-
Notifications
You must be signed in to change notification settings - Fork 68
/
ishomog2.m
68 lines (63 loc) · 2.32 KB
/
ishomog2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
%ISHOMOG2 Test if SE(2) homogeneous transformation matrix
%
% ISHOMOG2(T) is true (1) if the argument T is of dimension 3x3 or 3x3xN, else
% false (0).
%
% ISHOMOG2(T, 'check') as above, but also checks the validity of the rotation
% sub-matrix.
%
% Notes::
% - A valid rotation sub-matrix has determinant of 1.
% - The first form is a fast, but incomplete, test for a transform in SE(3).
%
% See also ISHOMOG, ISROT2, ISVEC.
% Copyright (C) 1993-2019 Peter I. Corke
%
% This file is part of The Spatial Math Toolbox for MATLAB (SMTB).
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, including without limitation the rights
% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
% of the Software, and to permit persons to whom the Software is furnished to do
% so, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in all
% copies or substantial portions of the Software.
%
% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
% FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
% COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
% IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
% CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
%
% https://github.com/petercorke/spatial-math
function h = ishomog2(T, rtest)
h = false;
d = size(T);
if ndims(T) >= 2
if ~(all(d(1:2) == [3 3]))
return %false
end
if nargin > 1
for i = 1:size(T,3)
% check rotational part
R = T(1:2,1:2,i);
e = R'*R - eye(2,2);
if norm(e) > 10*eps
return %false
end
e = abs(det(R) - 1);
if norm(e) > 10*eps
return %false
end
% check bottom row
if ~all(T(3,:,i) == [0 0 1])
return %false
end
end
end
end
h = true;
end