-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathgather-spc.R
289 lines (248 loc) · 13.8 KB
/
gather-spc.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
#' @title Gather measurements of different spectra types, corresponding
#' x-axis values and metadata from nested list.
#' @description Gather spectra, corresponding x-axis values, and device and
#' measurement metadata from a nested list into a spectra tibble, so that one
#' row represents one spectral measurement. Spectra, x-axis values and metadata
#' are mapped from the individual list elements (named after file name including
#' the extension) and transformed into (list-)columns of a spectra tibble,
#' which is an extended data frame. For each measurement, spectral data and
#' metadata are combined into one row of the tidy data frame. In addition, the ID
#' columns `unique_id`, `file_id`, and `sample_id` are extracted from
#' `"metadata"` (data frame) list entries and returned as identifier columns of
#' the spectra tibble. List-columns facilitate keeping related data together in
#' a rectangular data structure. They can be manipulated easily during
#' subsequent transformations, for example using the standardized functions of
#' the simplerspec data processing pipeline.
#' @param data Recursive list named with filename (`file_id`) at first level
#' entries, where each element containing a sample measurement has nested
#' metadata (`"metadata"`), spectra types (see `spc_types`), corresponding
#' x-axis values (see section *"Details on spectra data checks and matching"*).
#' The `data` list is a structural convention to organize spectra and their
#' metadata. It follows for example the list structure returned from the Bruker
#' OPUS binary reader `simplerspec::read_opus_univ()`.
#' @param spc_types Character vector with the spectra types to be extracted
#' from `data` list and gathered into list-columns. The spectra type names need
#' to exactly follow the naming conventions, and the element names and contents
#' need to be present at the second list hierarchy of `data`. These values are
#' allowed:
#' * `"spc"` (default): final raw spectra after atmospheric compensation, if
#' performed (named `AB` in Bruker OPUS software; results from referencing
#' sample to reference single channel reflectance and transforming to
#' absorbance).
#' * `"spc_nocomp"`: raw spectra without atmospheric correction
#' * `"sc_sm"`: Single channel reflectance spectra of the samples
#' * `"sc_rf"`: Single channel reflectance spectra of the reference (background
#' spectra)
#' * `"ig_sm"`: Interferograms of the sample spectra (currently only spectra
#' without x-axis list-columns are matched and returned)
#' * `"ig_rf"`: Interferograms of the reference spectra (currently only spectra
#' without x-axis list-columns are matched and returned)
#' @usage gather_spc(data, spc_types = "spc")
#' @section Details on spectra data checks and matching:
#' `gather_spc()` checks whether these conditions are met for each measurement
#' in the list `data`:
#' 1. Make sure that the first level `data` elements are named (assumed to be
#' the file name the data originate from), and remove missing measurements with
#' an informative message.
#' 2. Remove any duplicated file names and raise a message if there are
#' name duplicates at first level.
#' 3. Check whether `spc_types` inputs are supported (see argument `spc_types`)
#' and present at the second level of the `data` list. If not, remove
#' all data elements for incomplete spectral measurements.
#' 4. Match spectra types and possible corresponding x-axis types from
#' a lookup list. For each selected spectrum type (left), at least one of
#' the element names of the x-axis type (right) needs to be present for each
#' measurement in the list `data`:
#' * `"spc"` : `"wavenumbers"`, `"wavelengths"`, or `"x_values"`
#' * `"spc_nocomp"` : `"wavenumbers"`, `"wavelengths"`, or `"x_values"`
#' * `"sc_sm"` : `"wavenumbers_sc_sm"`, `"wavelengths_sc_sm"`, or
#' `"x_values_sc_sm"`
#' * `"sc_rf"` : `"wavenumbers_sc_rf"`, `"wavelengths_sc_rf"`, or
#' `"x_values_sc_rf"`
#' 5. Check if `"metadata"` elements are present and remove data elements for
#' measurements with missing or incorrectly named metadata elements
#' (message).
#' @return Spectra tibble (`spc_tbl` with classes `"tbl_df"`, `"tbl"`, and
#' `"data.frame"`) with the following (list-)columns:
#' * `"unique_id"`: Character vector with unique measurement identifier, likely
#' a string with file names in combination with date and time (extracted from
#' each `"metadata"` data frame column).
#' * `"file_id"` : Character vector with file name including the extension
#' (extracted from each `"metadata"` data frame column).
#' * `"sample_id"`: Character vector with sample identifier. For Bruker OPUS
#' binary files, this corresponds to the file name without the file extension
#' in integer increments of sample replicate measurements.
#' * One or multiple of `"spc"`, `"spc_nocomp"`, `"sc_sm"`, or `"sc_rf"`:
#' List(s) of data.table's containing spectra type(s).
#' * One or multiple of `"wavenumbers"`, `"wavelengths"`, `"x_values"`,
#' `"wavenumbers_sc_sm"`, `"wavelengths_sc_sm"`, `"x_values_sc_sm"`,
#' `"wavenumbers_sc_rf"`, `"wavelengths_sc_rf"`, or `"x_values_sc_rf"`:
#' List(s) of numeric vectors with matched x-axis values (see *"Details on
#' spectra data checks and matching"* below).
#' @importFrom rlang set_names
#' @export
gather_spc <- function(data,
spc_types = "spc") {
spc_types <- map(spc_types, rlang::sym)
spc_types_chr <- map_chr(spc_types, rlang::quo_name)
# Duplicate original data to refer to full `data` list in messages
data_origin <- data
## Make sure first level `data` elements are named
if (any(names(data) %in% "")) {
which_missing <- which(names(data) %in% "")
idx_nm_missing <- rlang::set_names(
names(data)[which_missing], which_missing)
message(paste0(length(which_missing), " `data` ",
ifelse(length(which_missing) > 1, "elements", "element"),
ifelse(length(which_missing) > 1, " have", " has"),
" missing `file_id` names. ",
ifelse(length(which_missing) > 1, "These", "This"), "`data` list index",
ifelse(length(which_missing) > 1, " positions\n", " position\n"),
ifelse(length(which_missing) > 1, "were", "was"),
" therefore removed:\n\n",
idx_nm_missing %>%
purrr::imap_chr(~ paste0(.y, " : ", .x)) %>% paste(collapse = " "),
"\n\n"))
data <- data[-which_missing]
}
## Check whether any file names (`file_id`'s) are duplicated;
## remove and raise warning in case duplicated
is_duplicated <- duplicated(names(data))
idx_nm_duplicated <- rlang::set_names(names(data)[is_duplicated],
which(is_duplicated))
if (any(is_duplicated)) {
message(paste0(sum(is_duplicated), " `file_id` named ",
ifelse(sum(is_duplicated) > 1, "elements", "element"), " of `data` ",
ifelse(sum(is_duplicated) > 1, "are", "is"),
" non-unique/duplicated\nand ",
ifelse(sum(is_duplicated) > 1, "were", "was"), " therefore removed:\n\n",
idx_nm_duplicated %>%
purrr::imap_chr(~ paste0(.y, " : ", .x)) %>% paste(collapse = " "),
"\n\n"))
data <- data[-is_duplicated]
}
## Check whether `spc_types` are allowed and present at the second level of
## the nested list `data`
spc_types_allowed <- c("spc", "spc_nocomp", "sc_sm", "sc_rf", "ig_sm",
"ig_rf")
spc_types_present <- spc_types_chr %in% spc_types_allowed
if (any(!spc_types_present)) {
options(useFancyQuotes = FALSE)
stop("The following spectrum types specified in `spc_types` are",
" not supported:\n\n",
paste(dQuote(spc_types_chr[!spc_types_present]), collapse = ", ")) }
## Collect names of spectrum types nested at second `file_id` `data` list
## level to check whether all specified `spc_types` are present in `data`;
## access sub-element names at that list level
data_types_byfile <- purrr::modify_depth(data, .depth = 1,
~ purrr::imap_chr(.x, ~ .y))
spc_types_byfile_in <- map(data_types_byfile, ~ spc_types_chr %in% .x)
if (any(map_lgl(spc_types_byfile_in, ~ any(!.x)))) {
which_rm <- map_lgl(spc_types_byfile_in, ~ any(!.x)) %>% which()
rm_origin <- names(data_origin[names(which_rm)])
rm_origin_lgl <- names(data_origin) %in% rm_origin
which_rm_origin <- rlang::set_names(rm_origin, which(rm_origin_lgl))
message(paste0("Spectrum types (second list level names) specified in",
" `spc_types` were not found\nwithin all first level elements ",
" of list `data` or are NULL (spectra data by `file_id`).\n",
"Therefore, all data elements for the corresponding",
" list indices and `file_id`'s\nwere removed from `data`:\n\n",
which_rm_origin %>%
purrr::imap_chr(~ paste0(.y, " : ", .x)) %>% paste(collapse = " "),
"\n\n"))
data <- data[- which_rm]
}
## Extract the spectra of different types by plucking all types specified in
## `spc_types_chr` argment into separate first list level elements
spc_mapped <- map(rlang::set_names(spc_types_chr),
~ pluck_depth(data = data, .depth = 1, .string = .x))
## Match and extract the values for the x-axis types
spc_type_x_axis <- list(
"spc" = c("wavenumbers", "wavelengths", "x_values"),
"spc_nocomp" = c("wavenumbers", "wavelengths", "x_values"),
"sc_sm" = c("wavenumbers_sc_sm", "wavelengths_sc_sm", "x_values_sc_sm"),
"sc_rf" = c("wavenumbers_sc_rf", "wavelengths_sc_rf", "x_values_sc_rf")
)
lcols_x_values_matching <- purrr::flatten_chr(spc_type_x_axis[spc_types_chr])
x_values_matching <- lcols_x_values_matching[lcols_x_values_matching
%in% unique(purrr::flatten_chr(data_types_byfile))]
# `data` has eventually been updated (removed `data` elements)
data_types_byfile <- purrr::modify_depth(data, .depth = 1,
~ purrr::imap_chr(.x, ~ .y))
x_value_types_byfile_in <- map(data_types_byfile, ~ x_values_matching %in% .x)
if (any(map_lgl(x_value_types_byfile_in, ~ any(!.x)))) {
which_rm <- map_lgl(x_value_types_byfile_in, ~ any(!.x)) %>% which()
rm_origin <- names(data_origin[names(which_rm)])
rm_origin_lgl <- names(data_origin) %in% rm_origin
which_rm_origin <- rlang::set_names(rm_origin, which(rm_origin_lgl))
message(paste0("These x-axis types (second list level names)",
" corresponding to \nspecified `spc_types` spectrum types were not",
" found within\nall first level elements or are NULL",
" (spectra data by `file_id`) of list `data`: \n\n",
paste(dQuote(x_values_matching), collapse = ", ")), "\n\n",
"Therefore, all data elements for the corresponding",
" list indices\nand `file_id`'s were removed from `data`:\n\n",
which_rm_origin %>%
purrr::imap_chr(~ paste0(.y, " : ", .x)) %>% paste(collapse = " "),
"\n\n")
data <- data[- which_rm]
spc_mapped <- map(spc_mapped, ~ .x[- which_rm])
}
x_values_mapped <- map(rlang::set_names(x_values_matching),
~ pluck_depth(data = data, .depth = 1, .string = .x))
## Combine the mapped spectra and correspoding x-axis types, and order
## list before returning spectral tibble (`spc_tbl`)
spc_x_axis_types_order <- c("spc", "wavenumbers", "wavelengths", "x_values",
"spc_nocomp",
"sc_sm", "wavenumbers_sc_sm", "wavelengths_sc_sm", "x_values_sc_sm",
"sc_rf", "wavenumbers_sc_rf", "wavelengths_sc_rf", "x_values_sc_rf",
"ig_sm", "ig_rf")
spc_x_values_mapped <- c(spc_mapped, x_values_mapped)
spc_x_axis_types_matched <- spc_x_axis_types_order[spc_x_axis_types_order %in%
names(spc_x_values_mapped)]
spc_x_values_mapped <- spc_x_values_mapped[spc_x_axis_types_matched]
## Check if `metadata` elements are present for all list first level elements
# `data` has eventually been updated (removed `data` elements)
data_types_byfile <- purrr::modify_depth(data, .depth = 1,
~ purrr::imap_chr(.x, ~ .y))
metadata_byfile_in <- map(data_types_byfile, ~ "metadata" %in% .x)
if (any(map_lgl(metadata_byfile_in, ~ any(!.x)))) {
which_rm <- map_lgl(metadata_byfile_in, ~ any(!.x)) %>% which()
rm_origin <- names(data_origin[names(which_rm)])
rm_origin_lgl <- names(data_origin) %in% rm_origin
which_rm_origin <- rlang::set_names(rm_origin, which(rm_origin_lgl))
message(paste0("`metadata` (second list level names) was not",
" found within\n all first level elements (`metadata` by `file_id`)",
" of list `data` or are NULL.\n\n",
"Therefore, all data elements for the corresponding",
" list indices\nand `file_id`'s were removed from `data`:\n\n",
which_rm_origin %>%
purrr::imap_chr(~ paste0(.y, " : ", .x)) %>% paste(collapse = " "),
"\n\n"))
data <- data[- which_rm]
spc_x_values_mapped <- map(spc_x_values_mapped, ~ .x[- which_rm])
}
## Extract metadata list elements and combine into tibble
metadata_mapped <- map(rlang::set_names(list("metadata")),
~ pluck_depth(data = data, .depth = 1, .string = .x))
metadata_df <- purrr::map_df(data, "metadata")
id_tbl <- tibble::as_tibble(
metadata_df[c("unique_id", "file_id", "sample_id")]
)
## Column bind all tibbles of metadata id's, metadata, spectra, and
## x-axis type values; return on combined spectral tibble (`spc_tbl`)
spc_tbl <- tibble::as_tibble(spc_x_values_mapped)
metadata_tbl <- tibble::as_tibble(metadata_mapped)
dplyr::bind_cols(list(id_tbl, metadata_tbl, spc_tbl))
}
# Helpers ----------------------------------------------------------------------
# Pluck out single elements from a list hierarchy level (`.depth`)
# specified in `.string` based on element names; All elements with the specified
# name will be transposed into a single list named by the element name.
# `pluck_depth` can be combined with `purrr::map` to extract elements of
# different names at all list nodes at the specified level, using e.g.
# map(rlang::set_names(c("spc", "spc_nocomp")),
# ~ pluck_depth(data = data, .depth = 1, .string = .x))
pluck_depth <- function(data, .depth = 1, .string = NULL) {
purrr::modify_depth(data, .depth = .depth, ~ purrr::pluck(.x, .string))
}