-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathreproj_from_trc_calib.py
512 lines (414 loc) · 25.2 KB
/
reproj_from_trc_calib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
##################################################
## Reproject 3D points on camera planes ##
##################################################
Reproject 3D points from a trc file to the camera planes determined by a
toml calibration file, to the DeepLabCut (default), MMpose, or
OpenPose format.
The order or the markers depends on the markerset chosen markerset--it is the same as in the trc file if unspecified.
You can change the marker order in CONSTANTS if you need to.
New: Moving cameras and zooming cameras are now supported.
Usage:
from Pose2Sim.Utilities import reproj_from_trc_calib; reproj_from_trc_calib.reproj_from_trc_calib_func(r'<input_trc_file>', r'<input_calib_file>', '<output_format>', r'<output_file_root>')
python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file -odm
python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file -odm --markerset halpe26
python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file --openpose --deeplabcut --mmpose --undistort
python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file -d -o output_file_root
'''
## INIT
import os
import pandas as pd
import numpy as np
import toml
import cv2
import json
import re
import hashlib
from copy import deepcopy
import argparse
## AUTHORSHIP INFORMATION
__author__ = "David Pagnon"
__copyright__ = "Copyright 2021, Pose2Sim"
__credits__ = ["David Pagnon"]
__license__ = "BSD 3-Clause License"
__version__ = "0.9.4"
__maintainer__ = "David Pagnon"
__email__ = "[email protected]"
__status__ = "Development"
# CONSTANTS
halpe26_markers = ['NOSB', 'LEYE', 'REYE', 'LEAR', 'REAR', 'shoulder_l', 'shoulder_r', 'elb_l', 'elb_r', 'wrist_l', 'wrist_r', 'hip_l', 'hip_r', 'knee_l', 'knee_r', 'ankle_l', 'ankle_r', 'THD', 'C7', 'SACR', 'MTP1_L', 'MTP1_R', 'MTP5_L', 'MTP5_R', 'HEEL_L', 'HEEL_R']
halpeplus_markers = ['NOSB', 'shoulder_l', 'shoulder_r', 'elb_l', 'elb_r', 'wrist_l', 'wrist_r', 'hip_l', 'hip_r', 'knee_l', 'knee_r', 'ankle_l', 'ankle_r', 'THD', 'C7', 'SACR', 'MTP1_L', 'MTP1_R', 'MTP5_L', 'MTP5_R', 'HEEL_L', 'HEEL_R', 'LHPE', 'RHPE', 'LHPI', 'RHPI', 'TOE_L', 'TOE_R', 'T10', 'UA_L', 'UA_R', 'LA_L', 'LA_R', 'UL_L', 'UL_R', 'LL_L', 'LL_R']
biocvplus_markers = ['ACROM_R', 'ACROM_L', 'C7', 'T10', 'CLAV', 'XIP_PROC', 'UA_R', 'ELB_LAT_R', 'ELB_MED_R', 'LA_R', 'WRI_LAT_R', 'WRI_MED_R', 'HAND_R', 'UA_L', 'ELB_LAT_L', 'ELB_MED_L', 'LA_L', 'WRI_LAT_L', 'WRI_MED_L', 'HAND_L', 'ASIS_R', 'ASIS_L', 'PSIS_R', 'PSIS_L', 'ILCREST_R', 'ILCREST_L', 'UL_R', 'KNEE_LAT_R', 'KNEE_MED_R', 'LL_R', 'MAL_LAT_R', 'MAL_MED_R', 'HEEL_R', 'MTP1_R', 'MTP5_R', 'TOE_R', 'UL_L', 'KNEE_LAT_L', 'KNEE_MED_L', 'LL_L', 'MAL_LAT_L', 'MAL_MED_L', 'HEEL_L', 'MTP1_L', 'MTP5_L', 'TOE_L', 'THD', 'NOSB']
## FUNCTIONS
def str_to_id(string, length=12):
'''
Convert a string to an integer id
'''
# return ''.join([str(abs(ord(char) - 96)) for char in string])
hash_int = int(hashlib.md5(string.encode()).hexdigest(), 16)
return hash_int % (10 ** length) # Trim to desired length
def computeP(calib_file, undistort=False):
'''
Compute projection matrices from toml calibration file.
Zooming or moving cameras are handled.
INPUT:
- calib_file: calibration .toml file.
- undistort: boolean
OUTPUT:
- P: projection matrix as list of arrays
'''
K, R, T, Kh, H = [], [], [], [], []
P = []
calib = toml.load(calib_file)
for cam in list(calib.keys()):
if cam != 'metadata':
S = np.array(calib[cam]['size'])
K = np.array(calib[cam]['matrix'])
if len(K.shape) == 2: # static camera
if undistort:
dist = np.array(calib[cam]['distortions'])
optim_K = cv2.getOptimalNewCameraMatrix(K, dist, [int(s) for s in S], 1, [int(s) for s in S])[0]
Kh = np.block([optim_K, np.zeros(3).reshape(3,1)])
else:
Kh = np.block([K, np.zeros(3).reshape(3,1)])
elif len(K.shape) == 3: # zooming camera
if undistort:
dist = np.array(calib[cam]['distortions'])
optim_K = [cv2.getOptimalNewCameraMatrix(K[f], dist, [int(s) for s in S], 1, [int(s) for s in S])[0] for f in range(len(K))]
Kh = [np.block([optim_K[f], np.zeros(3).reshape(3,1)]) for f in range(len(K))]
else:
Kh = [np.block([K[f], np.zeros(3).reshape(3,1)]) for f in range(len(K))]
R = np.array(calib[cam]['rotation'])
T = np.array(calib[cam]['translation'])
if len(R.shape) == 1: # static camera
R_mat, _ = cv2.Rodrigues(np.array(calib[cam]['rotation']))
H = np.block([[R_mat,T.reshape(3,1)], [np.zeros(3), 1 ]])
elif len(R.shape) == 2: # moving camera
R_mat = [cv2.Rodrigues(R[f])[0] for f in range(len(R))]
H = [np.block([[R_mat[f],T[f].reshape(3,1)], [np.zeros(3), 1 ]]) for f in range(len(R))]
if len(K.shape) == 2 and len(R.shape)==1: # static camera
P.append([Kh @ H])
elif len(K.shape) == 3 and len(R.shape)==1: # zooming camera
P.append([Kh[f] @ H for f in range(len(K))])
elif len(K.shape) == 2 and len(R.shape)==2: # moving camera
P.append([Kh @ H[f] for f in range(len(R))])
elif len(K.shape) == 3 and len(R.shape)==2: # zooming and moving camera
P.append([Kh[f] @ H[f] for f in range(len(K))])
return np.array(P)
def retrieve_calib_params(calib_file):
'''
Compute projection matrices from toml calibration file.
Zooming or moving cameras are handled.
INPUT:
- calib_file: calibration .toml file.
OUTPUT:
- S: (h,w) vectors as list of 2x1 arrays
- K: intrinsic matrices as list of 3x3 arrays
- dist: distortion vectors as list of 4x1 arrays
- optim_K: intrinsic matrices for undistorting points as list of 3x3 arrays
- R: rotation rodrigue vectors as list of 3x1 arrays
- T: translation vectors as list of 3x1 arrays
'''
calib = toml.load(calib_file)
S, K, dist, optim_K, R, T = [], [], [], [], [], []
for c, cam in enumerate(calib.keys()):
if cam != 'metadata':
S.append(np.array(calib[cam]['size']))
K.append(np.array(calib[cam]['matrix']))
dist.append(np.array(calib[cam]['distortions']))
if len(K[c].shape) == 2: # static camera
optim_K.append(cv2.getOptimalNewCameraMatrix(K[c], dist[c], [int(s) for s in S[c]], 1, [int(s) for s in S[c]])[0])
elif len(K[c].shape) == 3: # zooming camera
optim_K.append([cv2.getOptimalNewCameraMatrix(K[c][f], dist[c], [int(s) for s in S[c]], 1, [int(s) for s in S[c]])[0] for f in range(len(K[c]))])
R.append(np.array(calib[cam]['rotation']))
T.append(np.array(calib[cam]['translation']))
calib_params = {'S': S, 'K': K, 'dist': dist, 'optim_K': optim_K, 'R': R, 'T': T}
return calib_params
def reprojection(P_all, Q):
'''
Reprojects 3D point on all cameras.
INPUTS:
- P_all: list of arrays. Projection matrix for all cameras
- Q: array of triangulated point (x,y,z,1.)
OUTPUTS:
- x_calc, y_calc: list of coordinates of point reprojected on all cameras
'''
x_calc, y_calc = [], []
for c in range(len(P_all)):
P_cam = P_all[c]
x_calc.append(P_cam[0] @ Q / (P_cam[2] @ Q))
y_calc.append(P_cam[1] @ Q / (P_cam[2] @ Q))
return x_calc, y_calc
def df_from_trc(trc_path):
'''
Retrieve header and data from trc path.
'''
# DataRate CameraRate NumFrames NumMarkers Units OrigDataRate OrigDataStartFrame OrigNumFrames
df_header = pd.read_csv(trc_path, sep="\t", skiprows=1, header=None, nrows=2, encoding="ISO-8859-1")
header = dict(zip(df_header.iloc[0].tolist(), df_header.iloc[1].tolist()))
# Label1_X Label1_Y Label1_Z Label2_X Label2_Y
df_lab = pd.read_csv(trc_path, sep="\t", skiprows=3, nrows=1)
labels = df_lab.columns.tolist()[2:-1:3]
labels_XYZ = np.array([[labels[i]+'_X', labels[i]+'_Y', labels[i]+'_Z'] for i in range(len(labels))], dtype='object').flatten()
labels_FTXYZ = np.concatenate((['Frame#','Time'], labels_XYZ))
data = pd.read_csv(trc_path, sep="\t", skiprows=5, index_col=False, header=None, names=labels_FTXYZ)
return header, data
def yup2zup(Q):
'''
Turns Y-up system coordinates into Z-up coordinates
INPUT:
- Q: pandas dataframe
N 3D points as columns, ie 3*N columns in Z-up system coordinates
and frame number as rows
OUTPUT:
- Q: pandas dataframe with N 3D points in Y-up system coordinates
'''
# X->Y, Y->Z, Z->X
cols = list(Q.columns)
cols = np.array([[cols[i*3+2],cols[i*3],cols[i*3+1]] for i in range(int(len(cols)/3))]).flatten()
Q = Q[cols]
return Q
def dataset_to_openpose(coords_df, openpose_path_root, marker_list=['NOSB', 'shoulder_l', 'shoulder_r', 'elb_l', 'elb_r', 'wrist_l', 'wrist_r', 'hip_l', 'hip_r', 'knee_l', 'knee_r', 'ankle_l', 'ankle_r', 'THD', 'C7', 'SACR', 'MTP1_L', 'MTP1_R', 'MTP5_L', 'MTP5_R', 'HEEL_L', 'HEEL_R', 'LHPE', 'RHPE', 'LHPI', 'RHPI', 'TOE_L', 'TOE_R', 'T10', 'UA_L', 'UA_R', 'LA_L', 'LA_R', 'UL_L', 'UL_R', 'LL_L', 'LL_R']):
'''
Write 2D labels to OpenPose format.
INPUTS:
- coords_df: pandas dataframe with 2D labels. E.g.: all_dfs = pd.read_csv(dlc_labels_path, header = [0,1,2,3], index_col=0)
- openpose_path_root: path to save the json files (frame number will be appended)
- marker_list: list of markers in the order provided by the dataset. E.g. for Halpeplus: ['NOSB', 'shoulder_l', 'shoulder_r', 'elb_l', 'elb_r', 'wrist_l', 'wrist_r', 'hip_l', 'hip_r', 'knee_l', 'knee_r', 'ankle_l', 'ankle_r', 'THD', 'C7', 'SACR', 'MTP1_L', 'MTP1_R', 'MTP5_L', 'MTP5_R', 'HEEL_L', 'HEEL_R', 'LHPE', 'RHPE', 'LHPI', 'RHPI', 'TOE_L', 'TOE_R', 'T10', 'UA_L', 'UA_R', 'LA_L', 'LA_R', 'UL_L', 'UL_R', 'LL_L', 'LL_R']
OUTPUTS:
- coordinates written in the openpose json format (one per frame)
'''
#prepare json files
json_dict = {'version':1.3, 'people':[]}
json_dict['people'] = [{'person_id':[-1],
'pose_keypoints_2d': np.zeros(len(marker_list)*3),
'face_keypoints_2d': [],
'hand_left_keypoints_2d':[],
'hand_right_keypoints_2d':[],
'pose_keypoints_3d':[],
'face_keypoints_3d':[],
'hand_left_keypoints_3d':[],
'hand_right_keypoints_3d':[]}]
# write one json file per camera and per frame
persons = list(set(['_'.join(item.split('_')[:5]) for item in coords_df.columns.levels[1]]))
for frame in range(len(coords_df)):
for person in persons:
json_dict_copy = deepcopy(json_dict)
coords = coords_df.iloc[frame, coords_df.columns.get_level_values(1)==person]
# store 2D keypoints and respect model keypoint order
coords_list = []
for marker in marker_list:
coords_mk = coords.loc[coords.index.get_level_values(2)==marker]
coords_list += [0.0, 0.0, 0] if np.isnan(coords_mk).any() else coords_mk.tolist()+[1]
json_dict_copy['people'][0]['pose_keypoints_2d'] = coords_list
# write json file
json_file = os.path.join(os.path.dirname(openpose_path_root), f'{os.path.splitext(os.path.basename(openpose_path_root))[0]}_{frame:04d}.json')
with open(json_file, 'w') as js_f:
js_f.write(json.dumps(json_dict_copy))
def dataset_to_mmpose2d(coords_df, mmpose_json_file, img_size, markerset='custom', marker_list=['NOSB', 'shoulder_l', 'shoulder_r', 'elb_l', 'elb_r', 'wrist_l', 'wrist_r', 'hip_l', 'hip_r', 'knee_l', 'knee_r', 'ank_l', 'ankle_r', 'THD', 'CY', 'SACR', 'MTP1_L', 'MTP1_R', 'MTP5_L', 'MTP5_R', 'HEEL_L', 'HEEL_R', 'LHPE', 'RHPE', 'LHPI', 'RHPI', 'TOE_L', 'TOE_R', 'T10', 'UA_L', 'UA_R', 'LA_L', 'LA_R', 'UL_L', 'UL_R', 'LL_L', 'LL_R']):
'''
Export 2D labels to MMPose format.
INPUTS:
- coords_df: pandas dataframe with 2D labels. E.g.: all_dfs = pd.read_csv(dlc_labels_path, header = [0,1,2,3]), index_col=0)
- mmpose_json_file: path to save the json file
- img_size: image size [width, height]
- markerset: name of the markerset. E.g.: 'halpe26', 'halpeplus', 'biocvplus'
- marker_list: list of markers from inverse kinematics and/or SMPL mesh. E.g.: ['ankle_l', 'NOSB',]
OUTPUTS:
- labels2d_json: saved json file
'''
labels2d_json_data = {}
labels2d_json_data['info'] = {'description': f'Bedlam Pose {markerset}',
'url': 'https://github.com/davidpagnon/bedlam_pose',
'version': '0.1',
'year': 2024,
'contributor': 'David Pagnon',
'date_created': '2024/08/14'}
labels2d_json_data['licenses'] = [{'url': 'https://bedlam.is.tue.mpg.de/license.html', 'id': 1, 'name': 'Non-commercial scientific research purposes'},
{'url': 'https://creativecommons.org/licenses/by/4.0/deed.en', 'id': 2, 'name': 'Attribution License'}]
labels2d_json_data['images'] = []
labels2d_json_data['annotations'] = []
labels2d_json_data['categories'] = [{'id': 1, 'name': 'person'}]
padding = 0.05
# for each image
persons = list(set(['_'.join(item.split('_')[:5]) for item in coords_df.columns.levels[1]]))
for i in range(len(coords_df)):
file_name = coords_df.index[i][0]
w, h = int(img_size[0]), int(img_size[1])
file_id = str_to_id(file_name, length=12)
labels2d_json_data['images'] += [{'file_name': file_name,
'height': h,
'width': w,
'id': file_id,
'license': 1}]
# for each person
for person in persons:
# store 2D keypoints and respect model keypoint order
coords = coords_df.iloc[i, coords_df.columns.get_level_values(1)==person]
coords_list = []
for marker in marker_list:
# visibility: 2 visible, 1 occluded, 0 out of frame
coords_mk = coords.loc[coords.index.get_level_values(2)==marker]
coords_list += coords_mk.tolist()+[2] if not np.isnan(coords_mk).any() else [0.0, 0.0, 0]
num_keypoints = len(marker_list)
# bbox
x_coords = coords.loc[coords.index.get_level_values(3)=='x']
y_coords = coords.loc[coords.index.get_level_values(3)=='y']
min_x, min_y, max_x, max_y = np.nanmin(x_coords), np.nanmin(y_coords), np.nanmax(x_coords), np.nanmax(y_coords)
bbox_width = np.round(max_x - min_x, decimals=1)
bbox_height = np.round(max_y - min_y, decimals=1)
# bbox = [min_x, min_y, max_x, max_y]
bbox = [min_x, min_y, bbox_width, bbox_height] # coco format
# add padding
bbox = [max(0, min_x-bbox_width*padding),
max(0, min_y-bbox_height*padding),
bbox_width*(1+padding*2) if max_x+bbox_width*padding < w else bbox_width*(1+padding),
bbox_height*(1+padding*2) if max_y+bbox_height*padding < h else bbox_height*(1+padding)]
ann_id = str_to_id(person+file_name)
category_id = 1
segmentation = [[min_x, min_y, min_x, max_y, max_x, max_y, max_x, min_y]] # no segmentation
area = np.round(bbox_width * bbox_height, decimals=1)
iscrowd = 0 # each annotation represents one single person
if not np.isnan(bbox).any():
labels2d_json_data['annotations'] += [{ 'keypoints': coords_list,
'num_keypoints': num_keypoints,
'bbox': bbox,
'id': ann_id,
'image_id': file_id,
'category_id': category_id,
'segmentation': segmentation,
'area': area,
'iscrowd': iscrowd}]
with open(mmpose_json_file, 'w') as f:
json.dump(labels2d_json_data, f)
def reproj_from_trc_calib_func(**args):
'''
Reproject 3D points from a trc file to the camera planes determined by a
toml calibration file, to the DeepLabCut (default), MMpose, or
OpenPose format.
The order or the markers depends on the markerset chosen markerset--it is the same as in the trc file if unspecified.
You can change the marker order in CONSTANTS if you need to.
New: Moving cameras and zooming cameras are now supported.
Usage:
from Pose2Sim.Utilities import reproj_from_trc_calib; reproj_from_trc_calib.reproj_from_trc_calib_func(r'<input_trc_file>', r'<input_calib_file>', '<output_format>', r'<output_file_root>')
python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file -odm
python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file --openpose --deeplabcut --mmpose --undistort
python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file -d -o output_file_root
'''
input_trc_file = os.path.realpath(args.get('input_trc_file')) # invoked with argparse
input_calib_file = os.path.realpath(args.get('input_calib_file'))
openpose_output = args.get('openpose')
deeplabcut_output = args.get('deeplabcut')
mmpose_output = args.get('mmpose')
markerset = args.get('markerset')
undistort_points = args.get('undistort_points')
output_file_root = args.get('output_file_root')
if output_file_root == None:
output_file_root = input_trc_file.replace('.trc', '_reproj')
if os.path.exists(output_file_root):
os.makedirs(output_file_root, exist_ok=True)
if not openpose_output and not deeplabcut_output and not mmpose_output:
raise ValueError('Output_format must be specified either "openpose" (-o), "deeplabcut" (-d), or "mmpose" (-m)')
# Extract data from trc file
header_trc, data_trc = df_from_trc(input_trc_file)
data_trc_zup = pd.concat([data_trc.iloc[:,:2], yup2zup(data_trc.iloc[:,2:])], axis=1) # yup to zup system coordinates
bodyparts = [d[:-2] for d in data_trc_zup.columns[2::3]]
num_bodyparts = int(header_trc['NumMarkers'])
filename = os.path.splitext(os.path.basename(input_trc_file))[0]
# Extract data from calibration file
P_all = computeP(input_calib_file, undistort=undistort_points)
calib_params = retrieve_calib_params(input_calib_file)
calib_params_size = [calib_params['S'][i] for i in range(len(P_all))]
if undistort_points:
calib_params_R_filt = [calib_params['R'][i] for i in range(len(P_all))]
calib_params_T_filt = [calib_params['T'][i] for i in range(len(P_all))]
calib_params_K_filt = [calib_params['K'][i] for i in range(len(P_all))]
calib_params_dist_filt = [calib_params['dist'][i] for i in range(len(P_all))]
# Create camera folders
reproj_dir = os.path.realpath(output_file_root)
cam_dirs = [os.path.join(reproj_dir, f'cam{cam+1:02d}_json') for cam in range(len(P_all))]
if not os.path.exists(reproj_dir): os.mkdir(reproj_dir)
try:
[os.mkdir(cam_dir) for cam_dir in cam_dirs]
except:
pass
# header preparation
num_frames = [len(data_trc) if P_all.shape[1]==1 else min(P_all.shape[1], len(data_trc))][0]
columns_iterables = [['DavidPagnon'], ['person0'], bodyparts, ['x','y']]
columns_h5 = pd.MultiIndex.from_product(columns_iterables, names=['scorer', 'individuals', 'bodyparts', 'coords'])
rows_iterables = [[os.path.join(os.path.splitext(input_trc_file)[0],f'img_{i:03d}.jpg') for i in range(num_frames)]]
rows_h5 = pd.MultiIndex.from_product(rows_iterables)
data_h5 = pd.DataFrame(np.nan, index=rows_h5, columns=columns_h5)
# Reproject 3D points on all cameras
data_proj = [deepcopy(data_h5) for cam in range(len(P_all))] # copy data_h5 as many times as there are cameras
Q = data_trc_zup.iloc[:,2:]
for frame in range(num_frames):
coords = [[] for cam in range(len(P_all))]
P_all_frame = [P_all[cam][0] if P_all.shape[1]==1 else P_all[cam][frame] for cam in range(len(P_all))]
for keypoint in range(num_bodyparts):
q = np.append(Q.iloc[frame,3*keypoint:3*keypoint+3], 1)
if undistort_points:
coords_2D_all = [cv2.projectPoints(np.array(q[:-1]), calib_params_R_filt[i], calib_params_T_filt[i], calib_params_K_filt[i], calib_params_dist_filt[i])[0] for i in range(len(P_all))]
x_all = [coords_2D_all[i][0,0,0] for i in range(len(P_all_frame))]
y_all = [coords_2D_all[i][0,0,1] for i in range(len(P_all_frame))]
else:
x_all, y_all = reprojection(P_all_frame, q)
# Store with one single decimal
x_all = np.round(np.array(x_all), decimals=1)
y_all = np.round(np.array(y_all), decimals=1)
[coords[cam].extend([x_all[cam], y_all[cam]]) for cam in range(len(P_all_frame))]
for cam in range(len(P_all_frame)):
data_proj[cam].iloc[frame,:] = coords[cam]
# Replace by nan when reprojection out of image
for cam in range(len(P_all_frame)):
x_valid = (data_proj[cam].iloc[:, ::2] >= 0) & (data_proj[cam].iloc[:, ::2] < calib_params_size[cam][0])
y_valid = (data_proj[cam].iloc[:, 1::2] >= 0) & (data_proj[cam].iloc[:, 1::2] < calib_params_size[cam][1])
data_proj[cam].iloc[:, ::2] = data_proj[cam].iloc[:, ::2].where(x_valid, np.nan)
data_proj[cam].iloc[:, ::2] = np.where(y_valid==False, np.nan, data_proj[cam].iloc[:, ::2])
data_proj[cam].iloc[:, 1::2] = data_proj[cam].iloc[:, 1::2].where(y_valid, np.nan)
data_proj[cam].iloc[:, 1::2] = np.where(x_valid==False, np.nan, data_proj[cam].iloc[:, 1::2])
# Marker list in the right order
if markerset == 'halpe26':
marker_list = halpe26_markers
elif markerset == 'halpeplus':
marker_list = halpeplus_markers
elif markerset == 'biocvplus':
marker_list = biocvplus_markers
else:
marker_list = list(dict.fromkeys(data_proj[cam].columns.get_level_values(2)[1:]))
# Save as h5 and csv if DeepLabCut format
if deeplabcut_output:
# to h5
h5_files = [os.path.join(cam_dir,f'{filename}_cam_{i+1:02d}_dlc.h5') for i,cam_dir in enumerate(cam_dirs)]
[data_proj[i].to_hdf(h5_files[i], index=True, key='reprojected_points') for i in range(len(P_all))]
# to csv
csv_files = [os.path.join(cam_dir,f'{filename}_cam_{i+1:02d}_dlc.csv') for i,cam_dir in enumerate(cam_dirs)]
[data_proj[i].to_csv(csv_files[i], sep=',', index=True, lineterminator='\n') for i in range(len(P_all))]
# Save as json if Coco/MMpose format
if mmpose_output:
for cam, cam_dir in enumerate(cam_dirs):
mmpose_json_file = os.path.join(cam_dir, f'{filename}_cam_{cam+1:02d}_mmpose.json')
dataset_to_mmpose2d(data_proj[cam], mmpose_json_file, calib_params_size[cam], markerset=markerset, marker_list=marker_list)
# Save as json if OpenPose format
if openpose_output:
for cam, cam_dir in enumerate(cam_dirs):
openpose_path_root = os.path.join(cam_dir, f'{filename}_cam{cam+1:02d}_openpose.json')
dataset_to_openpose(data_proj[cam], openpose_path_root, marker_list=marker_list)
# Wrong format
if not openpose_output and not deeplabcut_output and not mmpose_output:
raise ValueError('output_format must be either "openpose" or "deeplabcut"')
print(f'Reprojected points saved at {output_file_root}.')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-t', '--input_trc_file', required = True, help='trc 3D coordinates input file path')
parser.add_argument('-c', '--input_calib_file', required = True, help='toml calibration input file path')
parser.add_argument('-o', '--openpose', required=False, action='store_true', help='output format in the openpose json format')
parser.add_argument('-d', '--deeplabcut', required=False, action='store_true', help='output format in the deeplabcut csv and h5 formats')
parser.add_argument('-m', '--mmpose', required=False, action='store_true', help='output format in the Coco/MMpose json format')
parser.add_argument('-s', '--markerset', required=False, help='markerset name, e.g. halpe26, halpeplus, biocvplus')
parser.add_argument('-u', '--undistort_points', required=False, action='store_true', help='takes distortion into account if True')
parser.add_argument('-O', '--output_file_root', required=False, help='output file root path, without extension')
args = vars(parser.parse_args())
reproj_from_trc_calib_func(**args)