --git a/.jupyter_cache/global.db b/.jupyter_cache/global.db index c7ca428..0496385 100644 Binary files a/.jupyter_cache/global.db and b/.jupyter_cache/global.db differ diff --git a/cjs.qmd b/cjs.qmd index e8aee74..d1479fd 100644 --- a/cjs.qmd +++ b/cjs.qmd @@ -30,18 +30,25 @@ The goal of the CJS model is to estimate survival, accounting for capture probab : An example of the M-array from a four year capture-recapture survey. The number recaptured, $m_{i,j}$ refers to the number of individuals released at $i$ who were first recaptured at time $j$. ```{python} + +from pymc.distributions.dist_math import factln +from scipy.linalg import circulant + +import seaborn as sns import numpy as np import matplotlib.pyplot as plt import arviz as az import pymc as pm import pytensor.tensor as pt -from pymc.distributions.dist_math import factln -from scipy.linalg import circulant - plt.style.use('fivethirtyeight') plt.rcParams['axes.facecolor'] = 'white' plt.rcParams['figure.facecolor'] = 'white' +plt.rcParams['axes.spines.left'] = False +plt.rcParams['axes.spines.right'] = False +plt.rcParams['axes.spines.top'] = False +plt.rcParams['axes.spines.bottom'] = False +sns.set_palette("tab10") def create_recapture_array(history): """Create the recapture array from a capture history.""" diff --git a/closed_cmr.qmd b/closed_cmr.qmd index b521a45..7f04cf1 100644 --- a/closed_cmr.qmd +++ b/closed_cmr.qmd @@ -32,17 +32,25 @@ This produces a capture history for each individual, which allows us to estimate ```{python} # libraries +from pymc.distributions.dist_math import binomln, logpow + +import vapeplot +import seaborn as sns import numpy as np import pandas as pd import pymc as pm import arviz as az import matplotlib.pyplot as plt -from pymc.distributions.dist_math import binomln, logpow # plotting parameters plt.style.use('fivethirtyeight') plt.rcParams['axes.facecolor'] = 'white' plt.rcParams['figure.facecolor'] = 'white' +plt.rcParams['axes.spines.left'] = False +plt.rcParams['axes.spines.right'] = False +plt.rcParams['axes.spines.top'] = False +plt.rcParams['axes.spines.bottom'] = False +sns.set_palette("tab10") # hyperparameters SEED = 808 @@ -126,7 +134,7 @@ coords = {'species': ['pygmy', 'red_cheeked']} with pm.Model(coords=coords) as M0: # priors for the capture and inclusion probabilities - psi = pm.Uniform('psi', 0, 1, dims='species') + psi = pm.Beta('psi', 0.001, 1, dims='species') p = pm.Uniform('p', 0, 1, dims='species') # likelihood for the summarized data @@ -280,7 +288,7 @@ coords = {'alpha_coeffs': ['Intercept', 'B_Response']} with pm.Model(coords=coords) as mb: # priors for the capture and inclusion probabilities - psi = pm.Uniform('psi', 0, 1) + psi = pm.Beta('psi', 0.001, 1) Alpha = pm.Normal('Alpha', 0, 2, dims='alpha_coeffs') nu = pm.math.dot(X, Alpha) diff --git a/distance.qmd b/distance.qmd index b298ddb..3ebaf39 100644 --- a/distance.qmd +++ b/distance.qmd @@ -20,6 +20,8 @@ Following @hooten2019, Chapter 24 and @royle2008, Chapter 7, I use the impala da ```{python} #| fig-cap: Histogram of the number of detected impalas at varying distances. #| label: fig-hist + +import seaborn as sns import pymc as pm import pytensor.tensor as pt import matplotlib.pyplot as plt @@ -30,6 +32,11 @@ import numpy as np plt.style.use('fivethirtyeight') plt.rcParams['axes.facecolor'] = 'white' plt.rcParams['figure.facecolor'] = 'white' +plt.rcParams['axes.spines.left'] = False +plt.rcParams['axes.spines.right'] = False +plt.rcParams['axes.spines.top'] = False +plt.rcParams['axes.spines.bottom'] = False +sns.set_palette("tab10") # hyper parameters M = 500 @@ -84,7 +91,7 @@ The issue is that $x$ is unobserved for the undetected individuals. To work arou with pm.Model() as distance: - psi = pm.Uniform('psi', 0, 1) + psi = pm.Beta('psi', 0.001, 1) sigma = pm.Uniform('sigma', 0, U_SIGMA) x_unobserved = pm.Uniform('x_unobserved', 0, U_X, shape=unobserved_count) @@ -145,15 +152,15 @@ ax1.hist(sigma_samples, edgecolor='white', bins=30) # ax0.set_xlim((100, M)) # axes labels -ax0.set_xlabel('Abundance $N$') +ax0.set_xlabel(r'Abundance $N$') ax0.set_ylabel('Number of samples') -ax1.set_xlabel('Detection range $\sigma$') +ax1.set_xlabel(r'Detection range $\sigma$') # add the point estimates N_hat = N_samples.mean() sigma_hat = sigma_samples.mean() -ax0.text(200, 350, f'$\hat{{N}}$={N_hat:.1f}', ha='left', va='center') -ax1.text(205, 350, f'$\hat{{\sigma}}$={sigma_hat:.1f}', ha='left', va='center') +ax0.text(200, 350, rf'$\hat{{N}}$={N_hat:.1f}', ha='left', va='center') +ax1.text(205, 350, rf'$\hat{{\sigma}}$={sigma_hat:.1f}', ha='left', va='center') # the results from royle and dorazio (2008) for comparison N_hat_royle = 179.9 diff --git a/docs/cjs.html b/docs/cjs.html index 8c01d39..9b01364 100644 --- a/docs/cjs.html +++ b/docs/cjs.html @@ -128,6 +128,7 @@ + @@ -404,72 +405,78 @@

Cormack-Jolly-Seber

-
-
import numpy as np
-import matplotlib.pyplot as plt
-import arviz as az
-import pymc as pm 
-import pytensor.tensor as pt
-
-from pymc.distributions.dist_math import factln
-from scipy.linalg import circulant
-
-plt.style.use('fivethirtyeight')
-plt.rcParams['axes.facecolor'] = 'white'
-plt.rcParams['figure.facecolor'] = 'white'
-
-def create_recapture_array(history):
-    """Create the recapture array from a capture history."""
-    _, occasion_count = history.shape
-    interval_count = occasion_count - 1
-
-    recapture_array = np.zeros((interval_count, interval_count), int)
-    for occasion in range(occasion_count - 1):
-
-        # which individuals, captured at t, were later recaptured?
-        captured_this_time = history[:, occasion] == 1
-        captured_later = (history[:, (occasion + 1):] > 0).any(axis=1)
-        now_and_later = captured_this_time & captured_later
-        
-        # when were they next recaptured? 
-        remaining_history = history[now_and_later, (occasion + 1):]
-        next_capture_occasion = (remaining_history.argmax(axis=1)) + occasion 
-
-        # how many of them were there?
-        ind, count = np.unique(next_capture_occasion, return_counts=True)
-        recapture_array[occasion, ind] = count
-        
-    return recapture_array.astype(int)
+
+
from pymc.distributions.dist_math import factln
+from scipy.linalg import circulant
+
+import seaborn as sns
+import numpy as np
+import matplotlib.pyplot as plt
+import arviz as az
+import pymc as pm 
+import pytensor.tensor as pt
+
+plt.style.use('fivethirtyeight')
+plt.rcParams['axes.facecolor'] = 'white'
+plt.rcParams['figure.facecolor'] = 'white'
+plt.rcParams['axes.spines.left'] = False
+plt.rcParams['axes.spines.right'] = False
+plt.rcParams['axes.spines.top'] = False
+plt.rcParams['axes.spines.bottom'] = False
+sns.set_palette("tab10")
+
+def create_recapture_array(history):
+    """Create the recapture array from a capture history."""
+    _, occasion_count = history.shape
+    interval_count = occasion_count - 1
+
+    recapture_array = np.zeros((interval_count, interval_count), int)
+    for occasion in range(occasion_count - 1):
+
+        # which individuals, captured at t, were later recaptured?
+        captured_this_time = history[:, occasion] == 1
+        captured_later = (history[:, (occasion + 1):] > 0).any(axis=1)
+        now_and_later = captured_this_time & captured_later
+        
+        # when were they next recaptured? 
+        remaining_history = history[now_and_later, (occasion + 1):]
+        next_capture_occasion = (remaining_history.argmax(axis=1)) + occasion 
 
-def create_m_array(history):
-    '''Create the m-array from a capture history.'''
-
-    # leftmost column of the m-array
-    number_released = history.sum(axis=0)
+        # how many of them were there?
+        ind, count = np.unique(next_capture_occasion, return_counts=True)
+        recapture_array[occasion, ind] = count
+        
+    return recapture_array.astype(int)
 
-    # core of the m-array 
-    recapture_array = create_recapture_array(history)
-    number_recaptured = recapture_array.sum(axis=1)
-
-    # no animals that were released on the last occasion are recaptured
-    number_recaptured = np.append(number_recaptured, 0)
-    never_recaptured = number_released - number_recaptured
-
-    # add a dummy row at the end to make everything stack 
-    zeros = np.zeros(recapture_array.shape[1])
-    recapture_array = np.row_stack((recapture_array, zeros))
-
-    # stack the relevant values into the m-array 
-    m_array = np.column_stack((number_released, recapture_array, never_recaptured))
-
-    return m_array.astype(int)
-
-def fill_lower_diag_ones(x):
-    '''Fill the lower diagonal of a matrix with ones.'''
-    return pt.triu(x) + pt.tril(pt.ones_like(x), k=-1)
+def create_m_array(history): + '''Create the m-array from a capture history.''' + + # leftmost column of the m-array + number_released = history.sum(axis=0) + + # core of the m-array + recapture_array = create_recapture_array(history) + number_recaptured = recapture_array.sum(axis=1) + + # no animals that were released on the last occasion are recaptured + number_recaptured = np.append(number_recaptured, 0) + never_recaptured = number_released - number_recaptured + + # add a dummy row at the end to make everything stack + zeros = np.zeros(recapture_array.shape[1]) + recapture_array = np.row_stack((recapture_array, zeros)) + + # stack the relevant values into the m-array + m_array = np.column_stack((number_released, recapture_array, never_recaptured)) + + return m_array.astype(int) + +def fill_lower_diag_ones(x): + '''Fill the lower diagonal of a matrix with ones.''' + return pt.triu(x) + pt.tril(pt.ones_like(x), k=-1)

As an example, I use the cormorant data from McCrea and Morgan (2014), Table 4.6. These data come from an eleven year capture-recapture study between 1982 and 1993. These were breeding cormorants of unknown age. The data is summarized in the \(M\)-array below. The last column is the number that were never recapured. The number released can be calculated from the array.

-
+
cormorant = np.array([
        [ 10,   4,   2,   2,   0,   0,   0,   0,   0,   0,  12],
        [  0,  42,  12,  16,   1,   0,   1,   1,   1,   0,  83],
@@ -482,7 +489,7 @@ 

Cormack-Jolly-Seber

[ 0, 0, 0, 0, 0, 0, 0, 0, 101, 55, 274], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 84, 97]])
-
+
interval_count, T = cormorant.shape
 
 number_recaptured = cormorant[:,:-1]
@@ -535,7 +542,7 @@ 

Cormack-Jolly-Seber

) pm.model_to_graphviz(phit)
-
+
@@ -548,7 +555,7 @@

Cormack-Jolly-Seber

-
+
with phit:
     cjs_idata = pm.sample()
@@ -556,33 +563,18 @@

Cormack-Jolly-Seber

Initializing NUTS using jitter+adapt_diag... Multiprocess sampling (4 chains in 4 jobs) NUTS: [p, phi] -Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 1 seconds. +Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 3 seconds.
- - +
- -
- - 100.00% [8000/8000 00:01<00:00 Sampling 4 chains, 0 divergences] -
- +

+
+
+

 
@@ -648,6 +640,9 @@

Cormack-Jolly-Seber

McCrea, Rachel S, and Byron JT Morgan. 2014. Analysis of Capture-Recapture Data. CRC Press.
+ + @@ -394,26 +395,34 @@

Closed capture-recapture

This produces a capture history for each individual, which allows us to estimate the probability of capture and the number of individuals in the population \(N\).

Model \(M_0\)

-
+
# libraries 
-import numpy as np
-import pandas as pd
-import pymc as pm
-import arviz as az
-import matplotlib.pyplot as plt 
-from pymc.distributions.dist_math import binomln, logpow
-
-# plotting parameters
-plt.style.use('fivethirtyeight')
-plt.rcParams['axes.facecolor'] = 'white'
-plt.rcParams['figure.facecolor'] = 'white'
-
-# hyperparameters 
-SEED = 808
-RNG = np.random.default_rng(SEED)
+from pymc.distributions.dist_math import binomln, logpow + +import vapeplot +import seaborn as sns +import numpy as np +import pandas as pd +import pymc as pm +import arviz as az +import matplotlib.pyplot as plt + +# plotting parameters +plt.style.use('fivethirtyeight') +plt.rcParams['axes.facecolor'] = 'white' +plt.rcParams['figure.facecolor'] = 'white' +plt.rcParams['axes.spines.left'] = False +plt.rcParams['axes.spines.right'] = False +plt.rcParams['axes.spines.top'] = False +plt.rcParams['axes.spines.bottom'] = False +sns.set_palette("tab10") + +# hyperparameters +SEED = 808 +RNG = np.random.default_rng(SEED)

I explore fitting the simplest closed capture-recapture model, Model \(M_0,\) through parameter-expanded data-augmentation (PX-DA, Royle and Dorazio 2008). The idea with PX-DA is to augment the capture histories with \(M-n\) all zero capture-histories, where \(M\) is a hyperparameter that should be much greater than the true population size \(N,\) and \(n\) is the total number of individuals that were captured during the study. This allows us to treat the data as a zero-inflated binomial distribution (see below).

-
+
def augment_history(history, M):
     '''Augment a capture history with all-zero histories.'''
     
@@ -429,7 +438,7 @@ 

Model \(M_0\)

return augmented

To demonstrate this approach, I use the salamander dataset from Bailey, Simons, and Pollock (2004), as demonstrated in Hooten and Hefley (2019), Chapter 24. These data were collected on two salamander species, the red-cheeked salamander (Plethodon jordani) and the pygmy salamander (Desmognathus wrighti), in Great Smoky Mountains National Park. The salamanders were counted in 15m by 15m square plots. In this case, we augment the history by setting \(M=1500\). There were \(n=92\) individual red-cheeked and \(n=132\) pygmy salamanders captured during the course of the survey.

-
+
def get_histories():
     '''Read, augment, and recombine the salamander histories.'''
     
@@ -480,7 +489,7 @@ 

Model \(M_0\)

with pm.Model(coords=coords) as M0: # priors for the capture and inclusion probabilities - psi = pm.Uniform('psi', 0, 1, dims='species') + psi = pm.Beta('psi', 0.001, 1, dims='species') p = pm.Uniform('p', 0, 1, dims='species') # likelihood for the summarized data @@ -506,7 +515,7 @@

Model \(M_0\)

-
+
with M0:
     M0_idata = pm.sample()
@@ -514,33 +523,18 @@

Model \(M_0\)

Initializing NUTS using jitter+adapt_diag... Multiprocess sampling (4 chains in 4 jobs) NUTS: [psi, p] -Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 8 seconds.
+Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 18 seconds.
- - +
- -
- - 100.00% [8000/8000 00:07<00:00 Sampling 4 chains, 0 divergences] -
- +

+
+
+

 
@@ -560,7 +554,7 @@

Model \(M_0\)

For faster sampling, it’s better to separate the two species into two separate models. On my machine, the individual species models finish sampling in 2-3 seconds, compared to 15-20 seconds for the two species model. That said, the two species model is somewhat more convenient.

Of course, the trace plots lack our true parameter of interest: the population size \(N.\) We can simulate the posterior of \(N\) as a derived quantity, using \(M\) and the posterior distribution of \(\psi\).

-
+
# az.extract flattens the chains
 posterior = az.extract(M0_idata)
 psi_samps = posterior.psi.values
@@ -631,7 +625,7 @@ 

Model \(M_0\)

- +
Figure 4: Posterior draws of \(N\) and \(p\) for both species of salamander. @@ -645,7 +639,7 @@

Model \(M_0\)

Model \(M_b\)

Next, I fit model \(M_b,\) which accounts for the possibility that the capture probability changes after the animal is first caught. This could be from trap happiness, whereby animals are more likely to be trapped after their first time. Conversely, this could be from subsequent trap avoidance.

Mirroring (Royle and Dorazio 2008, chap. 5), I fit this model to the Microtus dataset reported in (Williams, Nichols, and Conroy 2002, 525). This version of the dataset includes encounter histories of \(n=56\) adult males that were captured on \(T=5\) consecutive days.

-
+
# read in the microtus data
 microtus = np.loadtxt('microtus.data.txt').astype(int)
 
@@ -689,7 +683,7 @@ 

Model \(M_b\)

with pm.Model(coords=coords) as mb: # priors for the capture and inclusion probabilities - psi = pm.Uniform('psi', 0, 1) + psi = pm.Beta('psi', 0.001, 1) Alpha = pm.Normal('Alpha', 0, 2, dims='alpha_coeffs') nu = pm.math.dot(X, Alpha) @@ -719,7 +713,7 @@

Model \(M_b\)

-
+
with mb:
     mb_idata = pm.sample()
@@ -727,36 +721,21 @@

Model \(M_b\)

Initializing NUTS using jitter+adapt_diag... Multiprocess sampling (4 chains in 4 jobs) NUTS: [psi, Alpha] -Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 1 seconds.
+Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 3 seconds.
- - +
- -
- - 100.00% [8000/8000 00:01<00:00 Sampling 4 chains, 0 divergences] -
- +

+
+
+

 
-
+
az.summary(mb_idata, var_names=['Alpha', 'psi'])
@@ -781,38 +760,38 @@

Model \(M_b\)

Alpha[Intercept] -0.103 -0.234 --0.340 -0.530 -0.005 +0.119 +0.249 +-0.347 +0.579 +0.006 0.004 -2056.0 -2261.0 +2001.0 +1977.0 1.0 Alpha[B_Response] -0.624 -0.276 -0.118 -1.136 -0.006 +0.606 +0.290 +0.023 +1.103 +0.007 0.005 -1979.0 -1999.0 +1941.0 +1951.0 1.0 psi -0.576 -0.051 -0.478 -0.666 +0.570 +0.053 +0.464 +0.663 0.001 0.001 -2060.0 -2181.0 +2453.0 +2129.0 1.0 @@ -828,7 +807,7 @@

Model \(M_b\)

- +
Figure 6: Forest plot showing the catchability parameters from model \(M_b.\) @@ -968,6 +947,9 @@

Model \(M_b\)

Williams, Byron K, James D Nichols, and Michael J Conroy. 2002. Analysis and Management of Animal Populations. Academic press.
+ + @@ -343,49 +344,55 @@

Distance sampling

The idea with distance sampling, also known as line-transect sampling, is that a surveyer traverses a transect, typically in a boat or a plane. As they survey, they note when they detect an individual, or a group, from the species of interest, and further note the distance from the transect to the animal. Further, they note the angle to the animal(s), such that they can calculate the perpendicular distance from the animal to the transect. We assume that probability of detecting an animal \(p\) decreases monotonically as the distance from the transect grows, e.g., \(p=\exp(-x^2/\sigma^2),\) where \(x\) is the distance and \(\sigma\) is a scale parameter to be estimated. These simple assumptions permit the estimation of the population size \(N\) as well as density \(D.\)

Following Hooten and Hefley (2019), Chapter 24 and Royle and Dorazio (2008), Chapter 7, I use the impala data from Burnham, Anderson, and Laake (1980), who credits P. Hemingway with the dataset. In this dataset, 73 impalas were observed along a 60km transect. The distance values below are the perpendicular distances, in meters, from the transect.

-
import pymc as pm
-import pytensor.tensor as pt
-import matplotlib.pyplot as plt
-import arviz as az
-import numpy as np
-
-# plotting defaults
-plt.style.use('fivethirtyeight')
-plt.rcParams['axes.facecolor'] = 'white'
-plt.rcParams['figure.facecolor'] = 'white'
-
-# hyper parameters
-M = 500
-U_X = 400
-U_SIGMA = 400
-
-# burnham impala dataset with distances in m
-x_observed = np.array(
-    [71.933980, 26.047227, 58.474341, 92.349221, 163.830409, 84.523652
-    ,163.830409, 157.330098, 22.267696, 72.105330, 86.986979, 50.795047
-    ,0.000000, 73.135370,  0.000000, 128.557522, 163.830409,  71.845104
-    ,30.467336, 71.073909, 150.960702, 68.829172, 90.000000, 64.983827
-    ,165.690874, 38.008322, 378.207430, 78.146226, 42.127052, 0.000000
-    ,400.000000, 175.386612, 30.467336, 35.069692, 86.036465, 31.686029
-    ,200.000000, 271.892336, 26.047227, 76.604444, 41.042417, 200.000000
-    ,86.036465, 0.000000, 93.969262, 55.127471, 10.458689, 84.523652
-    ,0.000000, 77.645714, 0.000000, 96.418141, 0.000000, 64.278761
-    ,187.938524, 0.000000, 160.696902, 150.453756, 63.603607, 193.185165
-    ,106.066017, 114.906666, 143.394109, 128.557522, 245.745613, 123.127252
-    ,123.127252, 153.208889, 143.394109, 34.202014, 96.418141, 259.807621
-    ,8.715574]
-)
-
-# plot the distances 
-fig, ax = plt.subplots(figsize=(4,4))
-
-ax.hist(x_observed, edgecolor='white')
-
-ax.set_title('Hemingway Impala Data')
-ax.set_ylabel('Number of detections')
-ax.set_xlabel('Distance (m)')
+
import seaborn as sns
+import pymc as pm
+import pytensor.tensor as pt
+import matplotlib.pyplot as plt
+import arviz as az
+import numpy as np
+
+# plotting defaults
+plt.style.use('fivethirtyeight')
+plt.rcParams['axes.facecolor'] = 'white'
+plt.rcParams['figure.facecolor'] = 'white'
+plt.rcParams['axes.spines.left'] = False
+plt.rcParams['axes.spines.right'] = False
+plt.rcParams['axes.spines.top'] = False
+plt.rcParams['axes.spines.bottom'] = False
+sns.set_palette("tab10")
+
+# hyper parameters
+M = 500
+U_X = 400
+U_SIGMA = 400
+
+# burnham impala dataset with distances in m
+x_observed = np.array(
+    [71.933980, 26.047227, 58.474341, 92.349221, 163.830409, 84.523652
+    ,163.830409, 157.330098, 22.267696, 72.105330, 86.986979, 50.795047
+    ,0.000000, 73.135370,  0.000000, 128.557522, 163.830409,  71.845104
+    ,30.467336, 71.073909, 150.960702, 68.829172, 90.000000, 64.983827
+    ,165.690874, 38.008322, 378.207430, 78.146226, 42.127052, 0.000000
+    ,400.000000, 175.386612, 30.467336, 35.069692, 86.036465, 31.686029
+    ,200.000000, 271.892336, 26.047227, 76.604444, 41.042417, 200.000000
+    ,86.036465, 0.000000, 93.969262, 55.127471, 10.458689, 84.523652
+    ,0.000000, 77.645714, 0.000000, 96.418141, 0.000000, 64.278761
+    ,187.938524, 0.000000, 160.696902, 150.453756, 63.603607, 193.185165
+    ,106.066017, 114.906666, 143.394109, 128.557522, 245.745613, 123.127252
+    ,123.127252, 153.208889, 143.394109, 34.202014, 96.418141, 259.807621
+    ,8.715574]
+)
+
+# plot the distances 
+fig, ax = plt.subplots(figsize=(4,4))
 
-plt.show()
+ax.hist(x_observed, edgecolor='white') + +ax.set_title('Hemingway Impala Data') +ax.set_ylabel('Number of detections') +ax.set_xlabel('Distance (m)') + +plt.show()
@@ -400,7 +407,7 @@

Distance sampling

Again, we treat this as a zero-inflated binomial model using PX-DA. The trick for doing so is to create a binary vector of length \(M\), \(y,\) that represents whether the individual was detected during the study. Then, combine the indicator with the distance vector \(x\) to create a the full dataset \((x,y).\)

-
+
n = len(x_observed)
 unobserved_count = M - n
 zeros = np.zeros(unobserved_count)
@@ -412,7 +419,7 @@ 

Distance sampling

with pm.Model() as distance:
     
-    psi = pm.Uniform('psi', 0, 1)
+    psi = pm.Beta('psi', 0.001, 1)
     sigma = pm.Uniform('sigma', 0, U_SIGMA)
     
     x_unobserved = pm.Uniform('x_unobserved', 0, U_X, shape=unobserved_count)
@@ -436,7 +443,7 @@ 

Distance sampling

-
+
with distance:
     distance_idata = pm.sample()
@@ -444,33 +451,18 @@

Distance sampling

Initializing NUTS using jitter+adapt_diag... Multiprocess sampling (4 chains in 4 jobs) NUTS: [psi, sigma, x_unobserved] -Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 5 seconds.
+Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 9 seconds.
- - +
- -
- - 100.00% [8000/8000 00:05<00:00 Sampling 4 chains, 0 divergences] -
- +

+
+
+

 
@@ -483,7 +475,7 @@

Distance sampling

- +
Figure 3: Traceplots for the distance sampling model. @@ -493,7 +485,7 @@

Distance sampling

This model samples slower than the models in the other notebooks, presumably because of the unobserved \(x.\) As in the closed capture-recapture notebook, we will have to simulate the posterior for \(N\) using the posterior distribution of \(\psi\) and \(M.\)

-
+
RNG = np.random.default_rng()
 
 posterior = az.extract(distance_idata)
@@ -519,15 +511,15 @@ 

Distance sampling

# ax0.set_xlim((100, M)) # axes labels -ax0.set_xlabel('Abundance $N$') +ax0.set_xlabel(r'Abundance $N$') ax0.set_ylabel('Number of samples') -ax1.set_xlabel('Detection range $\sigma$') +ax1.set_xlabel(r'Detection range $\sigma$') # add the point estimates N_hat = N_samples.mean() sigma_hat = sigma_samples.mean() -ax0.text(200, 350, f'$\hat{{N}}$={N_hat:.1f}', ha='left', va='center') -ax1.text(205, 350, f'$\hat{{\sigma}}$={sigma_hat:.1f}', ha='left', va='center') +ax0.text(200, 350, rf'$\hat{{N}}$={N_hat:.1f}', ha='left', va='center') +ax1.text(205, 350, rf'$\hat{{\sigma}}$={sigma_hat:.1f}', ha='left', va='center') # the results from royle and dorazio (2008) for comparison N_hat_royle = 179.9 @@ -541,7 +533,7 @@

Distance sampling

- +
Figure 4: Posterior distributions for \(N\) and \(\sigma.\) Estimates from Royle and Dorazio (2008) are shown with vertical lines. @@ -601,6 +593,9 @@

Distance sampling

Royle, J Andrew, and Robert M Dorazio. 2008. Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities. Elsevier.
+ + @@ -341,73 +342,79 @@

Jolly-Seber-Schwarz-Arnason

In this notebook, I explore the Jolly-Seber-Schwarz-Arnason (JSSA) model for estimating survival and abundance using capture recapture data. JSSA is very similar to the CJS framework, except that it also models entry into the population, permitting esimation of the superpopulation size. Like the CJS notebook, I have drawn considerable inspiration from Austin Rochford’s notebook on capture-recapture in PyMC, the second chapter of my dissertation (a work in progress), and McCrea and Morgan (2014).

As a demonstration of the JSSA framework, I use the classic European dipper data of Lebreton et al. (1992). I first convert the dataset into the \(M\)-array, since the data is in capture history format.

-
-
import numpy as np
-import matplotlib.pyplot as plt
-import arviz as az
-import pymc as pm 
-import pytensor.tensor as pt
-
-from pymc.distributions.dist_math import factln
-from scipy.linalg import circulant
-
-plt.style.use('fivethirtyeight')
-plt.rcParams['axes.facecolor'] = 'white'
-plt.rcParams['figure.facecolor'] = 'white'
-
-def create_recapture_array(history):
-    """Create the recapture array from a capture history."""
-    _, occasion_count = history.shape
-    interval_count = occasion_count - 1
-
-    recapture_array = np.zeros((interval_count, interval_count), int)
-    for occasion in range(occasion_count - 1):
-
-        # which individuals, captured at t, were later recaptured?
-        captured_this_time = history[:, occasion] == 1
-        captured_later = (history[:, (occasion + 1):] > 0).any(axis=1)
-        now_and_later = captured_this_time & captured_later
-        
-        # when were they next recaptured? 
-        remaining_history = history[now_and_later, (occasion + 1):]
-        next_capture_occasion = (remaining_history.argmax(axis=1)) + occasion 
-
-        # how many of them were there?
-        ind, count = np.unique(next_capture_occasion, return_counts=True)
-        recapture_array[occasion, ind] = count
-        
-    return recapture_array.astype(int)
+
+
from pymc.distributions.dist_math import factln
+from scipy.linalg import circulant
+
+import seaborn as sns
+import numpy as np
+import matplotlib.pyplot as plt
+import arviz as az
+import pymc as pm 
+import pytensor.tensor as pt
+
+plt.style.use('fivethirtyeight')
+plt.rcParams['axes.facecolor'] = 'white'
+plt.rcParams['figure.facecolor'] = 'white'
+plt.rcParams['axes.spines.left'] = False
+plt.rcParams['axes.spines.right'] = False
+plt.rcParams['axes.spines.top'] = False
+plt.rcParams['axes.spines.bottom'] = False
+sns.set_palette("tab10")
+
+def create_recapture_array(history):
+    """Create the recapture array from a capture history."""
+    _, occasion_count = history.shape
+    interval_count = occasion_count - 1
+
+    recapture_array = np.zeros((interval_count, interval_count), int)
+    for occasion in range(occasion_count - 1):
+
+        # which individuals, captured at t, were later recaptured?
+        captured_this_time = history[:, occasion] == 1
+        captured_later = (history[:, (occasion + 1):] > 0).any(axis=1)
+        now_and_later = captured_this_time & captured_later
+        
+        # when were they next recaptured? 
+        remaining_history = history[now_and_later, (occasion + 1):]
+        next_capture_occasion = (remaining_history.argmax(axis=1)) + occasion 
 
-def create_m_array(history):
-    '''Create the m-array from a capture history.'''
-
-    # leftmost column of the m-array
-    number_released = history.sum(axis=0)
+        # how many of them were there?
+        ind, count = np.unique(next_capture_occasion, return_counts=True)
+        recapture_array[occasion, ind] = count
+        
+    return recapture_array.astype(int)
 
-    # core of the m-array 
-    recapture_array = create_recapture_array(history)
-    number_recaptured = recapture_array.sum(axis=1)
-
-    # no animals that were released on the last occasion are recaptured
-    number_recaptured = np.append(number_recaptured, 0)
-    never_recaptured = number_released - number_recaptured
-
-    # add a dummy row at the end to make everything stack 
-    zeros = np.zeros(recapture_array.shape[1])
-    recapture_array = np.row_stack((recapture_array, zeros))
-
-    # stack the relevant values into the m-array 
-    m_array = np.column_stack((number_released, recapture_array, never_recaptured))
-
-    return m_array.astype(int)
-
-def fill_lower_diag_ones(x):
-    '''Fill the lower diagonal of a matrix with ones.'''
-    return pt.triu(x) + pt.tril(pt.ones_like(x), k=-1)
+def create_m_array(history):
+    '''Create the m-array from a capture history.'''
+
+    # leftmost column of the m-array
+    number_released = history.sum(axis=0)
+
+    # core of the m-array 
+    recapture_array = create_recapture_array(history)
+    number_recaptured = recapture_array.sum(axis=1)
+
+    # no animals that were released on the last occasion are recaptured
+    number_recaptured = np.append(number_recaptured, 0)
+    never_recaptured = number_released - number_recaptured
+
+    # add a dummy row at the end to make everything stack 
+    zeros = np.zeros(recapture_array.shape[1])
+    recapture_array = np.row_stack((recapture_array, zeros))
+
+    # stack the relevant values into the m-array 
+    m_array = np.column_stack((number_released, recapture_array, never_recaptured))
 
-dipper = np.loadtxt('dipper.csv', delimiter=',').astype(int)
-dipper[:5]
-
+ return m_array.astype(int) + +def fill_lower_diag_ones(x): + '''Fill the lower diagonal of a matrix with ones.''' + return pt.triu(x) + pt.tril(pt.ones_like(x), k=-1) + +dipper = np.loadtxt('dipper.csv', delimiter=',').astype(int) +dipper[:5]
+
array([[1, 1, 1, 1, 1, 1, 0],
        [1, 1, 1, 1, 0, 0, 0],
        [1, 1, 0, 0, 0, 0, 0],
@@ -415,10 +422,10 @@ 

Jolly-Seber-Schwarz-Arnason

[1, 1, 0, 0, 0, 0, 0]])
-
+
dipper_m = create_m_array(dipper)
 dipper_m
-
+
array([[22, 11,  2,  0,  0,  0,  0,  9],
        [60,  0, 24,  1,  0,  0,  0, 35],
        [78,  0,  0, 34,  2,  0,  0, 42],
@@ -429,7 +436,7 @@ 

Jolly-Seber-Schwarz-Arnason

The JSSA model requires modeling the number of unmarked animals that were released during an occasion. We can calculate this using the \(m\)-array by subtracting the number of marked animals who were released from the total number of released animals.

-
+
recapture_array = create_recapture_array(dipper)
 
 number_released = dipper_m[:,0]
@@ -444,12 +451,12 @@ 

Jolly-Seber-Schwarz-Arnason

) number_unmarked_released
-
+
array([22, 49, 52, 45, 41, 46, 39])

Similar to the CJS model, this model requires a number of tricks to vectorize the operations. Many pertain to the distribution of the unmarked individuals. Similar to occupancy notebook, I use a custom distribution to model the entrants into the population. Austin Rochford refers to this as an incomplete multinomial distribution.

-
+
n, occasion_count = dipper.shape
 interval_count = occasion_count - 1
 
@@ -464,7 +471,7 @@ 

Jolly-Seber-Schwarz-Arnason

# index for generating sequences like [[0], [0,1], [0,1,2]] alive_yet_unmarked_index = circulant(np.arange(occasion_count))
-
+
def logp(x, n, p):
     
     x_last = n - x.sum()
@@ -480,11 +487,11 @@ 

Jolly-Seber-Schwarz-Arnason

return res
-
+
# m-array for the CJS portion of the likelihood
 cjs_marr = dipper_m[:-1,1:]
 cjs_marr
-
+
array([[11,  2,  0,  0,  0,  0,  9],
        [ 0, 24,  1,  0,  0,  0, 35],
        [ 0,  0, 34,  2,  0,  0, 42],
@@ -576,7 +583,7 @@ 

Jolly-Seber-Schwarz-Arnason

) pm.model_to_graphviz(jssa)
-
+
@@ -589,7 +596,7 @@

Jolly-Seber-Schwarz-Arnason

-
+
with jssa:
     jssa_idata = pm.sample()
@@ -597,33 +604,18 @@

Jolly-Seber-Schwarz-Arnason

Initializing NUTS using jitter+adapt_diag... Multiprocess sampling (4 chains in 4 jobs) NUTS: [p, phi, b0, N] -Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 2 seconds. +Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 5 seconds.
- - +
- -
- - 100.00% [8000/8000 00:01<00:00 Sampling 4 chains, 0 divergences] -
- +

+
+
+

 
@@ -641,7 +633,7 @@

Jolly-Seber-Schwarz-Arnason

- +
Figure 2: Traceplots for the dipper JSSA model. MLEs from the openCR package shown by vertical and horizontal lines. @@ -713,7 +705,7 @@

Jolly-Seber-Schwarz-Arnason

- +
Figure 4: Posterior draws of \(N,\) \(b_0,\) and \(p\) from the dipper JSSA model. @@ -734,6 +726,9 @@

Jolly-Seber-Schwarz-Arnason

McCrea, Rachel S, and Byron JT Morgan. 2014. Analysis of Capture-Recapture Data. CRC Press.
+ + @@ -353,47 +354,53 @@

Community occupancy

US Breeding Bird Survey

As a motivating example, I use the breeding bird survey (BBS) data used by Dorazio and Royle (2005) and Royle and Dorazio (2008), Chapter 12. This is a \((n, J)\) matrix with the number of times each species was detected over \(K\) surveys, where \(n\) is the number of detected species and \(J\) is the number surveyed sites. In this example, \(n=99\) species were detected at the \(J=50\) sites over the \(K=11\) surveys in New Hampshire. The BBS occurs on routes across the US. This dataset represents one route.

-
-
import numpy as np
-import pandas as pd
-import pymc as pm
-import arviz as az
-import pandas as pd
-import matplotlib.pyplot as plt
-from matplotlib.patches import Patch
-
-SEED = 808
-RNG = np.random.default_rng(SEED)
-
-plt.style.use('fivethirtyeight')
-plt.rcParams['axes.facecolor'] = 'white'
-plt.rcParams['figure.facecolor'] = 'white'
-
-def invlogit(x):
-    return 1 / (1 + np.exp(-x))
-
-# read in the detection data
-nh17 = pd.read_csv('detectionFreq.NH17.csv')
-Y = nh17.to_numpy()
-n, J = Y.shape
-K = Y.max()
+
+
import seaborn as sns
+import numpy as np
+import pandas as pd
+import pymc as pm
+import arviz as az
+import pandas as pd
+import matplotlib.pyplot as plt
+from matplotlib.patches import Patch
+
+SEED = 808
+RNG = np.random.default_rng(SEED)
+
+plt.style.use('fivethirtyeight')
+plt.rcParams['axes.facecolor'] = 'white'
+plt.rcParams['figure.facecolor'] = 'white'
+plt.rcParams['axes.spines.left'] = False
+plt.rcParams['axes.spines.right'] = False
+plt.rcParams['axes.spines.top'] = False
+plt.rcParams['axes.spines.bottom'] = False
+sns.set_palette("tab10")
+
+def invlogit(x):
+    return 1 / (1 + np.exp(-x))
 
-# convert the species names to ints 
-species_idx, lookup = nh17.index.factorize() # lookup[int] returns the actual name
-
-# plot the detection frequencies
-fig, ax = plt.subplots(figsize=(4, 6))
-im = ax.imshow(Y[np.argsort(Y.sum(axis=1))], aspect='auto')
-ax.set_ylabel('Species')
-ax.set_xlabel('Site')
+# read in the detection data
+nh17 = pd.read_csv('detectionFreq.NH17.csv')
+Y = nh17.to_numpy()
+n, J = Y.shape
+K = Y.max()
+
+# convert the species names to ints 
+species_idx, lookup = nh17.index.factorize() # lookup[int] returns the actual name
 
-# add a legend
-values = np.unique(Y.ravel())[1::2]
-colors = [ im.cmap(im.norm(value)) for value in values]
-patches = [ Patch(color=colors[i], label=f'{v}') for i, v in enumerate(values) ]
-plt.legend(title='Detections', handles=patches, bbox_to_anchor=(1, 1), loc=2, borderaxespad=0.)
-ax.grid(False)
-plt.show()
+# plot the detection frequencies +fig, ax = plt.subplots(figsize=(4, 6)) +im = ax.imshow(Y[np.argsort(Y.sum(axis=1))], aspect='auto') +ax.set_ylabel('Species') +ax.set_xlabel('Site') + +# add a legend +values = np.unique(Y.ravel())[1::2] +colors = [ im.cmap(im.norm(value)) for value in values] +patches = [ Patch(color=colors[i], label=f'{v}') for i, v in enumerate(values) ] +plt.legend(title='Detections', handles=patches, bbox_to_anchor=(1, 1), loc=2, borderaxespad=0.) +ax.grid(False) +plt.show()
@@ -414,7 +421,7 @@

US Breeding Bird Survey

Known \(N\)

First, I fit the the known \(N\) version of the model. The goal of this version is to estimate occurrence and detection for each species, without estimating species richness.

This notebook makes extensive use of the coords feature in PyMC. Coords makes it easier to incorporate the species-level effects via the multivariate normal. I use a \(\text{Normal}(0, 2)\) prior for both \(\mu\) parameters, and a LKJ Cholesky covariance prior for \(\mathbf{\Sigma}.\)

-
+
coords = {'process': ['detection', 'occurrence'], 
           'process_bis': ['detection', 'occurrence'],
           'species': lookup}
@@ -445,7 +452,7 @@ 

Known \( pm.ZeroInflatedBinomial('Y', p=p, psi=psi, n=K, observed=Y) pm.model_to_graphviz(known)

-
+
@@ -458,7 +465,7 @@

Known \(

-
+
with known:
     known_idata = pm.sample()
@@ -466,36 +473,23 @@

Known \( Initializing NUTS using jitter+adapt_diag... Multiprocess sampling (4 chains in 4 jobs) NUTS: [mu, chol, ab] -Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 43 seconds. +/Users/philtpatton/miniforge3/envs/pymc/lib/python3.12/site-packages/pytensor/compile/function/types.py:959: RuntimeWarning: invalid value encountered in accumulate + self.vm() +Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 47 seconds.

- - +
- -
- - 100.00% [8000/8000 00:43<00:00 Sampling 4 chains, 0 divergences] -
- +

+
+
+

 
-
+
mu_hat_royle = [-1.11, -1.7]
 az.plot_trace(known_idata, var_names=['mu'], figsize=(8,2),
               lines=[("mu", {}, [mu_hat_royle])]);
@@ -512,7 +506,7 @@

Known \(

-
+
samps = az.extract(known_idata, var_names='ab')
 ab_mean = samps.mean(axis=2)
 
@@ -542,7 +536,7 @@ 

Known \(

Unknown \(N\)

Next, I train the unknown \(N\) version of the model. Like many other notebooks in this series, it relies on augmenting the detection histories with all-zero histories. These represent the detection histories for species that may use the study site, but were not detected over the \(K=11\) surveys. I also augment the species names in the coords dict, such that we can still use the dims argument in the multivariate normal. Mirroring Royle and Dorazio (2008), I augment the history \(M - n\) all-zero histories, where \(M=250\) and \(n\) is the number of species detected during the survey.

Similar to the occupancy notebook, I use a CustomDist to model the augmented history. This accounts for the “row-level” zero-inflation, whereby we know that the species is included in the super community if it was detected along the BBS route. The only difference with this logp is that it uses a ZeroInflatedBinomial distribution under the hood, rather than a Bernoulli, and uses the parameter \(\Omega\) to account for the row-level inflation.

-
+
M = 250
 all_zero_history = np.zeros((M - n, J))
 Y_augmented = np.row_stack((Y, all_zero_history))
@@ -572,7 +566,7 @@ 

Unknown with pm.Model(coords=coords) as unknown: # priors for inclusion - omega = pm.Uniform('omega', 0, 1) + omega = pm.Beta('omega', 0.001, 1) # priors for community-level means for detection and occurrence mu = pm.Normal('mu', 0, 2, dims='process') @@ -606,7 +600,7 @@

Unknown ) pm.model_to_graphviz(unknown)

-
+
@@ -619,7 +613,7 @@

Unknown +
with unknown:
     unknown_idata = pm.sample()
@@ -627,41 +621,143 @@

Unknown - - + +

+
+

 
+

+
+
+

We see some warnings about the effective sample size and the \(\hat{R}\) statistic. Some of these warnings may just relate to the individual random effects.

+
+
az.summary(unknown_idata, var_names=['omega', 'cov', 'mu'])
+
+
+
-
- - 100.00% [8000/8000 03:03<00:00 Sampling 4 chains, 0 divergences] -
- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
meansdhdi_3%hdi_97%mcse_meanmcse_sdess_bulkess_tailr_hat
omega0.5260.0690.4100.6550.0040.003400.0563.01.01
cov[detection, detection]1.2600.3350.7341.9050.0160.011458.0706.01.01
cov[detection, occurrence]1.3720.4850.5312.2980.0240.017408.0660.01.00
cov[occurrence, detection]1.3720.4850.5312.2980.0240.017408.0660.01.00
cov[occurrence, occurrence]5.0571.3632.8077.6880.0720.051361.0598.01.01
mu[detection]-2.0020.203-2.378-1.6230.0100.007438.0603.01.01
mu[occurrence]-2.0390.458-2.847-1.1790.0250.018349.0505.01.01
+ +
+
-
omega_hat_royle = [0.55]
-az.plot_trace(unknown_idata, var_names=['omega'], figsize=(8,2), 
-              lines=[("omega", {}, [omega_hat_royle])]);
+
omega_hat_royle = [0.55]
+az.plot_trace(unknown_idata, var_names=['omega'], figsize=(8,2), 
+              lines=[("omega", {}, [omega_hat_royle])]);
@@ -677,34 +773,34 @@

Unknown \(N.\) This is slightly more complicated than before sinc there is an additional level of zero-inflation (included and never detected or not-included) in this model compared to the occupancy model (present and never detection or not present).

-
# relevant posterior samples
-post = az.extract(unknown_idata)
-o_samps = post.omega.to_numpy()
-psi_samps = post.psi.to_numpy()[n:, :]
-p_samps = post.p.to_numpy()[n:, :]
-
-# probability that the animal was never detected during the survey if present
-p_not_detected = (1 - p_samps) ** K
-
-# probability of a zero detection history 
-p_zero_hist = psi_samps * p_not_detected + (1 - psi_samps)
-
-# probability that the species was included in the given the all-zero history
-p_included = (o_samps * p_zero_hist ** J) / (o_samps * p_zero_hist ** J + (1 - o_samps))
-
-# posterior samples of N
-number_undetected = RNG.binomial(1, p_included).sum(axis=0)
-N_samps = n + number_undetected
-
-# posterior distribution 
-N_hat_royle = 138
-fig, ax = plt.subplots(figsize=(6, 4))
-ax.hist(N_samps, edgecolor='white', bins=25)
-ax.set_xlabel('Species richness $N$')
-ax.set_ylabel('Posterior samples')
-ax.axvline(N_hat_royle, linestyle='--', color='C1')
-ax.axvline(N_samps.mean(), linestyle='--', color='C2')
-plt.show()
+
# relevant posterior samples
+post = az.extract(unknown_idata)
+o_samps = post.omega.to_numpy()
+psi_samps = post.psi.to_numpy()[n:, :]
+p_samps = post.p.to_numpy()[n:, :]
+
+# probability that the animal was never detected during the survey if present
+p_not_detected = (1 - p_samps) ** K
+
+# probability of a zero detection history 
+p_zero_hist = psi_samps * p_not_detected + (1 - psi_samps)
+
+# probability that the species was included in the given the all-zero history
+p_included = (o_samps * p_zero_hist ** J) / (o_samps * p_zero_hist ** J + (1 - o_samps))
+
+# posterior samples of N
+number_undetected = RNG.binomial(1, p_included).sum(axis=0)
+N_samps = n + number_undetected
+
+# posterior distribution 
+N_hat_royle = 138
+fig, ax = plt.subplots(figsize=(6, 4))
+ax.hist(N_samps, edgecolor='white', bins=25)
+ax.set_xlabel('Species richness $N$')
+ax.set_ylabel('Posterior samples')
+ax.axvline(N_hat_royle, linestyle='--', color='C1')
+ax.axvline(N_samps.mean(), linestyle='--', color='C2')
+plt.show()
@@ -732,6 +828,9 @@

Unknown +{"state":{"82570e951a47467199d306bc732c6089":{"model_module":"@jupyter-widgets/base","model_module_version":"2.0.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"2.0.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"2.0.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border_bottom":null,"border_left":null,"border_right":null,"border_top":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"9351aad5e068430687cb0feeb90304f8":{"model_module":"@jupyter-widgets/output","model_module_version":"1.0.0","model_name":"OutputModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/output","_model_module_version":"1.0.0","_model_name":"OutputModel","_view_count":null,"_view_module":"@jupyter-widgets/output","_view_module_version":"1.0.0","_view_name":"OutputView","layout":"IPY_MODEL_82570e951a47467199d306bc732c6089","msg_id":"","outputs":[{"data":{"text/html":"
Sampling 4 chains, 0 divergences ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00 / 0:00:47\n
\n","text/plain":"Sampling 4 chains, 0 divergences \u001b[32m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m / \u001b[33m0:00:47\u001b[0m\n"},"metadata":{},"output_type":"display_data"}],"tabbable":null,"tooltip":null}},"a24e886341c24198950e9367a3b1ce41":{"model_module":"@jupyter-widgets/base","model_module_version":"2.0.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"2.0.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"2.0.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border_bottom":null,"border_left":null,"border_right":null,"border_top":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"a6a5a2e27fb747929160ed8d5fba1db4":{"model_module":"@jupyter-widgets/base","model_module_version":"2.0.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"2.0.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"2.0.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border_bottom":null,"border_left":null,"border_right":null,"border_top":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"abdb80a2d75c4bd7b842f6f0d95f94c4":{"model_module":"@jupyter-widgets/base","model_module_version":"2.0.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"2.0.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"2.0.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border_bottom":null,"border_left":null,"border_right":null,"border_top":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"ad07c1ca6a0c43bbb60676ce9f9a6105":{"model_module":"@jupyter-widgets/output","model_module_version":"1.0.0","model_name":"OutputModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/output","_model_module_version":"1.0.0","_model_name":"OutputModel","_view_count":null,"_view_module":"@jupyter-widgets/output","_view_module_version":"1.0.0","_view_name":"OutputView","layout":"IPY_MODEL_a6a5a2e27fb747929160ed8d5fba1db4","msg_id":"","outputs":[{"data":{"text/html":"
Sampling 4 chains, 0 divergences ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00 / 0:03:06\n
\n","text/plain":"Sampling 4 chains, 0 divergences \u001b[32m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m / \u001b[33m0:03:06\u001b[0m\n"},"metadata":{},"output_type":"display_data"}],"tabbable":null,"tooltip":null}},"d73c1b49cd23437b86d6ab7648db7670":{"model_module":"@jupyter-widgets/output","model_module_version":"1.0.0","model_name":"OutputModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/output","_model_module_version":"1.0.0","_model_name":"OutputModel","_view_count":null,"_view_module":"@jupyter-widgets/output","_view_module_version":"1.0.0","_view_name":"OutputView","layout":"IPY_MODEL_abdb80a2d75c4bd7b842f6f0d95f94c4","msg_id":"","outputs":[{"data":{"text/html":"
Sampling 4 chains, 0 divergences ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00 / 0:00:43\n
\n","text/plain":"Sampling 4 chains, 0 divergences \u001b[32m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m / \u001b[33m0:00:43\u001b[0m\n"},"metadata":{},"output_type":"display_data"}],"tabbable":null,"tooltip":null}},"fd2f818e66f34cc4bd88b0aa8e582719":{"model_module":"@jupyter-widgets/output","model_module_version":"1.0.0","model_name":"OutputModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/output","_model_module_version":"1.0.0","_model_name":"OutputModel","_view_count":null,"_view_module":"@jupyter-widgets/output","_view_module_version":"1.0.0","_view_name":"OutputView","layout":"IPY_MODEL_a24e886341c24198950e9367a3b1ce41","msg_id":"","outputs":[{"data":{"text/html":"
Sampling 4 chains, 0 divergences ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00 / 0:02:55\n
\n","text/plain":"Sampling 4 chains, 0 divergences \u001b[32m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[35m100%\u001b[0m \u001b[36m0:00:00\u001b[0m / \u001b[33m0:02:55\u001b[0m\n"},"metadata":{},"output_type":"display_data"}],"tabbable":null,"tooltip":null}}},"version_major":2,"version_minor":0} + + @@ -350,94 +351,105 @@

Spatial capture-recapture

In this notebook, I train the simplest possible SCR model, SCR0 (Royle et al. 2013, chap. 5), where the goal is estimating the true population size \(N\). Similar to the other closed population notebooks, I do so using parameter-expanded data-augmentation (PX-DA). I also borrow the concept of the detection function from the distance sampling notebook.

As a motivating example, I use the ovenbird mist netting dataset provided by Murray Efford via the secr package in R. The design of the study is outlined in Efford, Dawson, and Robbins (2004) and Borchers and Efford (2008). In this dataset, ovenbirds were trapped in 44 mist nets over 8 to 10 consecutive days during the summers of 2005 to 2009.

-
import numpy as np
-import pandas as pd
-import matplotlib.pyplot as plt
-import pytensor.tensor as pt 
-import pymc as pm
-import arviz as az
-from pymc.distributions.dist_math import binomln, logpow
-
-# hyper parameters
-SEED = 42
-RNG = np.random.default_rng(SEED)
-BUFFER = 100
-M = 200
-
-# plotting defaults
-plt.style.use('fivethirtyeight')
-plt.rcParams['axes.facecolor'] = 'white'
-plt.rcParams['figure.facecolor'] = 'white'
-
-def invlogit(x):
-    '''Inverse logit function'''
-    return 1 / (1 + np.exp(-x))
-
-def euclid_dist(X, S, library='np'):
-    '''Pairwise euclidian distance between points in (M, 2) and (N, 2) arrays'''
-    diff = X[np.newaxis, :, :] - S[:, np.newaxis, :]
-    
-    if library == 'np':
-        return np.sqrt(np.sum(diff ** 2, axis=-1))
-        
-    elif library == 'pm': 
-        return pm.math.sqrt(pm.math.sum(diff ** 2, axis=-1))
-
-def half_normal(d, s, library='np'):
-    '''Half normal detection function.'''
-    if library == 'np':
-        return np.exp( - (d ** 2) / (2 * s ** 2))
-        
-    elif library == 'pm':
-        return pm.math.exp( - (d ** 2) / (2 * s ** 2))
-
-def exponential(d, s, library='np'):
-    '''Negative exponential detection function.'''    
-    if library == 'np':
-        return np.exp(- d / s)
-        
-    elif library == 'pm':
-        return pm.math.exp(- d / s)
-
-# coordinates for each trap 
-ovenbird_trap = pd.read_csv('ovenbirdtrap.txt', delimiter=' ')
-trap_count, _ = ovenbird_trap.shape
-
-# information about each trap 
-trap_x = ovenbird_trap.x
-trap_y = ovenbird_trap.y
-X = ovenbird_trap[['x', 'y']].to_numpy()
-
-# define the state space around the traps
-x_max = trap_x.max() + BUFFER
-y_max = trap_y.max() + BUFFER
-x_min = trap_x.min() - BUFFER
-y_min = trap_y.min() - BUFFER
+
import seaborn as sns
+import numpy as np
+import pandas as pd
+import matplotlib.pyplot as plt
+import pytensor.tensor as pt 
+import pymc as pm
+import arviz as az
+from pymc.distributions.dist_math import binomln, logpow
+
+# hyper parameters
+SEED = 42
+RNG = np.random.default_rng(SEED)
+BUFFER = 100
+M = 200
+
+# plotting defaults
+plt.style.use('fivethirtyeight')
+plt.rcParams['axes.facecolor'] = 'white'
+plt.rcParams['figure.facecolor'] = 'white'
+plt.rcParams['axes.spines.left'] = False
+plt.rcParams['axes.spines.right'] = False
+plt.rcParams['axes.spines.top'] = False
+plt.rcParams['axes.spines.bottom'] = False
+sns.set_palette("tab10")
+
+def invlogit(x):
+    '''Inverse logit function'''
+    return 1 / (1 + np.exp(-x))
+
+def euclid_dist(X, S, library='np'):
+    '''Pairwise euclidian distance between points in (M, 2) and (N, 2) arrays'''
+    diff = X[np.newaxis, :, :] - S[:, np.newaxis, :]
+    
+    if library == 'np':
+        return np.sqrt(np.sum(diff ** 2, axis=-1))
+        
+    elif library == 'pm': 
+        return pm.math.sqrt(pm.math.sum(diff ** 2, axis=-1))
+
+def half_normal(d, s, library='np'):
+    '''Half normal detection function.'''
+    if library == 'np':
+        return np.exp( - (d ** 2) / (2 * s ** 2))
+        
+    elif library == 'pm':
+        return pm.math.exp( - (d ** 2) / (2 * s ** 2))
+
+def exponential(d, s, library='np'):
+    '''Negative exponential detection function.'''    
+    if library == 'np':
+        return np.exp(- d / s)
+        
+    elif library == 'pm':
+        return pm.math.exp(- d / s)
+
+# coordinates for each trap 
+ovenbird_trap = pd.read_csv('ovenbirdtrap.txt', delimiter=' ')
+trap_count, _ = ovenbird_trap.shape
+
+# information about each trap 
+trap_x = ovenbird_trap.x
+trap_y = ovenbird_trap.y
+X = ovenbird_trap[['x', 'y']].to_numpy()
 
-# plot the trap locations
-fig, ax = plt.subplots(figsize=(4, 4))
-
-# plot the traps
-ax.scatter(trap_x, trap_y, marker='x', s=40, linewidth=1.5, color='C1')
-ax.set_ylim((y_min, y_max))
-ax.set_xlim((x_min, x_max))
-
-ax.annotate(
-    '44 nets\n30m apart', ha='center',
-    xy=(55, -150), xycoords='data', color='black',
-    xytext=(40, 30), textcoords='offset points',
-    arrowprops=dict(arrowstyle="->", color='black', linewidth=1,
-                    connectionstyle="angle3,angleA=90,angleB=0"))
-
-# aesthetics 
-ax.set_title('Mist net locations')
-ax.grid(False)
-plt.show()
+# define the state space around the traps +x_max = trap_x.max() + BUFFER +y_max = trap_y.max() + BUFFER +x_min = trap_x.min() - BUFFER +y_min = trap_y.min() - BUFFER + +# scale for plotting +scale = (y_max - y_min) / (x_max - x_min) + +# plot the trap locations +plot_width = 2 +plot_height = plot_width * scale +fig, ax = plt.subplots(figsize=(plot_width, plot_height)) + +# plot the traps +ax.scatter(trap_x, trap_y, marker='x', s=40, linewidth=1.5, color='C1') +ax.set_ylim((y_min, y_max)) +ax.set_xlim((x_min, x_max)) + +ax.annotate( + '44 nets\n30m apart', ha='center', + xy=(55, -150), xycoords='data', color='black', + xytext=(40, 30), textcoords='offset points', + arrowprops=dict(arrowstyle="->", color='black', linewidth=1, + connectionstyle="angle3,angleA=90,angleB=0")) + +# aesthetics +ax.set_title('Mist net locations') +ax.grid(False) +plt.show()
- +
Figure 1: Locations of the mist nets in the ovenbird dataset (Efford, Dawson, and Robbins 2004) @@ -448,7 +460,7 @@

Spatial capture-recapture

One difference between spatial and traditional (non-spatial) capture is the addition of the trap identifier in the capture history. Whereas a traditional capture history is [individual, occasion], a spatial capture history might be [individual, occasion, trap].

In the ovenbird example, I ignore the year dimension, pooling parameters across years, which allows for better estimation of the detection parameters. My hack for doing so is treating every band/year combination as a unique individual in a combined year capture history. This is easy to implement, creates an awkward interpretation of \(N\) (see below).

-
+
# ovenbird capture history
 oven_ch = pd.read_csv('ovenbirdcapt.txt', delimiter=' ')
 
@@ -465,7 +477,7 @@ 

Spatial capture-recapture

) ovenbird.head(10)
-
+
@@ -573,7 +585,7 @@

Spatial capture-recapture

Simulation

Before estimating the parameters, I perform a small simulation. The simulation starts with a core idea of SCR: the activity center. The activity center \(\mathbf{s}_i\) is the most likely place that you’d find an individual \(i\) over the course of the trapping study. In this case, I assume that activity centers are uniformly distributed across the sample space.

I compute the probability of detection for individual \(i\) at trap \(j\) as \(p_{i,j}=g_0 \exp(-d_{i,j}^2/2\sigma^2),\) where \(g_0\) is the probability of detecting an individual when it’s activity center is at the trap, \(d_{i,j}\) is the euclidean distance between the trap and the activity center, and \(\sigma\) is the detection range parameter.

-
+
# true population size
 N = 150
 
@@ -627,7 +639,7 @@ 

Simulation

) pm.model_to_graphviz(known)
-
+
@@ -640,7 +652,7 @@

Simulation

-
+
with known:
     known_idata = pm.sample()
@@ -648,38 +660,23 @@

Simulation

Initializing NUTS using jitter+adapt_diag... Multiprocess sampling (4 chains in 4 jobs) NUTS: [sx, sy, g0, sigma] -Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 12 seconds.

+Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 30 seconds.
- - +
- -
- - 100.00% [8000/8000 00:11<00:00 Sampling 4 chains, 0 divergences] -
- +

+
+
+

 
-
+
az.summary(known_idata, var_names=['g0', 'sigma'])
-
+
@@ -702,26 +699,26 @@

Simulation

g0 -0.034 +0.033 0.004 -0.027 -0.042 +0.026 +0.041 0.000 0.000 -1405.0 -2315.0 +1658.0 +2048.0 1.0 sigma -79.049 -5.218 -69.174 -88.637 -0.183 -0.129 -818.0 -1497.0 +79.346 +5.245 +69.512 +89.283 +0.177 +0.125 +892.0 +1696.0 1.0 @@ -756,7 +753,7 @@

Simulation

Ovenbird density

Now, I estimate the density \(D\) for the ovenbird population. Like distance sampling, SCR can robustly estimate the density of the population, regardless of the size of the state space. The difference between the model above and this one is that we use PX-DA to estimate the inclusion probability \(\psi,\) and subsequently \(N.\) First, I convert the DataFrame to a (n_detected, n_traps) array of binomial counts.

-
+
def get_Y(ch):
     '''Get a (individual_count, trap_count) array of detections.'''
 
@@ -805,7 +802,7 @@ 

Ovenbird density

sigma = pm.Uniform('sigma', 0, U_SIGMA) # inclusion probability - psi = pm.Uniform('psi', 0, 1) + psi = pm.Beta('psi', 0.001, 1) # compute the capture probability distance = euclid_dist(X, S, 'pm') @@ -822,7 +819,7 @@

Ovenbird density

) pm.model_to_graphviz(oven)
-
+
@@ -835,7 +832,7 @@

Ovenbird density

-
+
with oven:
     oven_idata = pm.sample()
@@ -843,38 +840,23 @@

Ovenbird density

Initializing NUTS using jitter+adapt_diag... Multiprocess sampling (4 chains in 4 jobs) NUTS: [sx, sy, g0, sigma, psi] -Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 21 seconds. +Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 66 seconds.
- - +
- -
- - 100.00% [8000/8000 00:21<00:00 Sampling 4 chains, 0 divergences] -
- +

 
+
+

 
-
+
+
az.summary(oven_idata, var_names=['g0', 'sigma', 'psi'])
-
+
@@ -900,35 +882,35 @@

Ovenbird density

0.029 0.004 0.022 -0.037 +0.036 0.000 0.000 -1681.0 -2224.0 +1670.0 +2382.0 1.0 sigma -71.272 -4.671 -62.466 -79.901 -0.148 -0.105 -992.0 -1832.0 +71.342 +4.688 +63.007 +80.348 +0.158 +0.112 +892.0 +1478.0 1.0 psi -0.705 -0.056 -0.592 -0.804 -0.001 +0.700 +0.058 +0.594 +0.802 +0.002 0.001 -3180.0 -2736.0 +2537.0 +1590.0 1.0 @@ -963,7 +945,7 @@

Ovenbird density

The estimates are quite close to the maximum likelihood estimates, which I estimated using the secr package in R.

Finally, I estimate density \(D\) using the results. As in the closed capture-recapture and distance sampling notebooks, I use the posterior samples of \(\psi\) and \(M\) to sample the posterior of \(N.\) This \(N,\) however, has an awkward interpretation because I pooled across the years by combining all the detection histories. To get around this, I compute the average annual abundance by dividing by the total number of years in the sample. Then, I divide by the area of the state space.

-
+
def sim_N(idata, n, K):
 
     psi_samps = az.extract(idata).psi.to_numpy()
@@ -999,13 +981,13 @@ 

Ovenbird density

ax.axvline(D_mle, linestyle='--',color='C1') ax.set_xlabel('Ovenbirds per hectare') ax.set_ylabel('Number of samples') -ax.text(1.4, 800, f'$\hat{{D}}$={D_samples.mean():.2f}', va='bottom', ha='left') +ax.text(1.4, 800, rf'$\hat{{D}}$={D_samples.mean():.2f}', va='bottom', ha='left') plt.show()
- +
Figure 6: Posterior distribution of the density \(D\) of ovenbirds. The maximum likelihood estimate is shown by the dotted red line. @@ -1014,97 +996,114 @@

Ovenbird density

-

I also plot the estimated activity centers for every detected individual, as well as the posterior distribution for two of the detected individuals.

+

Sometimes, the location of the activity centers is of interest. Below, I plot the posterior median for the activity centers for the detected individuals,

sx_samps = az.extract(oven_idata).sx
 sy_samps = az.extract(oven_idata).sy
 
-sx_mean = sx_samps[:detected_count].mean(axis=1)
-sy_mean = sy_samps[:detected_count].mean(axis=1)
+sx_mean = np.median(sx_samps[:detected_count], axis=1)
+sy_mean = np.median(sy_samps[:detected_count], axis=1)
 
-one = 49
-sx1 = sx_samps[one]
-sy1 = sy_samps[one]
-
-two = 2
-sx2 = sx_samps[two]
-sy2 = sy_samps[two]
-
-# plot the trap locations
-fig, (ax0, ax1) = plt.subplots(2, 1, sharex=True, sharey=True, figsize=(5, 10),
-                               tight_layout=True)
-
-# plot the traps
-ax0.scatter(trap_x, trap_y, marker='x', s=40, linewidth=1.5, color='C1')
-ax0.set_ylim((y_min, y_max))
-ax0.set_xlim((x_min, x_max))
-
-# plot the mean activity centers
-ax0.scatter(sx_mean, sy_mean, marker='o', s=4, color='black')
-
-# aesthetics 
-ax0.set_title('Estimated activity centers')
-ax0.grid(False)
-
-# plot the traps
-ax1.scatter(trap_x, trap_y, marker='x', s=40, linewidth=1.5, color='C1')
-ax1.set_ylim((y_min, y_max))
-ax1.set_xlim((x_min, x_max))
-
-# plot the distributions of the activity centers
-ax1.scatter(sx1, sy1, marker='o', s=1, color='gray', alpha=0.2)
-ax1.scatter(sx2, sy2, marker='o', s=1, color='gray', alpha=0.2)
-
-# plot the mean
-ax1.scatter(sx1.mean(), sy1.mean(), marker='o', s=20, color='black')
-ax1.scatter(sx2.mean(), sy2.mean(), marker='o', s=20, color='black')
-
-# add the label
-ax1.text(sx1.mean(), sy1.mean() + 5, f'{one}', ha='center', va='bottom')
-ax1.text(sx2.mean(), sy2.mean() + 5, f'{two}', ha='center', va='bottom')
-
-# aesthetics 
-ax1.set_title('Posterior of two activity centers')
-ax1.grid(False)
-plt.show()
+# plot the trap locations +plot_width = 3 +plot_height = plot_width * scale +fig, ax = plt.subplots(figsize=(plot_width, plot_height)) + +# plot the traps +ax.scatter(trap_x, trap_y, marker='x', s=40, linewidth=1.5, color='C1') +ax.set_ylim((y_min, y_max)) +ax.set_xlim((x_min, x_max)) + +# plot the mean activity centers +ax.scatter(sx_mean, sy_mean, marker='o', s=4, color='C0') + +# aesthetics +ax.set_title('Estimated activity centers') +ax.grid(False)
- +
-Figure 7: Estimated activity centers for the detected individuals, and posterior distributions for two of them. +Figure 7: Estimated activity centers for the detected individuals
-

Finally, I plot the posterior distribution of the detection function.

-
-
xx = np.arange(BUFFER * 2)
-
-sigma_samps = az.extract(oven_idata).sigma.values.flatten()
-g0_samps = az.extract(oven_idata).g0.values.flatten()
-
-p_samps = np.array(
-    [g * half_normal(xx, s) for g, s in zip(g0_samps, sigma_samps)]
-)
-
-p_mean = p_samps.mean(axis=0)
-p_low = np.quantile(p_samps, 0.02, axis=0)
-p_high = np.quantile(p_samps, 0.98, axis=0)
-
-fig, ax = plt.subplots(figsize=(5,4))
+

We can also look at the uncertainty around those estimates. Below, I plot the posterior distribution of the activity centers for two individuals.

+
+
one = 49
+sx1 = sx_samps[one]
+sy1 = sy_samps[one]
+
+two = 2
+sx2 = sx_samps[two]
+sy2 = sy_samps[two]
+
+fig, ax = plt.subplots(figsize=(plot_width, plot_height))
+
+# plot the traps
+ax.scatter(trap_x, trap_y, marker='x', s=40, linewidth=1.5, color='C1')
+ax.set_ylim((y_min, y_max))
+ax.set_xlim((x_min, x_max))
 
-ax.plot(xx, p_mean, '-')
-ax.fill_between(xx, p_low, p_high, alpha=0.2)
-
-ax.set_title('Detection function')
-ax.set_ylabel(r'$p$')
-ax.set_xlabel(r'Distance (m)')
-
-plt.show()
+# plot the distributions of the activity centers +ax.scatter(sx1, sy1, marker='o', s=1, color='C0', alpha=0.2) +ax.scatter(sx2, sy2, marker='o', s=1, color='C0', alpha=0.2) + +# plot the mean +ax.scatter(sx1.mean(), sy1.mean(), marker='o', s=20, color='C0') +ax.scatter(sx2.mean(), sy2.mean(), marker='o', s=20, color='C0') + +# add the label +ax.text(sx1.mean(), sy1.mean() + 5, f'{one}', ha='center', va='bottom') +ax.text(sx2.mean(), sy2.mean() + 5, f'{two}', ha='center', va='bottom') + +# aesthetics +ax.set_title('Posterior of two activity centers') +ax.grid(False) +plt.show()
+
+
+
+
+ +
+
+Figure 8: Posterior distributions for two activity centers. +
+
+
+
+
+

Finally, I plot the posterior distribution of the detection function.

+
+
xx = np.arange(BUFFER * 2)
+
+sigma_samps = az.extract(oven_idata).sigma.values.flatten()
+g0_samps = az.extract(oven_idata).g0.values.flatten()
+
+p_samps = np.array(
+    [g * half_normal(xx, s) for g, s in zip(g0_samps, sigma_samps)]
+)
+
+p_mean = p_samps.mean(axis=0)
+p_low = np.quantile(p_samps, 0.02, axis=0)
+p_high = np.quantile(p_samps, 0.98, axis=0)
+
+fig, ax = plt.subplots(figsize=(5,4))
+
+ax.plot(xx, p_mean, '-')
+ax.fill_between(xx, p_low, p_high, alpha=0.2)
+
+ax.set_title('Detection function')
+ax.set_ylabel(r'$p$')
+ax.set_xlabel(r'Distance (m)')
+
+plt.show()
@@ -1112,7 +1111,7 @@

Ovenbird density

-Figure 8: Posterior distribution for the detection function. The line represents the posterior mean while the shaded area is the 96% interval. +Figure 9: Posterior distribution for the detection function. The line represents the posterior mean while the shaded area is the 96% interval.
@@ -1134,6 +1133,9 @@

Ovenbird density

Royle, J Andrew, Richard B Chandler, Rahel Sollmann, and Beth Gardner. 2013. Spatial Capture-Recapture. Academic press.
+