-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplot_training.py
243 lines (220 loc) · 8.18 KB
/
plot_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os.path
from typing import Tuple, Optional, Dict, Any, List
from bokeh.models import ColumnDataSource, Range1d, Slider, RangeSlider, Div
from bokeh.layouts import gridplot
from bokeh.plotting import save, output_file, figure, Figure
import click
from libcrap import load_json
from libcrap.visualization import get_distinguishable_colors
from dctn.visualization.log_parsing import Record, load_records
@click.command()
@click.argument("config-path", type=click.Path(exists=True, dir_okay=False, writable=False))
@click.argument("output-path", type=click.Path(exists=False, dir_okay=False, writable=True))
@click.option(
"--experiments-base-dir",
type=click.Path(exists=True, dir_okay=True, file_okay=False, writable=False),
default="/mnt/important/experiments",
)
@click.option("--big-plots/--no-big-plots", default=False)
def main(config_path: str, output_path: str, experiments_base_dir, big_plots: bool):
log_rel_fname = "log.log"
run_info_rel_fname = "run_info.txt"
run_info_useless_keys = frozenset(
{
"breakpoint_on_nan_loss",
"commit",
"device",
"ds_path",
"es_train_acc",
"es_train_mean_ce",
"es_val_acc",
"es_val_mean_ce",
"experiments_dir",
"keep_last_models",
"max_num_iters",
"patience",
"tb_batches",
"verbosity",
}
)
config: List[Dict[str, str]] = load_json(config_path)
experiments_rel_dirs: Tuple[str, ...] = tuple(d["rel_dir"] for d in config["experiments"])
experiments_names: Tuple[str, ...] = tuple(d["name"] for d in config["experiments"])
experiments_descriptions: Tuple[str, ...] = tuple(
d["description"] for d in config["experiments"]
)
runs_infos: Dict[str, Any] = tuple(
{
k: v
for k, v in load_json(
os.path.join(experiments_base_dir, experiment_rel_dir, run_info_rel_fname)
).items()
if k not in run_info_useless_keys
}
for experiment_rel_dir in experiments_rel_dirs
)
assert len(experiments_names) == len(experiments_rel_dirs)
colors = get_distinguishable_colors(len(experiments_names))
all_increasing_tracc_records: Tuple[Tuple[Record, ...], ...] = tuple(
load_records(
os.path.join(experiments_base_dir, experiment_dir, log_rel_fname),
increasing_tracc=True,
)
for experiment_dir in experiments_rel_dirs
)
all_records: Tuple[Tuple[Record, ...], ...] = tuple(
load_records(
os.path.join(experiments_base_dir, experiment_dir, log_rel_fname),
increasing_tracc=False,
)
for experiment_dir in experiments_rel_dirs
)
# output_file("one_eps_vacc_by_tracc.html")
output_file(output_path, mode="inline")
tools = "pan,wheel_zoom,box_zoom,reset,crosshair,hover,undo,redo,save"
tracc_range = Range1d(bounds=(0.0, 1.0))
vacc_range = Range1d(bounds=(0.0, 1.0))
nitd_range = Range1d(
0,
(maximum_nitd := max(records[-1].nitd for records in all_records)),
bounds=(0, maximum_nitd),
)
min_mce = min(
min(min(record.trmce for record in records) for records in all_records),
min(min(record.vmce for record in records) for records in all_records),
)
max_mce = max(
max(max(record.trmce for record in records) for records in all_records),
max(max(record.vmce for record in records) for records in all_records),
)
trmce_range = Range1d(0.0, max_mce, bounds=(min_mce, max_mce))
vmce_range = Range1d(0.0, max_mce, bounds=(min_mce, max_mce))
# plot vacc by tracc
vacc_by_tracc_plot = figure(
x_axis_label="train acc",
y_axis_label="val acc",
tools=tools,
x_range=tracc_range,
y_range=vacc_range,
**({"plot_height": 850, "plot_width": 1400} if big_plots else {}),
)
vacc_by_tracc_plot.line(
(0.0, 1.0), (0.0, 1.0), line_color="black", alpha=0.3, line_dash="dashed"
)
for experiment_name, records, color in zip(
experiments_names, all_increasing_tracc_records, colors
):
vacc_by_tracc_plot.line(
tuple(record.tracc for record in records),
tuple(record.vacc for record in records),
legend_label=experiment_name,
line_color=color,
)
vacc_by_tracc_plot.legend.location = "top_left"
vacc_by_tracc_plot.legend.click_policy = "hide"
def plot_something_by_nitd(
y_axis_label: str,
y_range: Range1d,
record_attr: str,
legend_location: str,
plot_height: Optional[int] = None,
) -> Figure:
plot = figure(
x_axis_label="number of iterations done",
y_axis_label=y_axis_label,
tools=tools,
x_range=nitd_range,
y_range=y_range,
**(
{"plot_height": 850, "plot_width": 1400}
if big_plots
else {"plot_height": plot_height}
),
)
for experiment_name, records, color in zip(experiments_names, all_records, colors):
plot.line(
tuple(record.nitd for record in records),
tuple(getattr(record, record_attr) for record in records),
legend_label=experiment_name,
line_color=color,
)
plot.legend.location = legend_location
plot.legend.click_policy = "hide"
return plot
x_by_nitd_plot_height = 300
vacc_by_nitd_plot = plot_something_by_nitd(
"val acc", vacc_range, "vacc", "bottom_right", x_by_nitd_plot_height
)
tracc_by_nitd_plot = plot_something_by_nitd(
"train acc", tracc_range, "tracc", "bottom_right", x_by_nitd_plot_height
)
vmce_by_nitd_plot = plot_something_by_nitd(
"val mean negative log likelihood",
vmce_range,
"vmce",
"top_right",
x_by_nitd_plot_height,
)
trmce_by_nitd_plot = plot_something_by_nitd(
"train mean negative log likelihood",
trmce_range,
"trmce",
"top_right",
x_by_nitd_plot_height,
)
def create_range_slider(range: Range1d, title: str, step: float) -> RangeSlider:
slider = RangeSlider(
start=range.start,
end=range.end,
step=step,
value=(range.bounds[0], range.bounds[1]),
title=title,
)
slider.js_link("value", range, "start", attr_selector=0)
slider.js_link("value", range, "end", attr_selector=1)
return slider
vmce_slider = create_range_slider(vmce_range, "val mean negative log likelihood", 0.05)
trmce_slider = create_range_slider(trmce_range, "train mean negative log likelihood", 0.05)
vacc_slider = create_range_slider(vacc_range, "val acc", 0.005)
tracc_slider = create_range_slider(tracc_range, "train acc", 0.005)
nitd_slider = create_range_slider(nitd_range, "number of iterations done", 10)
div = Div(
text=f'<p>{config["common_description"]}</p><ul style="list-style-type:circle;"><li>'
+ "</li><li>".join(
f"<b>{name}</b>: <i>{description}</i> : {run_info}"
for name, description, run_info in zip(
experiments_names, experiments_descriptions, runs_infos
)
)
+ "</li></ul>"
)
if big_plots:
p = gridplot(
(
(vacc_by_tracc_plot,),
(div,),
(vacc_slider,),
(tracc_slider,),
(vacc_by_nitd_plot,),
(tracc_by_nitd_plot,),
(vmce_slider,),
(trmce_slider,),
(nitd_slider,),
(vmce_by_nitd_plot,),
(trmce_by_nitd_plot,),
)
)
else:
p = gridplot(
(
(vacc_by_tracc_plot, div),
(vacc_slider, tracc_slider),
(vacc_by_nitd_plot, tracc_by_nitd_plot),
(vmce_slider, trmce_slider),
(nitd_slider,),
(vmce_by_nitd_plot, trmce_by_nitd_plot),
)
)
save(p)
if __name__ == "__main__":
main()