forked from stupel/Preprocessing
-
Notifications
You must be signed in to change notification settings - Fork 2
/
preprocessing_caffenetwork.cpp
executable file
·357 lines (295 loc) · 12.9 KB
/
preprocessing_caffenetwork.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
#include "preprocessing_caffenetwork.h"
PreprocessingCaffeNetwork::PreprocessingCaffeNetwork()
{
this->networkLoaded = false;
}
PreprocessingCaffeNetwork::~PreprocessingCaffeNetwork()
{
if (this->networkLoaded) {
net_.reset();
mean_.release();
}
}
bool PreprocessingCaffeNetwork::caffePairCompare(const std::pair<float, int>& lhs, const std::pair<float, int>& rhs)
{
return lhs.first > rhs.first;
}
/* Return the indices of the top N values of vector v. */
std::vector<int> PreprocessingCaffeNetwork::caffeArgmax(const std::vector<float>& v, int N)
{
std::vector<std::pair<float, int> > pairs;
for (size_t i = 0; i < v.size(); ++i)
pairs.push_back(std::make_pair(v[i], i));
std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), caffePairCompare);
std::vector<int> result;
for (int i = 0; i < N; ++i)
result.push_back(pairs[i].second);
return result;
}
std::vector<Prediction> PreprocessingCaffeNetwork::classify(const cv::Mat img)
{
int N = 5;
std::vector<float> output = this->predict(img);
N = std::min<int>(labels_.size(), N);
std::vector<int> maxN = caffeArgmax(output, N);
std::vector<Prediction> predictions;
for (int i = 0; i < N; ++i) {
int idx = maxN[i];
predictions.push_back(std::make_pair(labels_[idx], output[idx]));
}
return predictions;
}
void PreprocessingCaffeNetwork::loadModel(const QString &model_file,
const QString &trained_file,
const QString &mean_file,
const QString &label_file)
{
#ifdef CPU_ONLY
Caffe::set_mode(Caffe::CPU);
#else
Caffe::set_mode(Caffe::GPU);
#endif
/* Load the network. */
net_.reset(new Net<float>(model_file.toStdString(), TEST));
net_->CopyTrainedLayersFrom(trained_file.toStdString());
CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";
Blob<float>* input_layer = net_->input_blobs()[0];
num_channels = input_layer->channels();
CHECK(num_channels == 3 || num_channels == 1) << "Input layer should have 1 or 3 channels.";
input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
/* Load the binaryproto mean file. */
this->setMean(mean_file.toStdString());
/* Load labels. */
std::ifstream labels(label_file.toStdString().c_str());
CHECK(labels) << "Unable to open labels file " << label_file.toStdString();
std::string line;
while (std::getline(labels, line))
labels_.push_back(string(line));
Blob<float>* output_layer = net_->output_blobs()[0];
CHECK_EQ(labels_.size(), output_layer->channels()) << "Number of labels is different from the output layer dimension.";
this->networkLoaded = true;
}
bool PreprocessingCaffeNetwork::getNetworkLoaded() const
{
return networkLoaded;
}
void PreprocessingCaffeNetwork::setMean(const std::string& mean_file)
{
BlobProto blob_proto;
ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);
/* Convert from BlobProto to Blob<float> */
Blob<float> mean_blob;
mean_blob.FromProto(blob_proto);
CHECK_EQ(mean_blob.channels(), num_channels)
<< "Number of channels of mean file doesn't match input layer.";
/* The format of the mean file is planar 32-bit float BGR or grayscale. */
std::vector<cv::Mat> channels;
float* data = mean_blob.mutable_cpu_data();
for (int i = 0; i < num_channels; ++i) {
/* Extract an individual channel. */
cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
channels.push_back(channel);
data += mean_blob.height() * mean_blob.width();
}
/* Merge the separate channels into a single image. */
cv::Mat mean;
cv::merge(channels, mean);
/* Compute the global mean pixel value and create a mean image
* filled with this value. */
cv::Scalar channel_mean = cv::mean(mean);
mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}
std::vector<float> PreprocessingCaffeNetwork::predict(const cv::Mat& img)
{
Blob<float>* input_layer = this->net_->input_blobs()[0];
input_layer->Reshape(1, this->num_channels,
this->input_geometry_.height,
this->input_geometry_.width);
/* Forward dimension change to all layers. */
this->net_->Reshape();
std::vector<cv::Mat> input_channels;
this->wrapInputLayer(&input_channels);
this->preprocess(img, &input_channels);
Blob<float>* output_layer = this->net_->output_blobs()[0];
const float* begin = output_layer->cpu_data();
const float* end = begin + output_layer->channels();
net_->Forward();
/* Copy the output layer to a std::vector */
output_layer = this->net_->output_blobs()[0];
begin = output_layer->cpu_data();
end = begin + output_layer->channels();
return std::vector<float>(begin, end);
}
void PreprocessingCaffeNetwork::wrapInputLayer(std::vector<cv::Mat>* input_channels)
{
Blob<float>* input_layer = net_->input_blobs()[0];
int width = input_layer->width();
int height = input_layer->height();
float* input_data = input_layer->mutable_cpu_data();
for (int i = 0; i < input_layer->channels(); ++i) {
cv::Mat channel(height, width, CV_32FC1, input_data);
input_channels->push_back(channel);
input_data += width * height;
}
}
void PreprocessingCaffeNetwork::preprocess(const cv::Mat& img, std::vector<cv::Mat>* input_channels)
{
/* Convert the input image to the input image format of the network. */
cv::Mat sample;
if (img.channels() == 3 && num_channels == 1)
cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
else if (img.channels() == 4 && num_channels == 1)
cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
else if (img.channels() == 4 && num_channels == 3)
cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
else if (img.channels() == 1 && num_channels == 3)
cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
else
sample = img;
cv::Mat sample_resized;
if (sample.size() != input_geometry_)
cv::resize(sample, sample_resized, input_geometry_);
else
sample_resized = sample;
cv::Mat sample_float;
if (num_channels == 3)
sample_resized.convertTo(sample_float, CV_32FC3);
else
sample_resized.convertTo(sample_float, CV_32FC1);
cv::Mat sample_normalized;
cv::subtract(sample_float, mean_, sample_normalized);
/* This operation will write the separate BGR planes directly to the
* input layer of the network because it is wrapped by the cv::Mat
* objects in input_channels. */
sample_normalized /= 255.0;
cv::split(sample_normalized, *input_channels);
CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
== net_->input_blobs()[0]->cpu_data())
<< "Input channels are not wrapping the input layer of the network.";
}
void PreprocessingCaffeNetwork::preprocessBatch(const vector<cv::Mat> imgs, std::vector< std::vector<cv::Mat> >* input_batch)
{
for (int i = 0 ; i < imgs.size(); i++){
cv::Mat img = imgs[i];
std::vector<cv::Mat> *input_channels = &(input_batch->at(i));
/* Convert the input image to the input image format of the network. */
cv::Mat sample;
if (img.channels() == 3 && this->num_channels == 1)
cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
else if (img.channels() == 4 && this->num_channels == 1)
cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
else if (img.channels() == 4 && this->num_channels == 3)
cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
else if (img.channels() == 1 && this->num_channels == 3)
cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
else
sample = img;
cv::Mat sample_resized;
if (sample.size() != this->input_geometry_)
cv::resize(sample, sample_resized, this->input_geometry_);
else
sample_resized = sample;
cv::Mat sample_float;
if (this->num_channels == 3)
sample_resized.convertTo(sample_float, CV_32FC3);
else
sample_resized.convertTo(sample_float, CV_32FC1);
cv::Mat sample_normalized;
cv::subtract(sample_float, this->mean_, sample_normalized);
sample_normalized /= 255.0;
/* This operation will write the separate BGR planes directly to the
* input layer of the network because it is wrapped by the cv::Mat
* objects in input_channels. */
cv::split(sample_normalized, *input_channels);
// CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
// == net_->input_blobs()[0]->cpu_data())
// << "Input channels are not wrapping the input layer of the network.";
}
}
void PreprocessingCaffeNetwork::wrapBatchInputLayer(std::vector<std::vector<cv::Mat> > *input_batch)
{
Blob<float>* input_layer_ = this->net_->input_blobs()[0];
int width = input_layer_->width();
int height = input_layer_->height();
int num = input_layer_->num();
float* input_data = input_layer_->mutable_cpu_data();
for ( int j = 0; j < num; j++){
vector<cv::Mat> input_channels;
for (int i = 0; i < input_layer_->channels(); ++i){
cv::Mat channel(height, width, CV_32FC1, input_data);
input_channels.push_back(channel);
input_data += width * height;
}
input_batch -> push_back(vector<cv::Mat>(input_channels));
}
}
std::vector<float> PreprocessingCaffeNetwork::predictBatch(const std::vector< cv::Mat > imgs)
{
Blob<float>* input_layer = this->net_->input_blobs()[0];
input_layer->Reshape(imgs.size(), this->num_channels,
this->input_geometry_.height,
this->input_geometry_.width);
/* Forward dimension change to all layers. */
this->net_->Reshape();
std::vector<std::vector<cv::Mat>> input_batch;
this->wrapBatchInputLayer(&input_batch);
this->preprocessBatch(imgs, &input_batch);
Blob<float>* output_layer = this->net_->output_blobs()[0];
const float* begin = output_layer->cpu_data();
const float* end = begin + output_layer->channels()*imgs.size();
this->net_->Forward();
/* Copy the output layer to a std::vector */
output_layer = this->net_->output_blobs()[0];
begin = output_layer->cpu_data();
end = begin + output_layer->channels()*imgs.size();
return std::vector<float>(begin, end);
}
std::vector<std::vector<Prediction>> PreprocessingCaffeNetwork::classifyBatch(const std::vector< cv::Mat > imgs, int num_classes)
{
std::vector<float> output_batch = this->predictBatch(imgs);
std::vector< std::vector<Prediction> > predictions;
for(int j = 0; j < imgs.size(); j++){
std::vector<float> output(output_batch.begin() + j*num_classes, output_batch.begin() + (j+1)*num_classes); //rozdiel
std::vector<int> maxN = caffeArgmax(output, num_classes);
std::vector<Prediction> prediction_single;
for (int i = 0; i < num_classes; ++i) {
int idx = maxN[i];
prediction_single.push_back(std::make_pair(this->labels_[idx], output[idx]));
}
predictions.push_back(std::vector<Prediction>(prediction_single));
}
return predictions;
}
std::vector<string> PreprocessingCaffeNetwork::get_stages_from_flags()
{
string flag_stage = "";
vector<string> stages;
boost::split(stages, flag_stage, boost::is_any_of(","));
return stages;
}
caffe::SolverAction::Enum PreprocessingCaffeNetwork::GetRequestedAction(const std::string& flag_value)
{
if (flag_value == "stop") {
return caffe::SolverAction::STOP;
}
if (flag_value == "snapshot") {
return caffe::SolverAction::SNAPSHOT;
}
if (flag_value == "none") {
return caffe::SolverAction::NONE;
}
emit logSignal("trainer", "Invalid signal effect \"" + QString::fromStdString(flag_value) + "\" was specified");
}
void PreprocessingCaffeNetwork::CopyLayers(caffe::Solver<float>* solver, const std::string& model_list)
{
std::vector<std::string> model_names;
boost::split(model_names, model_list, boost::is_any_of(",") );
for (int i = 0; i < model_names.size(); ++i) {
emit logSignal("trainer", "Finetuning from " + QString::fromStdString(model_names[i]));
solver->net()->CopyTrainedLayersFrom(model_names[i]);
for (int j = 0; j < solver->test_nets().size(); ++j) {
solver->test_nets()[j]->CopyTrainedLayersFrom(model_names[i]);
}
}
}