forked from SmarterDM/micro-aes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
aes.c
339 lines (269 loc) · 10.6 KB
/
aes.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#include <stdint.h>
#include <string.h>
#ifdef ESP8266
#include <pgmspace.h>
#elif __AVR__
#include <avr/pgmspace.h>
#endif
#include "aes.h"
// Preprocessor Definitions
#define s_box(x) pgm_read_byte(&(s_box_array[(x)]))
#define s_box_inverse(x) pgm_read_byte(&(s_box_inverse_array[(x)]))
#define rcon(x) pgm_read_byte(&(rcon_array[(x)]))
#define MAP(i,j) (((j) << 2) + (i))
#define MUL(x,y) aes_GaloisFieldMultiply((x),(y))
#define MUL2(x) (((x) << 1) ^ (0x1B & (((x) >> 7) * 0xFF))) & 0xFF
#define MUL3(x) ((x) ^ MUL2(x))
#define SUB4(x) ((s_box(((x) & 0xFF000000) >> 24) << 24) | (s_box(((x) & 0xFF0000) >> 16) << 16) | (s_box(((x) & 0xFF00) >> 8) << 8) | s_box(((x) & 0xFF)))
// AES Tables
uint8_t s_box_array[256] PROGMEM = {
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};
uint8_t s_box_inverse_array[256] PROGMEM = {
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};
uint8_t rcon_array[10] PROGMEM = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36 };
// AES Operation Definitions
void aes_Rotate (uint8_t block[4]);
void aes_SubBytes (uint8_t state[16]);
void aes_InvSubBytes (uint8_t state[16]);
void aes_ShiftRows (uint8_t state[16]);
void aes_InvShiftRows (uint8_t state[16]);
void aes_MixColumns (uint8_t state[16]);
void aes_InvMixColumns (uint8_t state[16]);
void aes_AddRoundKey (uint8_t state[16], uint8_t sub_key[16]);
// Maths Operation Definitions
uint8_t aes_GaloisFieldMultiply (uint8_t fixed, uint8_t variable);
// AES Core Procedures
void aes_init(uint32_t *round_key, counter b, uint32_t *key, counter n)
{
uint32_t t;
counter i, position, cycle;
memcpy(round_key, key, n * sizeof(uint32_t));
for (position = n, cycle = n, t = round_key[n - 1], i = 0; position < b; position++, cycle++) {
if (cycle == n) {
cycle = 0;
aes_Rotate((uint8_t *) &t);
t = SUB4(t);
((uint8_t *) &t)[0] ^= rcon(i++);
} else if (cycle == 4 && n == 8) {
t = SUB4(t);
}
t ^= round_key[position - n];
round_key[position] = t;
}
}
void aes_encrypt(uint8_t *round_key, uint8_t block[16], counter rounds)
{
counter i;
aes_AddRoundKey(block, round_key);
for (i = 1; i < rounds; i++) {
aes_SubBytes(block);
aes_ShiftRows(block);
aes_MixColumns(block);
aes_AddRoundKey(block, round_key + (i << 4));
}
aes_SubBytes(block);
aes_ShiftRows(block);
aes_AddRoundKey(block, round_key + (i << 4));
}
void aes_decrypt(uint8_t *round_key, uint8_t block[16], counter rounds)
{
counter i;
aes_AddRoundKey(block, round_key + (rounds << 4));
for (i = 1; i < rounds; i++) {
aes_InvShiftRows(block);
aes_InvSubBytes(block);
aes_AddRoundKey(block, round_key + ((rounds - i) << 4));
aes_InvMixColumns(block);
}
aes_InvShiftRows(block);
aes_InvSubBytes(block);
aes_AddRoundKey(block, round_key);
}
// AES Key Specific API
void aes_256_init(aes_256_context_t *context, uint8_t key[32])
{
aes_init((uint32_t *) context->round_key, sizeof(context->round_key) / sizeof(uint32_t), (uint32_t *) key, 8);
}
void aes_256_encrypt(aes_256_context_t *context, uint8_t block[16])
{
aes_encrypt(context->round_key, block, AES_256_ROUNDS);
}
void aes_256_decrypt(aes_256_context_t *context, uint8_t block[16])
{
aes_decrypt(context->round_key, block, AES_256_ROUNDS);
}
void aes_192_init(aes_192_context_t *context, uint8_t key[24])
{
aes_init((uint32_t *) context->round_key, sizeof(context->round_key) / sizeof(uint32_t), (uint32_t *) key, 6);
}
void aes_192_encrypt(aes_192_context_t *context, uint8_t block[16])
{
aes_encrypt(context->round_key, block, AES_192_ROUNDS);
}
void aes_192_decrypt(aes_192_context_t *context, uint8_t block[16])
{
aes_decrypt(context->round_key, block, AES_192_ROUNDS);
}
void aes_128_init(aes_128_context_t *context, uint8_t key[16])
{
aes_init((uint32_t *) context->round_key, sizeof(context->round_key) / sizeof(uint32_t), (uint32_t *) key, 4);
}
void aes_128_encrypt(aes_128_context_t *context, uint8_t block[16])
{
aes_encrypt(context->round_key, block, AES_128_ROUNDS);
}
void aes_128_decrypt(aes_128_context_t *context, uint8_t block[16])
{
aes_decrypt(context->round_key, block, AES_128_ROUNDS);
}
// AES Operation Implementations
void aes_Rotate(uint8_t block[4])
{
uint8_t tmp;
tmp = block[0];
block[0] = block[1];
block[1] = block[2];
block[2] = block[3];
block[3] = tmp;
}
void aes_SubBytes(uint8_t state[16])
{
counter i = 16;
while (i--) {
state[i] = s_box(state[i]);
}
}
void aes_InvSubBytes(uint8_t state[16])
{
counter i = 16;
while (i--) {
state[i] = s_box_inverse(state[i]);
}
}
void aes_ShiftRows(uint8_t state[16])
{
uint8_t tmp;
tmp = state[MAP(1,0)];
state[MAP(1,0)] = state[MAP(1,1)];
state[MAP(1,1)] = state[MAP(1,2)];
state[MAP(1,2)] = state[MAP(1,3)];
state[MAP(1,3)] = tmp;
tmp = state[MAP(2,0)];
state[MAP(2,0)] = state[MAP(2,2)];
state[MAP(2,2)] = tmp;
tmp = state[MAP(2,1)];
state[MAP(2,1)] = state[MAP(2,3)];
state[MAP(2,3)] = tmp;
tmp = state[MAP(3,0)];
state[MAP(3,0)] = state[MAP(3,3)];
state[MAP(3,3)] = state[MAP(3,2)];
state[MAP(3,2)] = state[MAP(3,1)];
state[MAP(3,1)] = tmp;
}
void aes_InvShiftRows(uint8_t state[16])
{
uint8_t tmp;
tmp = state[MAP(3,0)];
state[MAP(3,0)] = state[MAP(3,1)];
state[MAP(3,1)] = state[MAP(3,2)];
state[MAP(3,2)] = state[MAP(3,3)];
state[MAP(3,3)] = tmp;
tmp = state[MAP(2,0)];
state[MAP(2,0)] = state[MAP(2,2)];
state[MAP(2,2)] = tmp;
tmp = state[MAP(2,1)];
state[MAP(2,1)] = state[MAP(2,3)];
state[MAP(2,3)] = tmp;
tmp = state[MAP(1,0)];
state[MAP(1,0)] = state[MAP(1,3)];
state[MAP(1,3)] = state[MAP(1,2)];
state[MAP(1,2)] = state[MAP(1,1)];
state[MAP(1,1)] = tmp;
}
void aes_MixColumns(uint8_t state[16])
{
counter i = 4;
uint8_t new_state[4];
while (i--) {
new_state[0] = MUL2(state[MAP(0,i)]) ^ MUL3(state[MAP(1,i)]) ^ state[MAP(2,i)] ^ state[MAP(3,i)] ;
new_state[1] = state[MAP(0,i)] ^ MUL2(state[MAP(1,i)]) ^ MUL3(state[MAP(2,i)]) ^ state[MAP(3,i)] ;
new_state[2] = state[MAP(0,i)] ^ state[MAP(1,i)] ^ MUL2(state[MAP(2,i)]) ^ MUL3(state[MAP(3,i)]);
new_state[3] = MUL3(state[MAP(0,i)]) ^ state[MAP(1,i)] ^ state[MAP(2,i)] ^ MUL2(state[MAP(3,i)]);
state[MAP(0,i)] = new_state[0];
state[MAP(1,i)] = new_state[1];
state[MAP(2,i)] = new_state[2];
state[MAP(3,i)] = new_state[3];
}
}
void aes_InvMixColumns(uint8_t state[16])
{
counter i = 4;
uint8_t new_state[4];
while (i--) {
new_state[0] = MUL(14, state[MAP(0,i)]) ^ MUL(11, state[MAP(1,i)]) ^ MUL(13, state[MAP(2,i)]) ^ MUL( 9, state[MAP(3,i)]);
new_state[1] = MUL( 9, state[MAP(0,i)]) ^ MUL(14, state[MAP(1,i)]) ^ MUL(11, state[MAP(2,i)]) ^ MUL(13, state[MAP(3,i)]);
new_state[2] = MUL(13, state[MAP(0,i)]) ^ MUL( 9, state[MAP(1,i)]) ^ MUL(14, state[MAP(2,i)]) ^ MUL(11, state[MAP(3,i)]);
new_state[3] = MUL(11, state[MAP(0,i)]) ^ MUL(13, state[MAP(1,i)]) ^ MUL( 9, state[MAP(2,i)]) ^ MUL(14, state[MAP(3,i)]);
state[MAP(0,i)] = new_state[0];
state[MAP(1,i)] = new_state[1];
state[MAP(2,i)] = new_state[2];
state[MAP(3,i)] = new_state[3];
}
}
void aes_AddRoundKey(uint8_t state[16], uint8_t sub_key[16])
{
#ifdef OPTIMISE_8_BIT
counter i = 16;
while (i--) {
state[i] ^= sub_key[i];
}
#else
counter i = 4;
while (i--) {
((uint32_t *) state)[i] ^= ((uint32_t *) sub_key)[i];
}
#endif
}
// Maths Operation Implementations
uint8_t aes_GaloisFieldMultiply(uint8_t fixed, uint8_t variable)
{
uint8_t result = 0;
while (fixed) {
result ^= variable & ((fixed & 0x01) * 0xFF);
variable = MUL2(variable);
fixed >>= 1;
}
return result;
}