-
Notifications
You must be signed in to change notification settings - Fork 68
/
rpy2jac.m
118 lines (102 loc) · 3.35 KB
/
rpy2jac.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
%RPY2JAC Jacobian from RPY angle rates to angular velocity
%
% J = RPY2JAC(RPY, OPTIONS) is a Jacobian matrix (3x3) that maps ZYX roll-pitch-yaw angle
% rates to angular velocity at the operating point RPY=[R,P,Y].
%
% J = RPY2JAC(R, P, Y, OPTIONS) as above but the roll-pitch-yaw angles are passed
% as separate arguments.
%
% Options::
% 'xyz' Use XYZ roll-pitch-yaw angles
% 'yxz' Use YXZ roll-pitch-yaw angles
%
% Notes::
% - Used in the creation of an analytical Jacobian.
% - Angles in radians, rates in radians/sec.
%
% Reference::
% - Robotics, Vision & Control: Second Edition, P. Corke, Springer 2016; p232-3.
%
% See also eul2jac, rpy2r, SerialLink.jacobe.
% Copyright (C) 1993-2019 Peter I. Corke
%
% This file is part of The Spatial Math Toolbox for MATLAB (SMTB).
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, including without limitation the rights
% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
% of the Software, and to permit persons to whom the Software is furnished to do
% so, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in all
% copies or substantial portions of the Software.
%
% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
% FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
% COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
% IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
% CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
%
% https://github.com/petercorke/spatial-math
function J = rpy2jac(r, varargin)
opt.order = {'zyx', 'xyz', 'yxz'};
[opt,args] = tb_optparse(opt, varargin);
% unpack the arguments
if numcols(r) == 3
p = r(:,2);
y = r(:,3);
r = r(:,1);
elseif nargin >= 3
p = args{1};
y = args{2};
else
error('SMTB:rpy2jac:badarg', 'bad arguments')
end
switch opt.order
case 'xyz'
J = [
sin(p) 0 1
-cos(p)*sin(y) cos(y) 0
cos(p)*cos(y) sin(y) 0
];
case 'zyx'
J = [
cos(p)*cos(y), -sin(y), 0
cos(p)*sin(y), cos(y), 0
-sin(p), 0, 1
];
case 'yxz'
J = [
cos(p)*sin(y), cos(y), 0
-sin(p), 0, 1
cos(p)*cos(y), -sin(y), 0
];
end
%{
syms r p y rd pd yd wx wy wz real
syms rt(t) pt(t) yt(t)
order = 'yxz'
R = rpy2r(r, p, y, order);
Rt = rpy2r(rt, pt, yt, order);
dRdt = diff(Rt, t);
dRdt = subs(dRdt, {diff(rt(t),t), diff(pt(t),t), diff(yt(t),t),}, {rd,pd,yd});
dRdt = subs(dRdt, {rt(t),pt(t),yt(t)}, {r,p,y});
dRdt = formula(dRdt) % convert symfun to an array
w = vex(dRdt * R');
w = simplify(w)
clear A
rpyd = [rd pd yd];
for i=1:3
for j=1:3
C = coeffs(w(i), rpyd(j));
if length(C) == 1
A(i,j) = 0;
else
A(i,j) = C(2);
end
end
end
A
%}