-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpqdts.py
191 lines (169 loc) · 6.45 KB
/
pqdts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#!/usr/bin/env python3
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
import sys
import os
import time
import argparse
import subprocess
import math
from scipy.io import FortranFile
from matplotlib import pyplot
import pickle
def npz_to_fortran(npz,matname):
try:
os.mkdir("data")
except OSError as error:
pass
npz.todense().tofile('data/'+matname+'.bin')
coo=sp.sparse.coo_array(npz)
coorow=coo.row
coocol=coo.col
coodata=coo.data
coorow.tofile('data/'+matname+'_row.bin')
coocol.tofile('data/'+matname+'_col.bin')
coodata.tofile('data/'+matname+'_data.bin')
return len(coo.data)
def run_pqdts(N,M,D,P,threads,pqdtspath,maxiter=100,tol=1e-6,gamma=0,smo_int=0,smo_dist=0,start_stage=1,read_input=0,smo_fact=0,output=1,verbose=False,F=None,dry=False,benchops=0):
#set environment variables for OpenMP
os.environ["OMP_NUM_THREADS"] = str(threads)
os.environ["OMP_PROC_BIND"] = "True"
os.environ["OMP_PLACES"] = "cores"
#write input for Fortran code
NP=npz_to_fortran(P,"P")
NF=-1
if not (F is None):
NF=npz_to_fortran(F,"F")
#call pqdts
cmd=pqdtspath+" "+str(M)+" "+str(N)+" "+str(D)+" "+str(NF)+" "+str(NP)+" 2 "+str(maxiter)+" "+str(output)+" "+str(gamma)+" "+str(tol)+" "+str(start_stage)+" "+str(read_input)+" "+str(smo_fact)+" "+str(benchops)
if dry:
print("not executing:")
print(cmd)
return None
if verbose:
print("executing:",cmd)
start = time.time()
out=subprocess.run(cmd, shell=True, capture_output=True)
end = time.time()
if verbose:
for o in out.stdout.decode('utf-8').splitlines():
print(o)
for o in out.stderr.decode('utf-8').splitlines():
print(o)
#get objective value
O=0
M=0
for o in out.stdout.decode('utf-8').splitlines():
if o.startswith(" iter "):
O=float(o.split()[4])
#get memory usage from status
with open('status_ 0 .out', "r") as f:
for o in f.readlines():
if o.startswith(" VmHWM:"):
M=float(o.split()[1])
print("memory used=",M,"kB")
print("wall time=",end-start,"s")
print("objective value=",O)
#read output povm
f='rank_ 0_oiter 2.dat'
fi = FortranFile(f, 'r')
A=fi.read_ints(np.int32)
M=A[0]
A=fi.read_ints(np.int32)
N=A[0]
A=fi.read_ints(np.int32)
D=A[0]
A=fi.read_ints(np.int32)
ML=A[0]
A=fi.read_ints(np.int32)
rank=A[0]
X=fi.read_reals(float).reshape((ML,N), order="F")
#print(M,N,D,rank,ML,X.shape[1])
return X
parser = argparse.ArgumentParser()
parser.add_argument("-P", "--Pmatrix", help="path to npz file (scipy sparse) or npy file (numpy) of P matrix (dimension D x N)",type=str,required=True)
parser.add_argument("-F", "--Fmatrix", help="path to npz file (scipy sparse) or npy file (numpy) of F matrix (dimension D x M)",type=str,required=False)
parser.add_argument("-D", "--Dmax", help="truncate to D so that P is a D x N matrix",type=int,required=False)
parser.add_argument("-t", "--threads", help="numper of OpenMP threads to use",type=int,required=False,default=1)
parser.add_argument("-p", "--pqdtspath", help="path to compiled pqdts_omp.x",type=str,required=True)
parser.add_argument("-o", "--output", help="output file for povm as pickle",type=str,default="povm.p")
parser.add_argument("-e", "--epsilon", help="convergence parameter of minimization",type=float,default=1e-6)
parser.add_argument("-g", "--gamma", help="regularization parameter",type=float,default=0)
parser.add_argument("-m", "--maxiter", help="maximal number of iterations",type=int,default=200)
parser.add_argument("-T", "--timing", help="measure timing for reconstruction, don't write output POVMs",action='store_true')
parser.add_argument("-b", "--benchmarkops", help="measure timing for underlying operations",action='store_true')
parser.add_argument("-d", "--dryrun", help="dry-run: only prepare inputs for pqdts",action='store_true')
parser.add_argument("-v", "--verbose", help="be more verbose",action='store_true')
args = parser.parse_args()
if args.Pmatrix.endswith(".npz"):
P = sp.sparse.load_npz(args.Pmatrix)[:,:]
if args.Pmatrix.endswith(".npy"):
P = np.load(args.Pmatrix)
P=sp.sparse.csr_matrix(P)
Dmax=P.shape[0]
N=P.shape[1]
print("input P: N=",N,"D=",Dmax)
D=Dmax
if not (args.Dmax is None):
print("truncating to D=",args.Dmax)
D=args.Dmax
P=P[-D:,:]
M=0
#read F if given as commandline argument
if not(args.Fmatrix is None):
if args.Fmatrix.endswith(".npz"):
F = sp.sparse.load_npz(args.Fmatrix)[:,:]
if args.Fmatrix.endswith(".npy"):
F = np.load(args.Fmatrix)
F=sp.sparse.csr_matrix(F)
print("shape of read in F",F.shape)
M=F.shape[1]
if not (args.Dmax is None):
F=F[-D:,:]
if F.shape[0]!=D:
raise RuntimeError("P and F don't have matching dimensions.")
else:
print("WARNING: using internal F with quadratic scaling of photon numbers")
M=(D-1)*(D-1)
print("N=",N,"D=",D,"M=",M,"N*M=",N*M)
#call OpenMP-version of pqdts
output=1
benchops=0
if args.timing:
output=0
if args.benchmarkops:
benchops=1
if not(args.Fmatrix is None):
povm=run_pqdts(N,M,D,P,threads=args.threads,pqdtspath=args.pqdtspath,maxiter=args.maxiter,tol=args.epsilon,gamma=args.gamma,verbose=args.verbose,output=output,F=F,dry=args.dryrun,benchops=benchops)
else:
povm=run_pqdts(N,M,D,P,threads=args.threads,pqdtspath=args.pqdtspath,maxiter=args.maxiter,tol=args.epsilon,gamma=args.gamma,verbose=args.verbose,output=output,dry=args.dryrun,benchops=benchops)
if povm is None:
quit()
#check constraints
x1=0
x2=0
for i in range(povm.shape[0]):
x1=max(x1,abs(np.sum(povm[i,:])-1))
x2=x2+(np.sum(povm[i,:])-1)**2
print("maximal absolute violation of sum-constraint=",x1)
print("l2-norm of violation of sum-constraint=",math.sqrt(x2))
print("minimum povm value=",np.min(povm))
#dump as pickle for convenient further analysis and plotting
pickle.dump(povm,open(args.output,"wb"))
#plot POVM
fig = pyplot.figure()
ax = fig.add_subplot(1,1,1)
ax.set_xscale("linear")
for i in range(povm.shape[1]):
ax.plot(np.arange(povm.shape[0]),povm[:,i],linewidth=0.25)
fig.savefig("result_lin.png",dpi=300)
pyplot.close(fig)
pyplot.clf()
fig = pyplot.figure()
ax = fig.add_subplot(1,1,1)
ax.set_xscale("log")
for i in range(povm.shape[1]):
ax.plot(np.arange(povm.shape[0]),povm[:,i],linewidth=0.25)
fig.savefig("result_log.png",dpi=300)
pyplot.close(fig)