-
Notifications
You must be signed in to change notification settings - Fork 448
/
RTBPlot.m
846 lines (704 loc) · 32.7 KB
/
RTBPlot.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
%RTBPlot Plot utilities for Robotics Toolbox
% Copyright (C) 1993-2017, by Peter I. Corke
%
% This file is part of The Robotics Toolbox for MATLAB (RTB).
%
% RTB is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% RTB is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU Lesser General Public License for more details.
%
% You should have received a copy of the GNU Leser General Public License
% along with RTB. If not, see <http://www.gnu.org/licenses/>.
%
% http://www.petercorke.com
classdef RTBPlot
methods (Static)
function th = install_teach_panel(name, robot, q, opt)
%-------------------------------
% parameters for teach panel
bgcol = [135 206 250]/255; % background color
height = 0.06; % height of slider rows
%-------------------------------
%---- install the panel at the side of the figure
% find the right figure to put it in
c = findobj(gca, 'Tag', name); % check the current axes
if isempty(c)
% doesn't exist in current axes, look wider
c = findobj(0, 'Tag', name); % check all figures
if ~isempty(c)
ax = get(c(1), 'Parent'); % get first axis holding the robot
else
error('RTB:RTBPlot:install_teach_panel', 'no window found');
end
else
% found it in current axes
ax = gca;
end
teachhandles.fig = get(ax, 'Parent'); % get the figure that holds the axis
% shrink the current axes to make room
% [l b w h]
if opt.d_2d
ax.ZColor = 'none';
ax.Color = 'none';
ax.Position = [0.22 0.05 0.8 1];
else
ax.Position = [0.3 0 0.7 1];
end
teachhandles.curax = ax;
% create the panel itself
panel = uipanel(teachhandles.fig, ...
'Title', 'Teach', ...
'BackGroundColor', bgcol,...
'Position', [0 0 0.25 1]);
panel.Units = 'pixels'; % stop automatic resizing
teachhandles.panel = panel;
set(teachhandles.fig, 'Units', 'pixels');
set(teachhandles.fig, 'ResizeFcn', @(src,event) RTBPlot.resize_callback(robot, teachhandles));
%---- get the current robot state
% if isempty(q)
% % check to see if there are any graphical robots of this name
% rhandles = findobj('Tag', robot.name);
%
% % find the graphical element of this name
% assert(~isempty(rhandles), 'RTB:teach:badarg', 'No graphical robot of this name found');
%
% % get the info from its Userdata
% info = get(rhandles(1), 'UserData');
%
% % the handle contains current joint angles (set by plot)
% if ~isempty(info.q)
% q = info.q;
% end
% else
% robot.plot(q);
% end
teachhandles.q = q;
T6 = robot.fkine(q);
if isa(T6, 'SE2')
T6 = T6.SE3;
end
T6 = T6.T;
% we need to have qlim set to finite values for a prismatic joint
if isa(robot, 'SerialLink')
qlim = robot.qlim;
assert(~any(isinf(qlim(:))), 'RTB:teach:badarg', 'Must define joint coordinate limits for prismatic axes, set qlim properties for prismatic Links');
% set up scale factor, from actual limits in radians/metres to display units
qscale = ones(robot.n,1);
for j=1:robot.n
L=robot.links(j);
if opt.deg && L.isrevolute
qscale(j) = 180/pi;
end
end
else
% for an ETS*
for i=1:robot.n
if robot(i).isprismatic
qlim(i,:) = [0 2*robot(i).param];
else
qlim(i,:) = pi*[-1 1];
end
end
% set up scale factor, from actual limits in radians/metres to display units
qscale = ones(robot.n,1);
for j=1:robot.n
if ~robot(i).isprismatic && opt.deg
qscale(j) = 180/pi;
else
qscale(j) = 1;
end
end
end
teachhandles.qscale = qscale;
teachhandles.robot = robot;
teachhandles.q = q;
teachhandles.orientation = opt.orientation;
teachhandles.opt = opt;
%---- now make the sliders
n = robot.n;
for j=1:n
% slider label
uicontrol(panel, 'Style', 'text', ...
'Units', 'normalized', ...
'BackgroundColor', bgcol, ...
'Position', [0 height*(n-j+2) 0.15 height], ...
'FontUnits', 'normalized', ...
'FontSize', 0.5, ...
'String', sprintf('q%d', j));
% slider itself
q(j) = max( qlim(j,1), min( qlim(j,2), q(j) ) ); % clip to range
teachhandles.slider(j) = uicontrol(panel, 'Style', 'slider', ...
'Units', 'normalized', ...
'Position', [0.15 height*(n-j+2) 0.65 height], ...
'Min', qlim(j,1), ...
'Max', qlim(j,2), ...
'Value', q(j), ...
'TooltipString', sprintf('Joint %d value', j), ...
'Tag', sprintf('Slider%d', j));
% text box showing slider value, also editable
teachhandles.edit(j) = uicontrol(panel, 'Style', 'edit', ...
'Units', 'normalized', ...
'Position', [0.80 height*(n-j+2)+.01 0.20 0.9*height], ...
'BackgroundColor', bgcol, ...
'String', num2str(qscale(j)*q(j), 3), ...
'HorizontalAlignment', 'left', ...
'FontUnits', 'normalized', ...
'FontSize', 0.4, ...
'Tag', sprintf('Edit%d', j));
end
%---- set up the position display box
% X
uicontrol(panel, 'Style', 'text', ...
'Units', 'normalized', ...
'BackgroundColor', bgcol, ...
'Position', [0.05 1-height 0.2 height], ...
'FontUnits', 'normalized', ...
'FontSize', 0.9, ...
'HorizontalAlignment', 'left', ...
'String', 'x:');
teachhandles.t6.t(1) = uicontrol(panel, 'Style', 'text', ...
'Units', 'normalized', ...
'Position', [0.3 1-height 0.6 height], ...
'FontUnits', 'normalized', ...
'FontSize', 0.8, ...
'String', sprintf('%.3f ', T6(1,4)), ...
'TooltipString', 'End-effector x-coordinate', ...
'HorizontalAlignment', 'right', ...
'Tag', 'T6');
% Y
uicontrol(panel, 'Style', 'text', ...
'Units', 'normalized', ...
'BackgroundColor', bgcol, ...
'Position', [0.05 1-2*height 0.2 height], ...
'FontUnits', 'normalized', ...
'FontSize', 0.9, ...
'HorizontalAlignment', 'left', ...
'String', 'y:');
teachhandles.t6.t(2) = uicontrol(panel, 'Style', 'text', ...
'Units', 'normalized', ...
'Position', [0.3 1-2*height 0.6 height], ...
'FontUnits', 'normalized', ...
'FontSize', 0.8, ...
'TooltipString', 'End-effector y-coordinate', ...
'HorizontalAlignment', 'right', ...
'String', sprintf('%.3f ', T6(2,4)));
if ~opt.d_2d
% Z
uicontrol(panel, 'Style', 'text', ...
'Units', 'normalized', ...
'BackgroundColor', bgcol, ...
'Position', [0.05 1-3*height 0.2 height], ...
'FontUnits', 'normalized', ...
'FontSize', 0.9, ...
'HorizontalAlignment', 'left', ...
'String', 'z:');
teachhandles.t6.t(3) = uicontrol(panel, 'Style', 'text', ...
'Units', 'normalized', ...
'Position', [0.3 1-3*height 0.6 height], ...
'FontUnits', 'normalized', ...
'FontSize', 0.8, ...
'TooltipString', 'End-effector z-coordinate', ...
'HorizontalAlignment', 'right', ...
'String', sprintf('%.3f ', T6(3,4)));
end
% Orientation
switch opt.orientation
case 'approach'
labels = {'ax:', 'ay:', 'az:'};
tips = {'Approach vector - x component', 'Approach vector - y component', 'Approach vector - z component'};
case 'eul'
labels = {[char(hex2dec('3c6')) ':'], [char(hex2dec('3b8')) ':'], [char(hex2dec('3c8')) ':']}; % phi theta psi
tips = {'Euler angle phi (about Z)', 'Euler angle theta (about Y)', 'Euler angle psi (about Z)'};
case {'rpy', 'rpy/xyz'}
labels = {'R:', 'P:', 'Y:'};
tips = {'Roll angle (about Z)', 'Pitch angle (about Y)', 'Yaw angle (about X)'};
case 'rpy/zyx'
labels = {'R:', 'P:', 'Y:'};
tips = {'Roll angle (about X)', 'Pitch angle (about Y)', 'Yaw angle (about Z)'};
end
%---- set up the orientation display box
if opt.d_2d
uicontrol(panel, 'Style', 'text', ...
'Units', 'normalized', ...
'BackgroundColor', bgcol, ...
'Position', [0.05 1-5*height 0.2 height], ...
'FontUnits', 'normalized', ...
'FontSize', 0.9, ...
'HorizontalAlignment', 'left', ...
'String', 'Yaw:');
teachhandles.t6.r(1) = uicontrol(panel, 'Style', 'text', ...
'Units', 'normalized', ...
'Position', [0.3 1-5*height 0.6 height], ...
'FontUnits', 'normalized', ...
'FontSize', 0.8, ...
'TooltipString', 'Yaw angle (about Z)', ...
'String', sprintf('%.3f', 0));
else
% AX
uicontrol(panel, 'Style', 'text', ...
'Units', 'normalized', ...
'BackgroundColor', bgcol, ...
'Position', [0.05 1-5*height 0.2 height], ...
'FontUnits', 'normalized', ...
'FontSize', 0.9, ...
'HorizontalAlignment', 'left', ...
'String', labels(1));
teachhandles.t6.r(1) = uicontrol(panel, 'Style', 'text', ...
'Units', 'normalized', ...
'Position', [0.3 1-5*height 0.6 height], ...
'FontUnits', 'normalized', ...
'FontSize', 0.8, ...
'TooltipString', tips{1}, ...
'HorizontalAlignment', 'right', ...
'String', sprintf("%.1f ", 0));
% AY
uicontrol(panel, 'Style', 'text', ...
'Units', 'normalized', ...
'BackgroundColor', bgcol, ...
'Position', [0.05 1-6*height 0.2 height], ...
'FontUnits', 'normalized', ...
'FontSize', 0.9, ...
'HorizontalAlignment', 'left', ...
'String', labels(2));
teachhandles.t6.r(2) = uicontrol(panel, 'Style', 'text', ...
'Units', 'normalized', ...
'Position', [0.3 1-6*height 0.6 height], ...
'FontUnits', 'normalized', ...
'FontSize', 0.8, ...
'TooltipString', tips{2}, ...
'HorizontalAlignment', 'right', ...
'String', sprintf("%.1f ", 0));
% AZ
uicontrol(panel, 'Style', 'text', ...
'Units', 'normalized', ...
'BackgroundColor', bgcol, ...
'Position', [0.05 1-7*height 0.2 height], ...
'FontUnits', 'normalized', ...
'FontSize', 0.9, ...
'HorizontalAlignment', 'r', ...
'HorizontalAlignment', 'left', ...
'String', labels(3));
teachhandles.t6.r(3) = uicontrol(panel, 'Style', 'text', ...
'Units', 'normalized', ...
'Position', [0.3 1-7*height 0.6 height], ...
'FontUnits', 'normalized', ...
'FontSize', 0.8, ...
'TooltipString', tips{3}, ...
'HorizontalAlignment', 'right', ...
'String', sprintf("%.1f ", 0));
end
%---- add buttons
uicontrol(panel, 'Style', 'pushbutton', ...
'Units', 'normalized', ...
'Position', [0.80 height*(0)+.01 0.15 height], ...
'FontUnits', 'normalized', ...
'FontSize', 0.7, ...
'CallBack', @(src,event) RTBPlot.quit_callback(robot, teachhandles), ...
'BackgroundColor', 'white', ...
'ForegroundColor', 'red', ...
'TooltipString', 'Quit', ...
'String', 'X');
% the record button
teachhandles.record = [];
if isfield(opt, 'record') && ~isempty(opt.record)
uicontrol(panel, 'Style', 'pushbutton', ...
'Units', 'normalized', ...
'Position', [0.1 height*(0)+.01 0.30 height], ...
'FontUnits', 'normalized', ...
'FontSize', 0.6, ...
'CallBack', @(src,event) RTBPlot.record_callback(robot, teachhandles), ...
'BackgroundColor', 'red', ...
'ForegroundColor', 'white', ...
'String', 'REC');
end
teachhandles.callback = opt.callback;
%---- now assign the callbacks
for j=1:n
% text edit box
set(teachhandles.edit(j), ...
'Interruptible', 'off', ...
'Callback', @(src,event)RTBPlot.teach_callback(src, name, j, teachhandles));
% slider
set(teachhandles.slider(j), ...
'Interruptible', 'off', ...
'BusyAction', 'queue' );
% ask for continuous callbacks
addlistener(teachhandles.slider(j), 'ContinuousValueChange', ...
@(src,event)RTBPlot.teach_callback(src, name, j, teachhandles) );
end
% refresh the display
RTBPlot.teach_callback([], name, [], teachhandles);
if nargout > 0
th = teachhandles;
end
end
function teach_callback(src, name, j, teachhandles)
% called on changes to a slider or to the edit box showing joint coordinate
%
% src the object that caused the event
% name name of the robot
% j the joint index concerned (1..N)
% slider true if the
qscale = teachhandles.qscale;
if ~isempty(src)
switch get(src, 'Style')
case 'slider'
% slider changed, get value and reflect it to edit box
newval = get(src, 'Value');
set(teachhandles.edit(j), 'String', sprintf("%.1f", qscale(j)*newval));
case 'edit'
% edit box changed, get value and reflect it to slider
newval = str2double(get(src, 'String')) / qscale(j);
set(teachhandles.slider(j), 'Value', newval);
end
end
%fprintf('newval %d %f\n', j, newval);
% find all graphical objects tagged with the robot name, this is the
% instances of that robot across all figures
h = findobj('Tag', name);
% find the graphical element of this name
if isempty(h)
error('RTB:teach:badarg', 'No graphical robot of this name found');
end
% get the info from its Userdata
info = get(h(1), 'UserData');
if ~isempty(j)
% update the stored joint coordinates
info.q(j) = newval;
% and save it back to the graphical object
set(h(1), 'UserData', info);
end
% update all robots of this name
animate(teachhandles.robot, info.q);
% compute the robot tool pose
T6 = teachhandles.robot.fkine(info.q);
if isa(T6, 'SE2')
T6 = T6.SE3;
end
T6 = T6.T;
% convert orientation to desired format
switch teachhandles.orientation
case 'approach'
orient = T6(:,3); % approach vector
case 'eul'
orient = tr2eul(T6, 'setopt', teachhandles.opt);
case {'rpy','rpy/xyz'}
orient = tr2rpy(T6, 'xyz', 'setopt', teachhandles.opt);
case'rpy/zyx'
orient = tr2rpy(T6, 'zyx', 'setopt', teachhandles.opt);
end
% update the display in the teach window
if teachhandles.opt.d_2d
set(teachhandles.t6.t(1), 'String', sprintf('%.3f', T6(1,4)));
set(teachhandles.t6.t(2), 'String', sprintf('%.3f', T6(2,4)));
set(teachhandles.t6.r(1), 'String', sprintf('%.3f', orient(1)));
else
for i=1:3
set(teachhandles.t6.t(i), 'String', sprintf("%.3f ", T6(i,4)));
set(teachhandles.t6.r(i), 'String', sprintf("%.1f ", orient(i)));
end
end
if isfield(teachhandles, 'callback') && ~isempty(teachhandles.callback)
teachhandles.callback(teachhandles.robot, info.q);
end
%notify(handles.robot, 'Moved');
end
function record_callback(robot, handles)
if ~isempty(handles.callback)
handles.record(h.q);
end
end
function quit_callback(robot, handles)
set(handles.fig, 'ResizeFcn', '');
delete(handles.panel);
set(handles.curax, 'Units', 'Normalized', 'OuterPosition', [0 0 1 1])
end
function resize_callback(robot, handles)
% come here on figure resize events
fig = gcbo; % this figure (whose callback is executing)
fs = get(fig, 'Position'); % get size of figure
ps = get(handles.panel, 'Position'); % get position of the panel
% update dimensions of the axis area
set(handles.curax, 'Units', 'pixels', ...
'OuterPosition', [ps(3) 0 fs(3)-ps(3) fs(4)]);
% keep the panel anchored to the top left corner
set(handles.panel, 'Position', [1 fs(4)-ps(4) ps(3:4)]);
end
function cyl(ax, r, extent, color, offset, varargin)
%RTBPlot.cyl Draw a cylinder
%
% CYL(AX, R, EXTENT, COLOR, OFFSET, OPTIONS) draws a cylinder parallel to
% axis AX ('x', 'y' or 'z') of radius R between EXTENT(1) and EXTENT(2).
%
% OPTIONS are passed through to surf.
%
% See also surf, RTBPlot.box.
n = 20;
theta = (0:n)/n*2*pi;
RTBPlot.draw_shape(ax, r, extent, color, offset, theta, varargin{:});
end
function box(ax, r, extent, color, offset, varargin)
%RTBPlot.box Draw a box
%
% BPX(AX, R, EXTENT, COLOR, OFFSET, OPTIONS) draws a cylinder parallel to
% axis AX ('x', 'y' or 'z') of side length R between EXTENT(1) and EXTENT(2).
theta = [1 3 5 7 9]/4*pi;
RTBPlot.draw_shape(ax, r, extent, color, offset, theta, varargin{:});
end
function draw_shape(ax, r, extent, color, offset, theta, varargin)
% draw nothing if extent range is zero
if abs(extent(1) - extent(2)) < eps
return
end
% default value for offset
if isempty(offset)
offset = [0 0 0];
end
r = [r;r];
n = length(theta)-1;
switch ax
case 'x'
y = r * cos(theta);
z = r * sin(theta);
x = extent(:) * ones(1,n+1);
case 'y'
x = r * cos(theta);
z = r * sin(theta);
y = extent(:) * ones(1,n+1);
case 'z'
y = r * cos(theta);
x = r * sin(theta);
z = extent(:) * ones(1,n+1);
end
x = x + offset(1);
y = y + offset(2);
z = z + offset(3);
% walls of the shape
surf(x,y,z, 'FaceColor', color, 'EdgeColor', 'none', varargin{:})
% put the ends on
patch(x', y', z', color, 'EdgeColor', 'none', varargin{:});
end
function create_floor(opt)
if ~isempty(opt.floorimage)
RTBPlot.create_image_floor(opt)
else
RTBPlot.create_tiled_floor(opt)
end
end
function create_image_floor(opt)
xmin = opt.workspace(1);
xmax = opt.workspace(2);
ymin = opt.workspace(3);
ymax = opt.workspace(4);
[X,Y] = meshgrid([xmin, xmax], [ymin ymax]);
Z = opt.floorlevel*ones(2,2);
C = repmat(opt.floorimage, 1, 1, 3);
surface(X, Y, Z, C, ...
'FaceColor','texturemap',...
'EdgeColor','none',...
'SpecularStrength', 0, ...
'CDataMapping','direct');
end
% draw a tiled floor in the current axes
function create_tiled_floor(opt)
if ~opt.tiles
return
end
xmin = opt.workspace(1);
xmax = opt.workspace(2);
ymin = opt.workspace(3);
ymax = opt.workspace(4);
% create a colored tiled floor
xt = xmin:opt.tilesize:xmax;
yt = ymin:opt.tilesize:ymax;
Z = opt.floorlevel*ones( numel(yt), numel(xt));
C = zeros(size(Z));
[r,c] = ind2sub(size(C), 1:numel(C));
C = bitand(r+c,1);
C = reshape(C, size(Z));
C = cat(3, opt.tile1color(1)*C+opt.tile2color(1)*(1-C), ...
opt.tile1color(2)*C+opt.tile2color(2)*(1-C), ...
opt.tile1color(3)*C+opt.tile2color(3)*(1-C));
[X,Y] = meshgrid(xt, yt);
surface(X, Y, Z, C, ...
'FaceColor','texturemap',...
'EdgeColor','none',...
'SpecularStrength', 0, ...
'CDataMapping','direct');
end
function opt = plot_options(robot, optin)
opt.deg = false;
% timing/looping
opt.delay = 0.1;
opt.fps = [];
opt.loop = false;
opt.raise = false;
% general appearance
opt.scale = 1;
opt.zoom = 1;
opt.trail = [];
opt.workspace = [];
opt.reach = [];
opt.name = true;
opt.projection = {'ortho', 'perspective'};
opt.view = [];
opt.top = false;
% 3D rendering
opt.shading = true;
opt.lightpos = [1 1 20];
% tiled floor
opt.tiles = true;
opt.tile1color = [0.5 1 0.5]; % light green
opt.tile2color = [1 1 1]; % white
opt.floorlevel = [];
opt.tilesize = [];
opt.floorimage = [];
% shadow on the floor
opt.shadow = true;
opt.shadowcolor = [0.5 0.5 0.5];
opt.shadowwidth = 6;
% the base or pedestal
opt.base = true;
opt.basewidth = 3;
opt.basecolor = 'k';
% wrist
opt.wrist = true;
opt.wristlabel = {'xyz', 'noa'};
opt.arrow = true;
opt.wristlen = 16;
% joint rotation axes
opt.jaxes = false;
opt.jvec = false;
% joint cylinders
opt.joints = true;
opt.jointdiam = 1.5;
opt.jointlen = 3;
opt.jointcolor = [0.7 0 0];
opt.pjointcolor = [0.4 1 0.03];
% links
opt.linkcolor = 'b';
opt.toolcolor = 'r';
% misc
opt.movie = [];
% build a list of options from all sources
% 1. the M-file plotbotopt if it exists
% 2. robot.plotopt
% 3. command line arguments
options = optin;
if ~isempty(robot)
options = [robot.plotopt options];
end
if exist('plotbotopt', 'file') == 2
options = [plotbotopt options];
end
% parse the options
[opt,args] = tb_optparse(opt, options);
if ~isempty(args)
error(['unknown option: ' args{1}]);
end
if opt.top
opt.view = 'top';
end
if ~isempty(opt.projection)
opt.projection = 'ortho';
end
if ~isempty(opt.floorimage)
opt.tiles = false;
end
% figure the size of the figure
if ~isempty(opt.reach)
reach = opt.reach;
else
% reach is not specified use a simple heuristic to figure the maximum reach of the robot
assert(~isempty(robot), 'RTB:RTBPlot:plot_options', 'robot must be defined to estimate reach');
L = robot.links;
reach = 0;
for j=1:robot.n
if L(j).isrevolute
% revolute, add the link length and offset
reach = reach + abs(L(j).a) + abs(L(j).d);
else
% prismatic
if ~isempty(L(j).qlim)
% use the maximum joint value
assert(all(L(j).qlim >= 0), 'RTB:RTBPlot:plot_options', 'prismatic joint %d qlim values cannot be negative', j)
reach = reach + abs(L(j).a) + max(abs(L(j).qlim));
else
% prismatic joint has no maximum length provided
if isempty(opt.workspace)
% workspace was given so don't complain, but we still need to compute reach
% mark it as NaN and compute it later from workspace
error('RTB:RTBPlot:plot_options', 'prismatic joint %d has no qlim parameter set, set it or specify ''workspace'' plot option', j);
else
reach = NaN;
end
end
end
end
reach = reach + sum(abs(robot.tool.t)); % add the tool length
end
if isnan(reach)
% reach couldn't be estimated because a prismatic qlim was missing,
% estimate it from workspace
reach = max( colnorm( reshape(opt.workspace, [2 3]) ) ) / 2;
end
if isempty(opt.workspace)
% now create a 3D volume based on this reach
opt.workspace = [-reach reach -reach reach -reach reach];
end
if opt.tiles && isempty(opt.tilesize)
d = max(opt.workspace(2)-opt.workspace(1), opt.workspace(4)-opt.workspace(3));
ts = d / 20; % go for 20 tiles to span the distance as first guess
scale = 10^floor(log10(ts)); % figure a scale factor 1,2,5 * 10^N
ts = ts/scale;
allowed = [1 2 5 10];
k = find(ts >= allowed);
opt.tilesize = allowed(k(end)) * scale;
end
if opt.wrist
% the wrist axes add to the maximum reach, we need to scale the wrist
% length to keep within bounds
f = (1 + opt.wristlen/40);
reach = reach * f;
opt.wristlen = 40*(1-1/f);
end
reach = reach/opt.zoom;
% if we have a floor, quantize the reach to a tile size
if opt.tiles
reach = opt.tilesize * ceil(reach/opt.tilesize);
end
% figure out where the floor is
if isempty(opt.workspace)
% if a floorlevel has been given, ammend the 3D volume
if ~isempty(opt.floorlevel)
opt.workspace(5) = opt.floorlevel;
else
opt.floorlevel = -reach;
end
else
if opt.tiles
% set xy limits to be integer multiple of tilesize
opt.workspace(1:4) = opt.tilesize * round(opt.workspace(1:4)/opt.tilesize);
end
opt.floorlevel = opt.workspace(5);
end
% update the fundamental scale factor (given by the user as a multiplier) by a length derived from
% the overall workspace dimension
% we need that a lot when creating the robot model
if reach > 0
opt.scale = opt.scale * reach/40;
else
opt.scale = opt.scale / 40;
end
if ~isempty(opt.fps)
opt.delay = 1/opt.fps;
end
end
end
end