Skip to content

Hao Jin, Yang Peng, Wenhao Yang, Shusen Wang and Zhihua Zhang. Federated Reinforcement Learning with Environment Heterogeneity. AISTATS, 2022.

Notifications You must be signed in to change notification settings

pengyang7881187/FedRL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 

Repository files navigation

FedRL

Hao Jin, Yang Peng, Wenhao Yang, Shusen Wang and Zhihua Zhang. Federated Reinforcement Learning with Environment Heterogeneity. AISTATS, 2022.

Requirements

  • PyTorch: version 1.1.0 is required
  • OpenAI Gym: pip install gym gym[atari]
  • TensorBoardX: pip install tensorboardX
  • PTAN: install from sources (delete torch==1.7.0 which is unnecessary in requirements.txt)
  • MuJoCo: only for HalfCheetah and Hopper environment

Getting started

Tabular experiments

The customized environments RandomMDPs and WindyCliffs are implemented in utils.py and GridWorldEnvironment.py respectively.

Some utility functions and standard tabular reinforcement learning algorithms are included in utils.py.

The algorithms QAvg, SoftPAvg and ProjPAvg are implemented for both the environments in the python files with the corresponding prefixes.

The python files with prefix heter are for the experiments in Table 1 in the paper.

Deep experiments

The customized environments are implemented in MyCartPole.py, MyAcrobot.py, MyHalfCheetah.py and MyHopper.py.

Some utility functions and standard deep reinforcement learning algorithms are included in DeepRLAlgo.py.

The algorithms DQNAvg and DDPGAvg are implemented in DQNAvg.py and DDPGAvg.py respectively, we apply these methods in the customized environments in the python files with the corresponding prefixes.

The personalized version of the above is implemented in the python files with prefix Per.

About

Hao Jin, Yang Peng, Wenhao Yang, Shusen Wang and Zhihua Zhang. Federated Reinforcement Learning with Environment Heterogeneity. AISTATS, 2022.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages