-
-
Notifications
You must be signed in to change notification settings - Fork 167
/
Copy pathtrainer_pytorch.py
147 lines (118 loc) · 5.04 KB
/
trainer_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
from argparse import ArgumentParser
import matplotlib.pyplot as plt
import torch
from torch import optim
from torch.nn import functional as F
from data import get_m4_data, dummy_data_generator
from nbeats_pytorch.model import NBeatsNet
CHECKPOINT_NAME = 'nbeats-training-checkpoint.th'
def get_script_arguments():
parser = ArgumentParser(description='N-Beats')
parser.add_argument('--disable-cuda', action='store_true', help='Disable CUDA')
parser.add_argument('--disable-plot', action='store_true', help='Disable interactive plots')
parser.add_argument('--task', choices=['m4', 'dummy'], required=True)
parser.add_argument('--test', action='store_true')
return parser.parse_args()
def split(arr, size):
arrays = []
while len(arr) > size:
slice_ = arr[:size]
arrays.append(slice_)
arr = arr[size:]
arrays.append(arr)
return arrays
def batcher(dataset, batch_size, infinite=False):
while True:
x, y = dataset
for x_, y_ in zip(split(x, batch_size), split(y, batch_size)):
yield x_, y_
if not infinite:
break
def main():
args = get_script_arguments()
device = torch.device('cuda') if not args.disable_cuda and torch.cuda.is_available() else torch.device('cpu')
forecast_length = 10
backcast_length = 5 * forecast_length
batch_size = 4 # greater than 4 for viz
if args.task == 'm4':
data_gen = batcher(get_m4_data(backcast_length, forecast_length), batch_size=batch_size, infinite=True)
elif args.task == 'dummy':
data_gen = dummy_data_generator(backcast_length, forecast_length,
signal_type='seasonality', random=True,
batch_size=batch_size)
else:
raise Exception('Unknown task.')
print('--- Model ---')
net = NBeatsNet(device=device,
stack_types=[NBeatsNet.TREND_BLOCK, NBeatsNet.SEASONALITY_BLOCK, NBeatsNet.GENERIC_BLOCK],
forecast_length=forecast_length,
thetas_dim=[2, 8, 3],
nb_blocks_per_stack=3,
backcast_length=backcast_length,
hidden_layer_units=1024,
share_weights_in_stack=False,
nb_harmonics=None)
optimiser = optim.Adam(net.parameters())
def plot_model(x, target, grad_step):
if not args.disable_plot:
print('plot()')
plot(net, x, target, backcast_length, forecast_length, grad_step)
max_grad_steps = 10000
if args.test:
max_grad_steps = 5
simple_fit(net, optimiser, data_gen, plot_model, device, max_grad_steps)
def simple_fit(net, optimiser, data_generator, on_save_callback=None, device=torch.device('cpu'), max_grad_steps=10000):
print('--- Training ---')
initial_grad_step = load(net, optimiser)
for grad_step, (x, target) in enumerate(data_generator):
grad_step += initial_grad_step
optimiser.zero_grad()
net.train()
backcast, forecast = net(torch.tensor(x, dtype=torch.float).to(device))
loss = F.mse_loss(forecast, torch.tensor(target, dtype=torch.float).to(device))
loss.backward()
optimiser.step()
print(f'grad_step = {str(grad_step).zfill(6)}, loss = {loss.item():.6f}')
if grad_step % 1000 == 0 or (grad_step < 1000 and grad_step % 100 == 0):
with torch.no_grad():
save(net, optimiser, grad_step)
if on_save_callback is not None:
on_save_callback(x, target, grad_step)
if grad_step > max_grad_steps:
print('Finished.')
break
def save(model, optimiser, grad_step=0):
torch.save({
'grad_step': grad_step,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimiser.state_dict(),
}, CHECKPOINT_NAME)
def load(model, optimiser):
if os.path.exists(CHECKPOINT_NAME):
checkpoint = torch.load(CHECKPOINT_NAME)
model.load_state_dict(checkpoint['model_state_dict'])
optimiser.load_state_dict(checkpoint['optimizer_state_dict'])
grad_step = checkpoint['grad_step']
print(f'Restored checkpoint from {CHECKPOINT_NAME}.')
return grad_step
return 0
def plot(net, x, target, backcast_length, forecast_length, grad_step):
net.eval()
_, f = net(torch.tensor(x, dtype=torch.float))
subplots = [221, 222, 223, 224]
plt.figure(1)
plt.subplots_adjust(top=0.88)
for i in range(4):
ff, xx, yy = f.cpu().numpy()[i], x[i], target[i]
plt.subplot(subplots[i])
plt.plot(range(0, backcast_length), xx, color='b')
plt.plot(range(backcast_length, backcast_length + forecast_length), yy, color='g')
plt.plot(range(backcast_length, backcast_length + forecast_length), ff, color='r')
# plt.title(f'step #{grad_step} ({i})')
output = 'n_beats_{}.png'.format(grad_step)
plt.savefig(output)
plt.clf()
print('Saved image to {}.'.format(output))
if __name__ == '__main__':
main()